

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-17/0307 vom 15. September 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Sikla Injektionssystem VMU plus für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

Sikla Holding GmbH Ägydiplatz 3 A-4600 THALHEIM BEI WELS ÖSTERREICH

Sikla Herstellwerk 1 Sikla Herstellwerk 3

81 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604, Edition 10/2022

ETA-17/0307 vom 4. Mai 2017

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z208517.25

Seite 2 von 81 | 15. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 81 | 15. September 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Sikla Injektionssystem VMU plus für Mauerwerk" ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel VMU plus oder VMU plus Polar, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe oder einer Innengewindeankerstange besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen	Siehe Anhang B6, B7 C1 bis C60
Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände	Siehe Anhang C4, C9, C10, C15, C16, C19, C21, C22, C23, C40, C42, C47, C48, C49, C50, C55 und C56

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 81 | 15. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 15. September 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

Bei Durchsteckmontage muss der Ringspalt zwischen Ankerstange und Anbauteil mit Mörtel verfüllt sein.

Legende (Anhang A1 und Anhang A2):

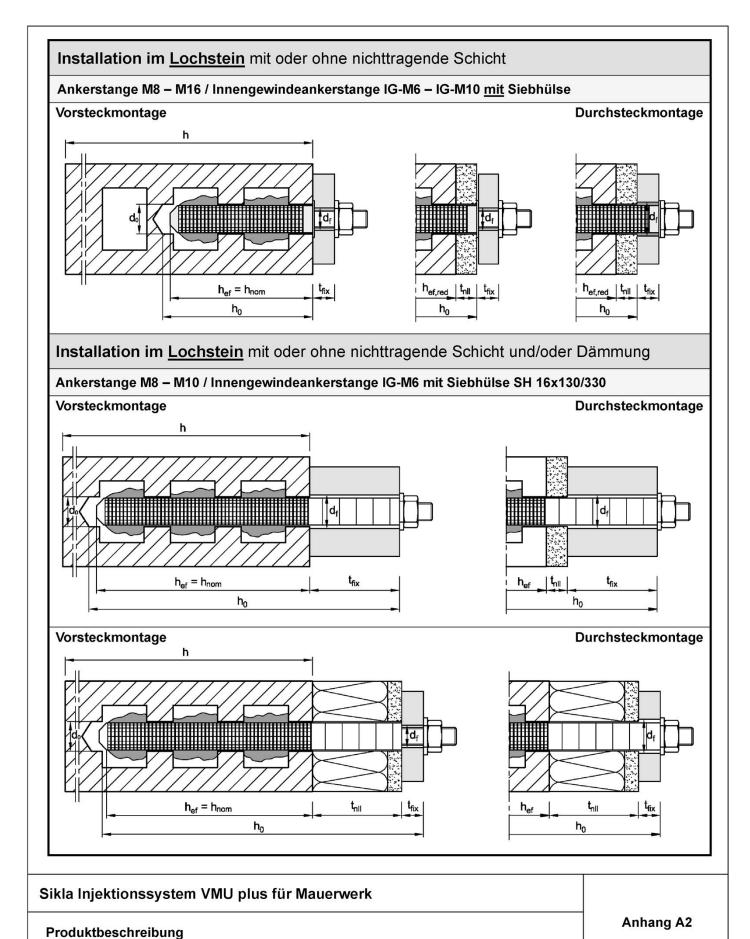
h_{ef} = effektive Verankerungstiefe

h_{nom} = nominelle Verankerungstiefe

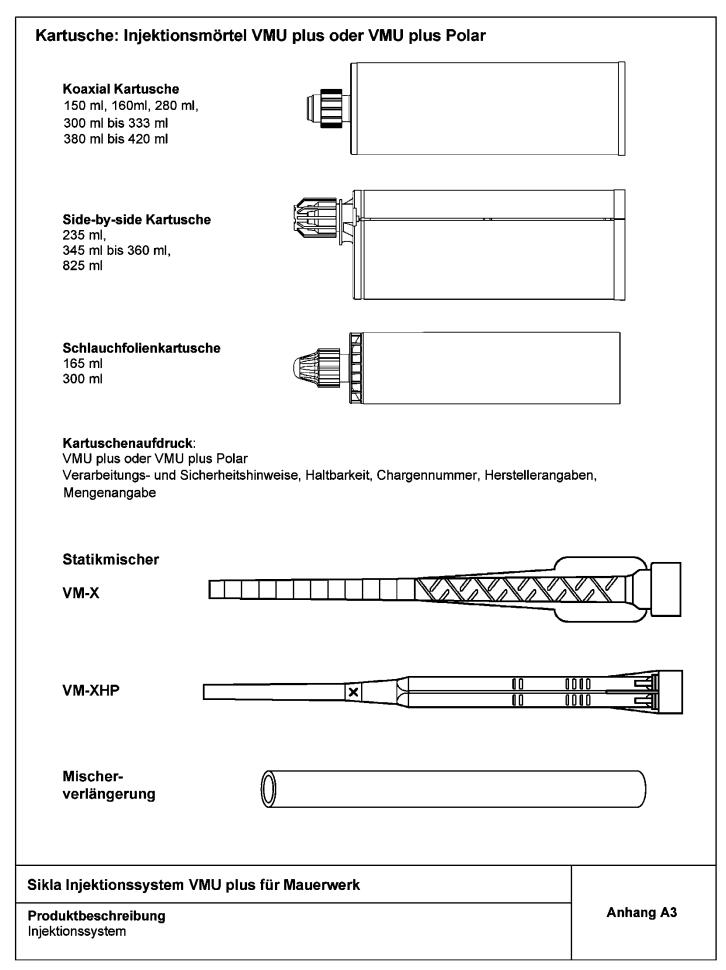
h₀ = Bohrlochtiefe h = Bauteildicke

d₀ = Bohrlochdurchmesser

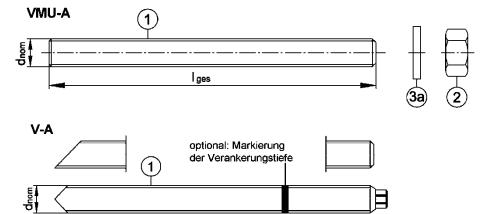
d_f = Durchgangsloch im Anbauteil


t_{fix} = Dicke des Anbauteils

 t_{nll} = Dicke der nichttragenden Schicht


Sikla Injektionssystem VMU plus für Mauerwerk Produktbeschreibung Einbauzustand - Vollstein Anhang A1

Einbauzustand - Lochstein



Ankerstangen

Ankerstangen VMU-A und V-A

M8, M10, M12, M16 (verzinkt, A4, HCR) mit Unterlegscheibe und Sechskantmutter

Prägung z.B.: M10

Werkzeichen
M10 Gewindegröße

zusätzliche Kennung:

-8 Festigkeitsklasse 8.8A4 nichtrostender Stahl

HC hochkorrosionsbeständiger

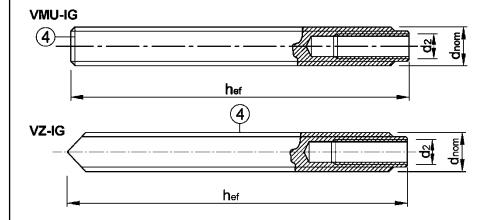
Stahl

Ankerstange VM-A (Meterware zum Ablängen)

M8, M10, M12, M16 (verzinkt, A2, A4, HCR)

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1

Handelsübliche Gewindestangen


M8, M10, M12, M16 (verzinkt, A2, A4, HCR)

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004 (Dokumente sind aufzubewahren)

Innengewindeankerstange VMU-IG und VZ-IG

IG M6, IG M8, IG M10

(verzinkt, A4, HCR)

Prägung z.B.: ♦ M8

Werkzeichen

I Innengewinde (optional)

M8 Gewindegröße (Innengewinde)

· · · · ·

zusätzliche Kennung:

-8 Festigkeitsklasse 8.8A4 nichtrostender Stahl

HCR hochkorrosionsbeständiger

Stahl

Sikla Injektionssystem VMU plus für Mauerwerk

Produktbeschreibung

Ankerstangen und Innengewindeankerstangen

Anhang A4

Tabelle A1: Werkstoffe

	Benennung		Werkstoffe und mechanische Eigenschaften						
galva feuer	verzinkt	≥ 5 µm gemä ≥ 50 µm im Mit ≥ 45 µm gemä	ttel gemäß l	EN ISO	1461:2022	2, EN ISC	10684:2004	l+AC:2009 oder	
		Festigkeits- klasse	Charakteristische Charakteris Zugfestigkeit Streckgro				Bruch- dehnung	EN ISO 683-4:2018,	
		4.6		400		240	A ₅ > 8 %	EN 10263:2017	
1	Ankerstange	4.8		400		320	A ₅ > 8 %	handelsübliche	
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	Gewindestangen:	
		5.8	[[14/11111]	500	[[14/11111]	400	A ₅ > 8 %	EN ISO 898-1:2013	
		8.8		800		640	A ₅ > 8 %		
		4	für Ankers	tangen d	der Klasse	4.6, 4.8			
2	Sechskantmutter	5	für Ankers	tangen d	der Klasse	4.6, 4.8,	5.6, 5.8	EN ISO 898-2:2022	
		8	für Ankers	tangen d	der Klasse	4.6, 4.8,	5.6, 5.8, 8.8		
3	Unterlegscheibe		z.B.: EN IS EN ISO 88		:2000, EN	ISO 709	3:2000, EN I	SO 7094:2000,	
	Innengewinde-	5.8	Stahl, galv	anisch v	erzinkt od	er	A ₅ > 8%	EN ISO 683-4:2018	
4	ankerstange ³⁾	8.8	diffusionsv	erzinkt			A ₅ > 8%		
Nich	trostender Stahl A trostender Stahl A nkorrosionsbestär	4	С	RC III (1		1404 / 1.4	1311 / 1.4567 1571 / 1.4578		
Nich	trostender Stahl <i>A</i>	4	С	RC III (1 RC V (1 stische	.4401 / 1.4	1404 / 1.4 1565) ristische			
Nich Hoch	trostender Stahl A nkorrosionsbestär	4 ndiger Stahl H Festigkeits-	CR C	RC III (1 RC V (1 stische	.4401 / 1.4 .4529 / 1.4 Charakte	1404 / 1.4 1565) ristische	1571 / 1.4578 Bruch-		
Nich	trostender Stahl <i>A</i>	ndiger Stahl H Festigkeits- klasse	Charakteri Zugfesti	RC III (1 RC V (1 stische gkeit	.4401 / 1.4 .4529 / 1.4 Charakte Streckg	1404 / 1.4 1565) ristische grenze	Bruch- dehnung	3)	
Nich Hoch	trostender Stahl A nkorrosionsbestär	restigkeits- klasse	CR C Charakteri Zugfesti	RC III (1 RC V (1 stische gkeit	.4401 / 1.4 .4529 / 1.4 Charakte Streckg	1404 / 1.4 1565) ristische grenze 210 450	Bruch- dehnung A ₅ > 8%	EN 10088-1:2014	
Nich Hoch	trostender Stahl A nkorrosionsbestär	Festigkeits- klasse	Charakteri Zugfesti	RC III (1 RC V (1 stische gkeit 500 700 800	.4401 / 1.4 .4529 / 1.4 Charakte Streckg f _{yk} [N/mm²]	ristische grenze 210 450 (560) 2) 600 (640) 2)	Bruch- dehnung A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020	
Nich Hoch	trostender Stahl A nkorrosionsbestär	Festigkeits- klasse 50 70	CR C Charakteri Zugfesti f _{uk} [N/mm²]	RC III (1 RC V (1 stische gkeit 500 700 800	.4401 / 1.4 .4529 / 1.4 Charakte Streckg f _{yk} [N/mm²]	ristische grenze 210 450 (560) 2) 600 (640) 2)	Bruch- dehnung A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020	
Nich Hoch	trostender Stahl Ankorrosionsbestär Ankerstange	Festigkeits-klasse 50 70 80 50 70	Charakteri Zugfesti f _{uk} [N/mm²]	RC III (1 RC V (1 stische gkeit 500 700 800 tangen (.4401 / 1.4 .4529 / 1.4 Charakte Streckg f _{yk} [N/mm²] der Klasse	ristische grenze 210 450 (560) 2) 600 (640) 2) 50	Bruch- dehnung A ₅ > 8% A ₅ > 8 % A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020	
Nich Hoch	trostender Stahl Ankorrosionsbestär Ankerstange	Festigkeits-klasse 50 70 80 50 70	Charakteri Zugfesti f _{uk} [N/mm²] für Ankers	RC III (1 RC V (1 stische gkeit 500 700 angen ctangen	.4401 / 1.4 .4529 / 1.4 Charakte Streckg f _{yk} [N/mm²] der Klasse der Klasse der Klasse :2000, EN	ristische grenze 210 450 (560) ²⁾ 600 (640) ²⁾ 50 50, 70 50, 70, 8 ISO 709	Bruch- dehnung A ₅ > 8% A ₅ > 8 % A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020	
Nich Hoch	Ankerstange Sechskantmutter	Festigkeits-klasse 50 70 80 50 70	Charakteri Zugfesti f _{uk} [N/mm²] für Ankers für Ankers für Ankers	RC III (1 RC V (1 stische gkeit 500 700 800 tangen ctangen ctangen conder Stander Stan	.4401 / 1.4 .4529 / 1.4 Charakte Streckg f _{yk} [N/mm²] der Klasse der Klasse der Klasse :2000, EN 0; EN ISO hl A4;	ristische grenze 210 450 (560) ²⁾ 600 (640) ²⁾ 50 50, 70 50, 70, 8 ISO 709 887:2006	Bruch- dehnung A ₅ > 8% A ₅ > 8 % A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020	
1 2 3 4	Ankerstange Sechskantmutter Unterlegscheibe Innengewinde-	Festigkeits-klasse 50 70 80 50 70 80	Charakteri Zugfesti f _{uk} [N/mm²] für Ankers für Ankers für Ankers z.B.: EN IS EN ISO 70	RC III (1 RC V (1 stische gkeit 500 700 800 tangen o tangen o tangen o 60 7089 94:2000 nder Sta	.4401 / 1.4 .4529 / 1.4 Charakte Streckg fyk [N/mm²] der Klasse der Klasse der Klasse :2000, EN D; EN ISO hl A4; st. Stahl He	ristische grenze 210 450 (560) ²⁾ 600 (640) ²⁾ 50 50, 70 50, 70, 8 ISO 709 887:2006	Bruch-dehnung A ₅ > 8% A ₅ > 8 % A ₅ > 8 % 3:2000,	EN 10088-1:2014 EN ISO 3506-1:202 EN 10088-1:2014 EN ISO 3506-2:202 EN 10088-1:2014	

³⁾ Bei VMU-IG bzw. VZ-IG müssen die verwendeten Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) mindestens dem Material und der Festigkeitsklasse der Ankerstange entsprechen.

Sikla Injektionssystem VMU plus für Mauerwerk	
Produktbeschreibung Werkstoffe	Anhang A5

¹⁾ Festigkeitsklasse 50 und 70 2) Wert in Klammern für VMU-A und V-A

Tabelle A2: Abmessungen der Ankerstangen und Innengewindeankerstangen

Ankerstangen			M8	M10	M12	M16
Durchmesser	$d = d_{nom}$	[mm]	8	10	12	16
Gesamtlänge	I_{ges}	[mm]	h_{ef} + t_{fix} + 9,5	h _{ef} + t _{fix} + 11,5	h _{ef} + t _{fix} + 17,5	h _{ef} + t _{fix} + 20,0
Innengewindeankerstange			•	IG M6	IG M8	IG M10
Innendurchmesser	d_2	[mm]	-	6	8	10
Außendurchmesser	$d = d_{nom}$	[mm]	ī	10	12	16
min. Einschraubtiefe	$L_{IG,min}$	[mm]	ı	8	10	10
Gesamtlänge	I _{ges}	[mm]	-	mit Sie ohne Sie	ebhülse: h _{ef} – 5m ebhülse: h _{ef}	nm

Tabelle A3: Abmessungen der Siebhülsen VM-SH

Тур	Größe	d _s [mm]	L _s	$\mathbf{h}_{\text{ef}} = \mathbf{h}_{\text{nom}}$ [mm]
$L_s = h_{ef} = h_{nom}$	VM-SH 12x80	12	80	80
ds	VM-SH 16x85	16	85	85
	VM-SH 20x85	20	85	85
L _s = h _{ef} = h _{nom}	VM-SH 16x130	16	130	130
ds	VM-SH 20x130	20	130	130
	VM-SH 20x200	20	200	200
L _s h _{ef} = h _{nom} d _s zur Montage durch bis zu 20cm Wärmedämmung oder zur Durchsteckmontage	VM-SH 16x130/330 ¹⁾	16	330	130

¹⁾ Im Anhang C ist diese Siebhülse mit der VM-SH 16x130 abgedeckt

Sikla Injektionssystem VMU plus für Mauerwerk	
Produktbeschreibung Abmessungen der Ankerstangen und Siebhülsen	Anhang A6

Spezifizierung des Verwendungszwecks

			1		
Beanspruchung der	Statische und quasi-	statische Lasten	M8 – M16		
Verankerung	Brandeinwirkung		IG M6 – IG M10		
	Zug- und Querlast		(mit und ohne Siebhülse)		
Verankerungsgrund	Mauerwerksgruppe b	: Vollsteine	Anhang B 3		
	Mauerwerksgruppe o	: Hohl- und Lochsteine	Anhang B 3 bis B 5		
	Mauerwerksgruppe d	: Porenbeton	Anhang B 3		
	Bei anderen Steinen Porenbeton darf die d Baustellenversuche e	in Vollsteinmauerwerk, Lo charakteristische Tragfähi entsprechend EOTA TR 0	ns M2,5 gemäß EN 998-2:2016 ochsteinmauerwerk oder in gkeit des Dübels durch 53, Fassung Juli 2022 unter C1, Tabelle C1 ermittelt werden.		
Temperaturbereich	T _b : - 40°C bis +80°C (max. Kurzzeittem T _c : - 40°C bis +120°C	· peratur +80°C und max. L ;	Langzeittemperatur +24°C) .angzeittemperatur +50°C) Langzeittemperatur +72°C)		
Bohrlocherstellung	Siehe Anhang C				
Anwendungsbedingungen (Umweltbedingungen):	Für alle anderen Bed	ingungen entsprechend E keitsklasse Tabelle A1 (ni	enräume (alle Materialien). :N 1993-1-4:2006+A2:2020 chtrostende und		
Nutzungsbedingungen	Bedingung d/d Bedingung w/w	Einbau und Verwendung	g in trockenem Mauerwerk g in trockenem oder nassem stallation in nassem Mauerwerk kenem Mauerwerk)		

Bemerkung: Der charakteristische Widerstand für Vollsteine und Porenbetonsteine gilt auch für größere Steindurchmesser und höhere Steindruckfestigkeiten.

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Spezifikationen	Anhang B1

Spezifizierung des Verwendungszwecks

Bemessung:

- Unter Berücksichtigung des Mauerwerks im Verankerungsbereich, der zu verankernden Lasten und der Weiterleitung der Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels anzugeben
- Die Bemessung der Verankerungen erfolgt gemäß EOTA TR 054, Fassung Juli 2022, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs
- · Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:
 - $N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$
 - $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$
- Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung NRK,pb oder das Herausdrücken eines Steines unter Querbeanspruchung VRk,pb siehe EOTA Technical Report TR 054, Fassung Juli 2022.
- NRk,s, VRk,s und M⁰Rk,s siehe Anhang C2 C4.
- Bei Anwendungen mit Siebhülse mit Bohrlochdurchmessern ≤15mm, installiert in nichtgefüllte Fugen:
 - NRk,p,j = 0,18 * NRk,p und NRk,b,j = 0,18 * NRk,b (NRk,p = NRk,b siehe Anhang C)
 - VRk,c,j = 0,15 * VRk,c und VRk,b,j = 0,15 * VRk,b (VRk,b siehe Anhang C; VRk,c siehe Anhang C5)
- Anwendungen ohne Siebhülse installiert in nichtgefüllte Fugen sind nicht erlaubt.

Einbau:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Bei Verwendung von Ankerstangen mit Innengewinde (VMU-IG bzw. VZ-IG) müssen Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) dem Material und der Festigkeitsklasse der Ankerstange entsprechen.

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Spezifikationen	Anhang B2

Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang	Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang
Porenbeto	n gemäß EN 771-4	:2011+A1:	2015		Leichtbetonvo	Ilstein gemäß EN	771-3:201	1+A1	:201
AAC ρ = 0,35-0,60 ≥ 499x240x249		12x80 16x85 16x130 20x85 20x130 20x200	_	C6 - C8	VBL ρ≥0,6 ≥240x300x113		12x80 16x85 16x130 20x85 20x130 20x200		C59 - C60
	Leicht	betonloch	stein	e gemä	iß EN 771-3:2011	+A1:2015			16
HBL 16DF ρ≥1,0 500x250x240		16x85 16x130 20x85 20x130 20x200	✓	C55 - C56	Bloc creux B40 ρ ≥ 0,8 495x195x190	EEE	16x130 20x130	Ī	C57 - C58
	Kal	ksandste	ine ge	emäß E	N 771-2:2011+A	1:2015			
KS-NF ρ ≥ 2,0 ≥ 240x115x71		12x80 16x85 16x130 20x85 20x130 20x200	✓	C9 - C10	KSL-3DF ρ≥1,4 240x175x113	***	16x85 16x130 20x85 20x130	1	C1:
KSL-8DF ρ ≥ 1,4 248x240x238		16x130 20x130 20x200	_	C13 - C14	KSL-12DF ρ≥1,4 498x175x238		16x130 20x130	*	C1:
		Vollziege	l gem	äß EN	771-1:2011+A1:2	2015			
MZ-1DF ρ ≥ 2,0 ≥ 240x115x55		12x80 16x85 16x130 20x85 20x130 20x200	_	C17 - C18	MZ – 2 DF ρ ≥ 2,0 ≥ 240x115x113		12x80 16x85 16x130 20x85 20x130 20x200	✓	C19

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Steintyp und Eigenschaften	Anhang B3

Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang	Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhand
		Lochzieg	el ger	näß EN	771-1:2011+A1	:2015			
HIz-10DF ρ ≥ 1,25 300x240x249		12x80 16x85 16x130 20x85 20x130 20x200	✓	C22 - C23	Porotherm Homebric $\rho \ge 0,7$ $500x200x299$		12x80 16x85 16x130 20x85 20x130	1	C2 - C2
BGV Thermo $\rho \ge 0.6$ 500x200x314		12x80 16x85 16x130 20x85 20x130	_7	C26 - C27	Brique creuse C40 ρ ≥ 0,7 500x200x200		12x80 16x85 16x130 20x85 20x130	1	C3
Calibric R+ ρ ≥ 0,6 500x200x314		12x80 16x85 16x130 20x85 20x130	_	C28 - C29	Blocchi Leggeri ρ≥0,6 250x120x250		12x80 16x85 16x130 20x85 20x130	_	C3 - C3
Urbanbric ρ ≥ 0,7 560x200x274		12x80 16x85 16x130 20x85 20x130	_	C30 - C31	Doppio Uni ρ≥0,9 250x120x120		12x80 16x85 16x130 20x85 20x130	Ì	C3
	Lochziege	el mit Wär	medä	mmun	g gemäß EN 771	I-1:2011+A1:2015			
Coriso WS07 ρ ≥ 0,55 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	_	C38 - C39	T8P ρ ≥ 0,56 248x365x249 Perlite		12x80 16x85 16x130 20x85 20x130 20x200	I	C4 C4
T7MW ρ ≥ 0,59 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	✓	C40 - C42	MZ90-G ρ ≥ 0,68 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	ĵ	C4

Sikla Injektionssystem VMU plus für Mauerwerk	Anhang B4
Verwendungszweck Steintyp und Eigenschaften	Aillially 64

Fortsetzung Tabelle B1: Übersicht der Mauersteine und Eigenschaften

Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang	Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang
	Lochziege	l mit Wärr	nedär	nmung	g gemäß EN 771	-1:2011+A1:2015			
Poroton FZ7,5 ρ ≥ 0,90 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	✓	C47 - C48	Poroton FZ9 ρ ≥ 0,90 248x365x249 Mineralwolle	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12x80 16x85 16x130 20x85 20x130 20x200	~	C49 - C50
Poroton S9 ρ ≥ 0,85 248x365x249 Perlite		12x80 16x85 16x130 20x85 20x130 20x200	_	C51 - C52	Thermopor TV8+ ρ ≥ 0,7 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	1	C53 - C54

Verwendungszweck Steintyp und Eigenschaften **Anhang B5**

Tabelle B2: Montagekennwerte für Porenbeton AAC und Vollstein (<u>ohne</u> Siebhülse) bei Vor- und Durchsteckmontage

Ankerstange				M8	M10 IG-M6	M12 IG-M8	M16 IG-M10	
Bohrernenndur	chmesser	d₀	[mm]	10	12	14	18	
Bohrlochtiefe		h ₀	[mm]		h _{ef}	+ t _{fix} 1)		
Effektive Verar	nkerungstiefe	h _{ef}	[mm]	80	≥ 90	≥ 100	≥ 100	
Durchgangs-	Vorsteck- montage	d₁≤	[mm]	9	7 (IG-M6) 12 (M10)	9 (IG-M8) 14 (M12)	12 (IG-M10) 18 (M16)	
Anbauteil	Durchsteck- montage	d₁≤	[mm]	12	14	16	20	
Reinigungsbür	ste		[-]	RB 10	RB 12	RB 14	RB 18	
Min. Bürstendu	Min. Bürstendurchmesser c		[mm]	10,5	12,5	14,5	18,5	
Max. Montaged	drehmoment	T _{inst}	[Nm]	siehe Anhang C				
Minimale Baute	eildicke	h _{min}	[mm]		h _{ef}	+ 30		
Minimaler Achs	sabstand	Smin	[mm]	siehe Anhang C				
Minimaler Ran	dabstand	Cmin	[mm]	siehe Anhang C				

¹⁾ Bei der Durchsteckmontage t_{fix} berücksichtigen

Tabelle B3: Montagekennwerte in Voll- und Lochstein (<u>mit</u> Siebhülse) bei Vorsteckmontage

Ankerstange	M8	M8 / M10 IG-M6			M12 / M16 IG-M8 / IG-M10				
Siebhülse VM-SH		7	12x80	16x85	16x130	16x130 /330	20x85	20x130	20x200
Bohrernenndurchmesser	d ₀	[mm]	12		16			20	
Bohrlochtiefe	h o	[mm]	85	90	135	330	90	135	205
Effektive Verankerungstiefe	h _{ef}	[mm]	80	85	130	130	85	130	200
Durchgangsloch im Anbauteil	d _f ≤	[mm]	9		7 (IG-M6) 9 (M8) 12 (M10)		9 (IG-M8) 12 (IG-M10) 14 (M12) 18 (M16)		
Reinigungsbürste		[-]	RB 12		RB 16		RB 20		
Min. Bürstendurchmesser	dь	[mm]	12,5		16,5		20,5		
Max. Montagedrehmoment	T_{inst}	[Nm]		siehe Anhang			g C		
Minimale Bauteildicke h _{min} [m		[mm]	115	115	195	195	115	195	240
Minimaler Achsabstand	Smin	[mm]	siehe Anhang C						
Minimaler Randabstand	Cmin	[mm]			sie	he Anhang	g C		

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Montagekennwerte	Anhang B6

Tabelle B4: Montagekennwerte in Voll- und Lochstein (<u>mit</u> Siebhülse) bei Vorsteckmontage durch nichttragende Schichten und/oder Durchsteckmontage

Ankerstange					M10 M6	M12 / M16 IG-M8 / IG-M10	
Siebhülse VM-SI	Н			16x130	16x130/330	20x130	20x200
Bohrernenndurch	messer	d ₀	[mm]	1	6	2	0
Bohrlochtiefe		h ₀	[mm]		h _{ef} + 5mm	+ t_{nll} + t_{fix} 1)	
Effektive Verankerungs-	Vorsteck- montage	h _{ef}	[mm]	130	130	130	200
tiefe	Durchsteck- montage	h _{ef}	[mm]	85	130	85	85
Maximale Dicke d nichttragenden So	ma	ax. t _{nll}	[mm]	45	200	45	115
Durchgangsloch im Anbauteil	Vorsteck- montage	d _f ≤	[mm]	7 (IG-M6) 9 (M8) 12 (M10)		9 12 14 18	(IG-M8) (IG-M10) (M12) (M16)
,	Durchsteck- montage	d _f ≤	[mm]	18		22	
Bürste			[-]	RB 16		RB 20	
Min. Bürstendurchmesser d _b		[mm]	16,5		20,5		
Max. Montagedrehmoment T _{inst}			[Nm]		siehe Ar	nhang C	
Minimale Bauteildicke h _{min}		h _{min}	[mm]	195 (115)	195	195 (115)	240 (115)
Minimaler Achsabstand s _{min}			[mm]	siehe Anhang C			
Minimaler Randal	ostand	C _{min}	[mm]	siehe Anhang C			

¹⁾ Bei nichttragenden Schichten und/oder Durchsteckmontage t_{fix} und/oder t_{nll} berücksichtigen.

Reinigungs- und Installationszubehör

Druckluftpistole (min 6 bar)

Reinigungsbürste RB

Handausblaspumpe (Volumen ≥ 750 ml)

Bürstenverlängerung

Sikla Injektionssystem VMU plus für Mauerwerk

Verwendungszweck

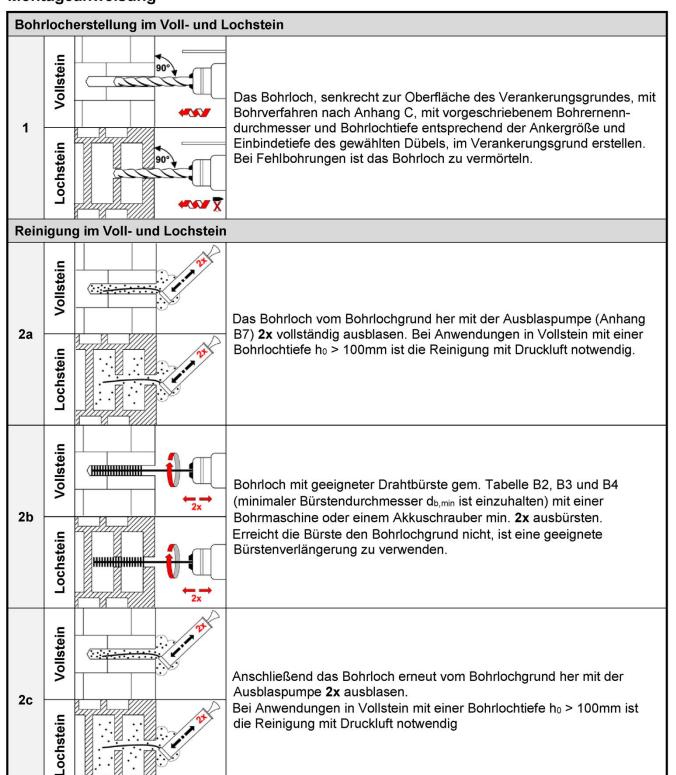
Montagekennwerte und Reinigungs- und Installationszubehör

Anhang B7

Tabelle B5: Verarbeitungs- und Aushärtezeiten - VMU plus

Tom	Temperatur im Maximale		Maximala	Minimale A	ushärtezeit		
Verank			Verarbeitungszeit	trockener Verankerungsgrund	feuchter Verankerungsgrund		
- 10°C	bis	- 6°C	90 min	24 h	48 h		
- 5°C	bis	- 1°C	90 min	14 h	28 h		
0°C	bis	+ 4°C	45 min	7 h	14 h		
+ 5°C	bis	+ 9°C	25 min	2 h	4 h		
+ 10°C	bis	+ 19°C	15 min	80 min	160 min		
+ 20°C	bis	+ 29°C	6 min	45 min	90 min		
+ 30°C	bis	+ 34°C	4 min	25 min	50 min		
+ 35°C	bis	+ 39°C	2 min	20 min	40 min		
-	+ 40°C	;	1,5 min	15 min	30 min		
Kartusch	entem	nperatur ¹⁾	+5°C bis +40°C				

¹⁾ Bei Temperaturen im Verankerungsgrund von -10°C bis -6°C muss die Kartuschentemperatur mindestens +15°C betragen.


Tabelle B6: Verarbeitungs- und Aushärtezeiten - VMU plus Polar

Tomporatur im	Maximale	Minimale Aushärtezeit			
Temperatur im Verankerungsgrund	Verarbeitungszeit	trockener Verankerungsgrund	feuchter Verankerungsgrund		
- 20°C bis - 16°C	75 min	24 h	48 h		
- 15°C bis - 11°C	55 min	16 h	32 h		
- 10°C bis - 6°C	35 min	10 h	20 h		
- 5°C bis - 1°C	20 min	5 h	10 h		
0°C bis +4°C	10 min	2,5 h	5 h		
+5°C bis +9°C	6 min	80 min	160 min		
+ 10°C	6 min	60 min	2 h		
Kartuschentemperatur	-20°C bis +10°C				

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Verarbeitungs- und Aushärtezeit	Anhang B8

Montageanweisung

Sikla Injektionssystem VMU plus für Mauerwerk Verwendungszweck Montageanweisung: Bohrlochherstellung / Reinigung im Voll- und Lochstein

Montageanweisung - Fortsetzung

Vorh	orgitung Injektion	
vort	pereitung Injektion	
3	THE REPORT OF THE PARTY OF THE	Den mitgelieferten Statikmischer fest auf die Kartuschen aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei Schlauchfolien den Clip vor der Verwendung abschneiden. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B5 oder B6) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.
4	h _{ef} +(t _{nll})+(t _{fix})	Verankerungstiefe auf der Ankerstange markieren. Bei nichttragenden Schichten und/oder Durchsteckmontage tfix und/oder tnll berücksichtigen. Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.
5	min.3x →	Mörtelvorlauf so lange auspressen (min. 3 volle Hübe, bei Schlauchfoliengebinden 6 volle Hübe), bis der austretende Injektionsmörtel eine gleichmäßige graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden.
Insta	allation <u>ohne</u> Siebhülse	
6		Bohrloch vom Bohrlochgrund her mindestens 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Falls erforderlich Mischerverlängerung verwenden. Die temperaturabhängigen Verarbeitungszeiten (Tabelle B5 bzw. B6) sind zu beachten.
7		Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einsetzen.
8		Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Mauerwerk, bei Durchsteckmontage zusätzlich auch im Anbauteil, komplett mit Mörtel ausgefüllt sein. Andernfalls Anwendung vor Beendigung der Verarbeitungszeit ab Schritt 6 wiederholen.
9	· · · · · · · · · · · · · · · · · · ·	Aushärtezeit entsprechend Tabelle B5 bzw. B6 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden. Nach Ablauf der Aushärtezeit ausgetretenen Mörtel entfernen.
10	T _{inst,max}	Anbauteil mit Drehmomentschlüssel montieren, dabei das maximale Montagedrehmoment beachten (siehe Anhang C).

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Montageanweisung: Vorbereitung Injektion / Installation ohne Siebhülse	Anhang B10

Montageanweisung - Fortsetzung

Installation <u>mit</u> Siebhülse	
6	Siebhülse bündig mit der Oberfläche des Verankerungsgrundes in das Bohrloch einstecken. Siebhülse im Verankerungsbereich (hef) niemals verändern. Bei Durchsteckmontage mit Siebhülse VM SH 16x130/330 durch eine nicht-tragende Schicht und/oder Anbauteil, darf der Klemmbereich auf die Dicke der nicht-tragenden Schicht und/oder Anbauteil gekürzt werden.
7	Die Siebhülse vom Grund her mit Mörtel füllen. Falls erforderlich Mischerverlängerung verwenden. Die exakte Mörtelmenge ist dem Kartuschenetikett oder der Montageanweisung zu entnehmen. Die temperaturabhängigen Verarbeitungszeiten in Tabelle B5 oder B6 sind zu beachten. Bei einer Durchsteckmontage muss die Siebhülse bis ins Anbauteil komplett mit Mörtel verfüllt sein.
8	Zur optimalen Verteilung des Mörtels, Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einsetzen.
9	Aushärtezeit entsprechend Tabelle B5 bzw. B6 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden.
T _{inst,max}	Anbauteil mit Drehmomentschlüssel montieren, dabei das maximale Montagedrehmoment beachten (siehe Anhang C).

Sikla Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Montageanweisung: Installation mit Siebhülse	Anhang B11

Tabelle C1: β - Faktoren für Baustellenversuche unter Zugbelastung

				β-Fa	ktor	4			
Steintyp	Ankararaka	Siebhülse VM-SH			T _a : 24°C / 40°C		Т _ь : 50°C / 80°C		c: 120°C
					w/d w/w	d/d	w/d w/w	d/d	w/d w/w
Porenbeton	alle Größen	mit oder ohne VM-SH	alle	0,95	0,86	0,81	0,73	0,81	0,73
	d ₀ ≤ 14 mm	VM-SH	alle	0,93	0,80	0,87	0,74	0,65	0,56
	d₀ ≥ 16 mm	VIVI-SH	alle	0,93	0,93	0,87	0,87	0,65	0,65
Kalksand- steine	d₀ ≤ 14 mm		≤ 100mm	0,93	0,80	0,87	0,74	0,65	0,56
	d₀ ≥ 16 mm	-		0,93	0,93	0,87	0,87	0,65	0,65
	alle Größen		> 100mm	0,93	0,56	0,87	0,52	0,65	0,40
		VM-SH	alle	0,86	0,86	0,86	0,86	0,73	0,73
Ziegelsteine	alle Größen		≤ 100mm	0,86	0,86	0,86	0,86	0,73	0,73
		_	> 100mm	0,86	0,43	0,86	0,43	0,73	0,37
Leichtbeton-	d₀ ≤ 12 mm	mit oder ohne	alle	0,93	0,80	0,87	0,74	0,65	0,56
steine	d₀ ≥ 16 mm	VM-SH	alle	0,93	0,93	0,87	0,87	0,65	0,65

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung β-Faktoren für Baustellenversuche unter Zugbelastung	Anhang C1

Tabelle C2: Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Ankerstangen

Ankerstanç	ge			M 8	M 10	M 12	M 16
Stahlversa	gen						
Spannungs	querschnitt	As	[mm²]	36,6	58,0	84,3	157
Charakteris	stischer Widerstand unter Zugbean	spruchu	ng ¹⁾				1
	Festigkeitsklasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13) ¹⁾	23 (21) ¹⁾	34	63
Stahl,	Festigkeitsklasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17) ¹⁾	29 (27)1)	42	79
verzinkt	Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	29 (27) ¹⁾	46 (43) ¹⁾	67	126
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	N _{Rk,s}	[kN]	18	29	42	79
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	$N_{Rk,s}$	[kN]	26	41	59	110
Stahl	Festigkeitsklasse 80 (A4/HCR)	$N_{Rk,s}$	[kN]	29	46	67	126
Teilsicherh	eitsbeiwert ²⁾						
Stahl,	Festigkeitsklasse 4.6 und 5.6	γMs,N	[-]		2,	0	
verzinkt	Festigkeitsklasse 4.8, 5.8 und 8.8	γMs,N	[-]		1,	5	
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	γMs,N	[-]	2,86			
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	γMs,N	[-]	1,87 (1,5) ³⁾			
Stahl	Festigkeitsklasse 80 (A4/HCR)	γMs,N	[-]		1,6 (1,5) ³⁾	
Charakteri	stischer Widerstand unter Querbear	nspruchi	ung ¹⁾	•		V - AV-	
Stahlversa	gen <u>ohne</u> Hebelarm	17ave					
	Festigkeitsklasse 4.6 und 4.8	V^0 Rk,s	[kN]	7 (6) ¹⁾	12 (10) ¹⁾	17	31
Stahl,	Festigkeitsklasse 5.6 und 5.8	V^0 Rk,s	[kN]	9 (8) ¹⁾	15 (13) ¹⁾	21	39
verzinkt	Festigkeitsklasse 8.8	V^0 Rk,s	[kN]	15 (13) ¹⁾	23 (21) ¹⁾	34	63
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	V^0 Rk,s	[kN]	9	15	21	39
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	V^0 Rk,s	[kN]	13	20	30	55
Stahl	Festigkeitsklasse 80 (A4/HCR)	$V^0_{Rk,s}$	[kN]	15	23	34	63
Stahlversa	gen <u>mit</u> Hebelarm – Charakteristisc	her Bieg	ewiders	stand			
Ctabl	Festigkeitsklasse 4.6 und 4.8	M^0 Rk,s	[Nm]	15 (13) ¹⁾	30 (27) ¹⁾	52	133
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	$M^0_{Rk,s}$	[Nm]	19 (16) ¹⁾	37 (33) ¹⁾	65	166
VEIZIIIKI	Festigkeitsklasse 8.8	$M^0_{Rk,s}$	[Nm]	30 (26) ¹⁾	60 (53) ¹⁾	105	266
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	$M^0_{Rk,s}$	[Nm]	19	37	65	166
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	M^0 _{Rk,s}	[Nm]	26	52	92	233
Stahl	Festigkeitsklasse 80 (A4/HCR)	M^0 Rk,s	[Nm]	30	60	105	266
Teilsicherh	eitsbeiwert ²⁾						
Stahl,	Festigkeitsklasse 4.6 und 5.6	γMs,V	[-]	1,67			
verzinkt	Festigkeitsklasse 4.8, 5.8 und 8.8	γMs,V	[-]		1,2	25	
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	γMs,V	[-]		2,3	38	
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	γMs,V	[-]		1,56 (
Stahl	Festigkeitsklasse 80 (A4/HCR)	γms, v	[-]	1,33 (1,25) ³⁾			

¹⁾ Die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt A_s: VMU-A, V-A, VM-A. Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gilt der Wert in der Klammer.

³⁾ Wert in Klammern gilt nur für Ankerstangen VMU-A oder V-A

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Ankerstangen	Anhang C2

²⁾ Sofern andere nationale Regelungen fehlen

Tabelle C3: Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Innengewindeankerstangen

Innengewindea	nkerstange			IG-M6	IG-M8	IG-M10		
Stahlversagen	1)							
Charakteristisc	her Widerstand unter Zugbeanspr	uchung						
Stahl,	Festigkeitsklasse 5.8	$N_{Rk,s}$	[kN]	10	17	29		
verzinkt	Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	16	27	46		
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	$N_{Rk,s}$	[kN]	14	26	41		
Teilsicherheitsl	Teilsicherheitsbeiwert ²⁾							
Stahl,	Festigkeitsklasse 5.8	γMs,N	[-]		1,5			
verzinkt	2				1,5			
Nichtrostender Stahl	Festiakeitskiasse (II (A4/HCR) /M-NI I-I				1,87			
Charakteristisc	her Widerstand unter Querbeansp	ruchung						
Stahlversagen	ohne Hebelarm							
Stahl,	Festigkeitsklasse 5.8	$V^0_{Rk,s}$	[kN]	5	9	15		
verzinkt	Festigkeitsklasse 8.8	V^0 Rk,s	[kN]	8	14	23		
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	V^0 Rk,s	[kN]	7	13	20		
Stahlversagen	<u>mit</u> Hebelarm – Charakteristischer	Biegewid	erstand					
Stahl,	Festigkeitsklasse 5.8	M^0 _{Rk,s}	[Nm]	8	19	37		
verzinkt	Festigkeitsklasse 8.8	M^0 Rk,s	[Nm]	12	30	60		
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	M ⁰ Rk,s	[Nm]	11	26	52		
Teilsicherheitsl	beiwert ²⁾							
Stahl,	Festigkeitsklasse 5.8	γMs,V	[-]	1,25				
verzinkt	Festigkeitsklasse 8.8	γMs,V	[-]		1,25			
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	γMs,V	[-]		1,56			

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Innengewindeankerstangen	Anhang C3

²⁾ Sofern andere nationale Regelungen fehlen

Tabelle C4: Charakteristische Stahltragfähigkeit unter Brandbeanspruchung

Ankerstange				M 8	M 10	M 12	M 16
Charakteristischer Widerstand unter 2	Zugbean	spruchu	ng				
Ctable Factions italiance F.O. and C.O.	R30	$N_{Rk,s,fi}$	[kN]	1,1	1,7	3,0	5,7
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	$N_{Rk,s,fi}$	[kN]	0,9	1,4	2,3	4,2
Nichtrostender Stahl (A2 / A4 / HCR) Festigkeitsklasse ≥ 50	R90	$N_{Rk,s,fi}$	[kN]	0,7	1,0	1,6	3,0
	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,8	1,2	2,2
Charakteristischer Widerstand unter Querbeanspruchung							
Stahlversagen <u>ohne</u> Hebelarm							
	R30	V^0 Rk,s,fi	[kN]	1,1	1,7	3,0	5,7
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	V^0 Rk,s,fi	[kN]	0,9	1,4	2,3	4,2
Nichtrostender Stahl (A2 / A4 / HCR) Festigkeitsklasse ≥ 50	R90	V^0 Rk,s,fi	[kN]	0,7	1,0	1,6	3,0
	R120	V^0 Rk,s,fi	[kN]	0,5	0,8	1,2	2,2
Stahlversagen <u>mit</u> Hebelarm – Charak	teristisc	her Bieg	ewiders	stand			
	R30	M^0 _{Rk,s,fi}	[Nm]	1,1	2,2	4,7	12,0
Nichtrostender Stahl (A2 / A4/ HCR)	R60	M^0 _{Rk,s,fi}	[Nm]	0,9	1,8	3,5	9,0
	R90	M^0 Rk,s,fi	[Nm]	0,7	1,3	2,5	6,3
	R120	M^0 _{Rk,s,fi}	[Nm]	0,5	1,0	1,8	4,7
Teilsicherheitsbeiwert	alle	γMs,fi	[-]		1	,0	

Tabelle C5: Charakteristische Stahltragfähigkeit unter Brandbeanspruchung - Innengewindeankerstange

Innengewindeankerstange				IG-M6	IG-M8	IG-M10
Charakteristischer Widerstand unter	r Zugbeans	spruchui	ng			,
	R30	$N_{Rk,s,fi}$	[kN]	0,3	1,1	1,7
Stahl, Festigkeitsklasse 5.8 und 8.8; Nichtrostender Stahl (A4 / HCR)	R60	$N_{Rk,s,fi}$	[kN]	0,2	0,9	1,4
Festigkeitsklasse 70	R90	$N_{Rk,s,fi}$	[kN]	0,2	0,7	1,0
Coughertoniasse 70	R120	$N_{Rk,s,fi}$	[kN]	0,1	0,5	0,8
Charakteristischer Widerstand unter Querbeanspruchung						
Stahlversagen <u>ohne</u> Hebelarm						
0.115 (1.1111 50 100	R30	V^0 Rk,s,fi	[kN]	0,3	1,1	1,7
Stahl, Festigkeitsklasse 5.8 und 8.8; Nichtrostender Stahl (A4 / HCR)	R60	V^0 Rk,s,fi	[kN]	0,2	0,9	1,4
Festigkeitsklasse 70	R90	V^0 Rk,s,fi	[kN]	0,2	0,7	1,0
, congrenentaces , c	R120	V^0 Rk,s,fi	[kN]	0,1	0,5	0,8
Stahlversagen <u>mit</u> Hebelarm – Chara	akteristisc	her Bieg	ewiderst	and		
	R30	M ⁰ Rk,s,fi	[Nm]	0,2	1,1	2,2
Stahl, Festigkeitsklasse 5.8 und 8.8; Nichtrostender Stahl (A4 / HCR)	R60	M ⁰ Rk,s,fi	[Nm]	0,2	0,9	1,8
Festigkeitsklasse 70	R90	M^0 _{Rk,s,fi}	[Nm]	0,1	0,7	1,3
. 5549.6.4.5.4	R120	M^0 _{Rk,s,fi}	[Nm]	0,1	0,5	1,0
Teilsicherheitsbeiwert	alle	γMs,fi	[-]		1,0	_

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung Charakteristische Stahltragfähigkeit unter Brandbeanspruchung	Anhang C4

Rand- und Achsabstände

C_{cr,fi}

c_{cr} = Charakteristischer Randabstand

c_{min} = Minimaler Randabstand

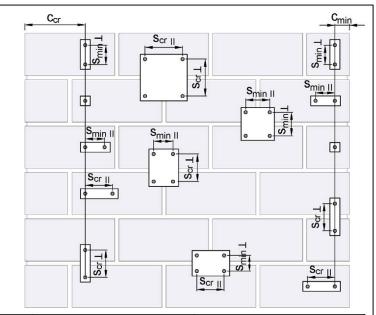
Charakteristischer Randabstand bei

Brandbeanspruchung

s_{cr,II} = Charakteristischer (minimaler) (s_{min,II}) Achsabstand für Anker parallel zur

Lagerfuge angeordnet

 $s_{cr,\perp}$ = Charakteristischer (minimaler)


(s_{min,L}) Achsabstand für Anker senkrecht zur

Lagerfuge angeordnet

 $s_{cr,fi,||}$ = Charakteristischer Achsabstand unter $(s_{cr,fi,\perp})$ Brandbeanspruchung für Anker

parallel (senkrecht) zur Lagerfuge

angeordnet

Definition der Reduktions- und Gruppenfaktoren

Lastrichtung Anker- anordnung	Zuglast	Querlast parallel zum freien Rand V ιι	Querlast senkrecht zum freien Rand V ⊥	
Anker parallel zur Lagerfuge s _{cr,II} (s _{min,II})	α _g II,N	α _{g II,} ν _{II}	∨ ••• α _{g II,} ∨⊥	
Anker senkrecht zur Lagerfuge s _{cr,⊥} (s _{min,⊥})	α _{g⊥,N}	α _{g ⊥,} ν _{II}	∨ • α _{g⊥,∨⊥}	

$\alpha_{\text{edge},N}$	=	Reduktionsfaktor bei Zuglast am freien Rand (Einzelanker)	$(tur C_{min} \le C < C_{cr})$
αedge,V⊥	=	Reduktionsfaktor bei Querlast senkrecht zum freien Rand (Einzelanker)	(für $c_{min} \le c < c_{cr}$)
αedge,V II	=	Reduktionsfaktor bei Querlast parallel zum freien Rand (Einzelanker)	(für $c_{min} \le c < c_{cr}$)
α α II N	=	Gruppenfaktor für Anker parallel zur Lagerfuge unter Zuglast	

 $\alpha_{g \parallel,N}$ = Gruppenfaktor für Anker parallel zur Lagerfuge unter Zuglast $\alpha_{g \perp,N}$ = Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Zuglast

 $\alpha_{g \parallel_{i} V \parallel}$ = Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast parallel zum freien Rand

 $\alpha_{g\perp,V\parallel}$ = Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast parallel zum freien Rand

αg II,V \(\triangle \) = Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast senkrecht zum freien Rand

 $\alpha_{g\perp,V\perp}$ = Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast senkrecht zum freien Rand

	$N_{Rk,b,c}$	= α _{edge,N} * N _{Rk,b}	bzw.	$N_{Rk,p,c}$	$= \alpha_{\text{edge,N}} * \mathbf{N}_{\text{Rk,p}}$	
Einzelanker am Rand:	V _{Rk,c} II	= α _{edge,V II} * V _{Rk,b}				
	$V_{Rk,c}$	= α _{edge,V⊥} * V _{Rk,b}				
	N^{g}_{Rk}	$= \alpha_{g,N} * N_{Rk,b}$				
Gruppe aus 2 Ankern	$V^{g}_{Rk II}$	= $\alpha_{g, V II}$ * $V_{Rk,b}$	bzw.	$V^{g}_{Rk\perp}$	$= \alpha_{g,V_{\perp}} * V_{Rk,b}$	(für $c \ge c_{cr}$)
	V ^g Rk,c II	$= \alpha_{g, VII} * V_{Rk,b}$	bzw.	$V^{g}_{Rk,c\perp}$	$= \alpha_{g,V_{\perp}} * V_{Rk,b}$	(für c \geq c _{min})
	N^{g}_{Rk}	= $\alpha_{g \mid I,N} * \alpha_{g\perp,N} * N_{Rk,b}$				
Gruppe aus 4 Ankern	$V^{g}_{Rk II}$	= $\alpha_{g \parallel,V \parallel} * \alpha_{g \perp,V \parallel} * V_{Rk,b}$	bzw.	$V^{g}_{Rk\perp}$	= $\alpha_g II, V_{\perp}^* \alpha_{g_{\perp}}, V_{\perp}^* V_{Rk,b}$	(für $c \ge c_{cr}$)
St 18	V ^g Rk,c II	= $\alpha_{g \parallel, V \parallel} * \alpha_{g \perp, V \parallel} * V_{Rk,b}$	bzw.	$V^{g}_{Rk,c\perp}$	= $\alpha_{g \parallel, V_{\perp}} * \alpha_{g_{\perp}, V_{\perp}} * V_{Rk,b}$	$(f\ddot{u}r c ≥ c_{min})$

Formeln abhängig von Ankeranordnung und Lastrichtung (siehe Tabelle oben). Reduktionsfaktoren, Gruppenfaktoren und Widerstände siehe Anhang C. Abminderung für Installation in Fugen siehe Anhang B1.

Sikla Injektionssystem VMU plus für Mauerwerk

Leistung

Definition der Rand- und Achsabstände und der Reduktions- und Gruppenfaktoren α

Anhang C5

Steintyp: Porenbetonstein AAC

Tabelle C6: Beschreibung

Steintyp			Porenbetonstein AAC
Rohdichte	ρ	[kg/dm ³]	0,35 - 0,60
Normierte mittlere Druckfestigkeit	f _b ≥	[N/mm ²]	2, 4 oder 6
Norm		[-]	EN 771-4:2011+A1:2015
Hersteller (Länderkennun	g)	[-]	z.B. Porit (DE)
Steinabmessungen		[mm]	≥ 499 x 240 x 249
Bohrverfahren		[-]	Drehbohren

Tabelle C7: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10
Randabstand	C cr	[mm]	150 (für Querlasten senkrecht zum freien Rand: c _{cr} =210)						
Minimaler Randabstand	C _{min}	[mm]	50						
Achsabstand	Scr,II	[mm]		300					
Acrisabstand	Scr,⊥	[mm]	250						
Minimaler Achsabstand	S _{min,II}	[mm]	FO						
Willimater Achsabstand	S _{min,⊥}	[mm]	50						

Tabelle C8: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	Zuglast			Querlast							
Zugiast			Senkrecht zu	m freien l	Rand	Parallel zum freien Rand					
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII			
	50	0.05		50	0,12		50	0,70			
	50	0,85		125	0,50		125	0,85			
	150	1,00		210	1,00		150	1,00			

Tabelle C9: Faktor für Ankergruppen

Anordnung parallel zur Lagerfuge Anordnung senkrecht zur Lagerfuge									
	Anordnung senkrecht zur Lagerfuge								
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N	
711		50	50	1,10		50	50	0,75	
Zuglast		150	50	1,25		150	50	0,90	
		150	300	2,00		150	250	2,00	
		mit c ≥	mit s ≥	α _g II,∨⊥		mit c ≥	mit s ≥	αд⊥,∨⊥	
Querlast		50	50	0,20		50	50	0,25	
senkrecht zum freien Rand		210	50	1,60		210	50	1,80	
Zam noion rana		210	300	2,00		210	250	2,00	
		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II	
Querlast parallel zum freien Rand		50	50	1,15		50	50	0,80	
		150	50	1,60		150	50	1,10	
		150	300	2,00		150	250	2,00	

Sikla Injektionssystem VMU plus für Mauerwerk Leistung - Porenbetonstein AAC Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren Anhang C6

Steintyp: Porenbetonstein AAC - Fortsetzung

Tabelle C10: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}							
		- တ	Nutzungsbedingungen							
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe		d/d			w/d w/w	d/d w/d w/w		
Anker	Siebł	Vera	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		h _{ef}			$N_{Rk,b} = 1$	V _{Rk,p} 1)			V _{Rk,b} 1)	
		[mm]			[kN	1]			[kN]	
Normierte mittle	re Druckfes	stigkeit f _b ≥ 2	2 N/mm ²		ļ.	Rohdich	te ρ ≥ 0,3	5 kg/dm ²	3	
M8	-	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5	
M10 / IG-M6	-	90	1,2	0,9	0,9	0,9	0,9	0,9	2,5	
M12 / M16 IG-M8 / IG-M10	-	100	2,0	1,5	1,5	1,5	1,5	1,5	2,5	
M8	VM-SH 12	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5	
M8 / M10 IG-M6	VM-SH 16	≥ 85	1,2	0,9	0,9	0,9	0,9	0,9	2,5	
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	2,0	1,5	1,5	1,5	1,5	1,5	2,5	
Normierte mittle	re Druckfes	stigkeit f _b ≥ 4	N/mm²			Rohdich	te ρ ≥ 0,5	0 kg/dm ³		
M8	-	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5	
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	2,0	7,5	
M12 / M16 IG-M8 / IG-M10	-	100	5,0	4,5	4,0	4,5	4,0	4,0	7,5	
M8	VM-SH 12	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5	
M8 / M10 IG-M6	VM-SH 16	≥ 85	3,0	2,5	2,0	2,5	2,0	2,0	7,5	
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	5,0	4,5	4,0	4,5	4,0	4,0	7,5	

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen - Porenbetonstein AAC Charakteristische Widerstände	Anhang C7

Steintyp: Porenbetonstein AAC – Fortsetzung

Charakteristische Widerstände - Fortsetzung:

			С	harakteri	stische V	/iderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}	
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen							
	hülse	Veranke- rungstiefe		d/d			w/d w/w	d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		h _{ef}	,	$N_{Rk,b} = N_{Rk,p}$ 1)					V _{Rk,b} 1)	
		[mm]		[kN]					[kN]	
Normierte mit	lere Druck	festigkeit fb	≥ 6 N/mm	2	i	Rohdicht	e ρ≥0,6	0 kg/dm	3	
M8	-	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0	
M10 / IG-M6	-	90	4,0	3,5	3,0	3,5	3,0	3,0	10,0	
M12 / M16 IG-M8 / IG-M10	-	100	7,0	6,0	5,5	6,5	5,5	5,5	10,0	
M8	VM-SH 12	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0	
M8 / M10 IG-M6	VM-SH 16	≥ 85	4,0	3,5	3,0	3,5	3,0	3,0	10,0	
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	7,0	6,0	5,5	6,5	5,5	5,5	10,0	

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C11: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δ _{N∞}	δ _V / V	δνο	δν∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 2,8	2*δ _{N0}	0,3	0,3*V _{Rk} / 2,8	1,5*δ∨ο
M16			-,	_ 5110	0,1	0,1*V _{Rk} / 2,8	.,

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen - Porenbetonstein AAC
Charakteristische Widerstände und Verschiebungen

Anhang C8

Steintyp: Kalksandvollstein KS-NF

Tabelle C12: Beschreibung

Steintyp			Kalksandvollstein KS-NF
Rohdichte	ρ	[kg/dm³]	≥ 2,0
Normierte mittlere Druckfestigkeit	ь	[N/mm ²]	≥ 28
Umrechnungsfaktor für geringer Druckfestigkeiten	re		$(f_b / 28)^{0.5} \le 1.0$
Norm		[-]	EN 771-2:2011+A1:2015
Hersteller (Länderkennung)		[-]	z.B. Wemding (DE)
Steinabmessungen		[mm]	≥ 240 x 115 x 71
Bohrverfahren		[-]	Hammerbohren

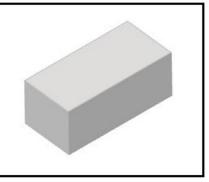


Tabelle C13: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T_{inst}	[Nm]	≤ 10	≤ 10	≤ 15	≤ 15	≤ 10	≤ 10	≤ 10
Randabstand (unter Brandbeanspruchung)	Ccr (Ccr,fi)	[mm]	150 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)						
Minimaler Randabstand	Cmin	[mm]				60			
Achsabstand (unter	Scr,II; (Scr,fi,II)	[mm]				240 (4 het	:)		4
Brandbeanspruchung)	$S_{cr,\perp};(S_{cr,fi,\perp})$	[mm]	150 (4 h _{ef})						
Minimaler Achsabstand	S _{min,II} ; S _{min,⊥}	[mm]		·	·	75	·	·	Î

Tabelle C14: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast								
Zugi	ası		senkrecht zui	m freien F	Rand	parallel zum freien Rand					
	mit c ≥	αedge,N	+	mit c ≥	αedge,V⊥	+	mit c ≥	αedge,V II			
	60 ¹⁾	0,50		60	0,30		60	0,60			
•	100 ¹⁾	0,50	→	100	0,50		100	1,00			
	150 ¹⁾ 180	1,00 1,00		240	1,00		150	1,00			

Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C15: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senkrecht zur Lagerfuge				
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
	 	60 ¹⁾	75	0,70	 	60 ¹⁾	75	1,15	
		150 ¹⁾	75	1,40		150 ¹⁾	75	2,00	
Zuglast		150 ¹⁾	240	2,00		150 ¹⁾	150	2,00	
220		180 ²⁾	75	1,00		180 ²⁾	75	1,15	
	1	180 ²⁾	240	1,70		180 ²⁾	150	2,00	
		240 ²⁾	240	2,00		160-/	150	2,00	
Quarlant		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
Querlast senkrecht		60	75	0,75		60	75	0,90	
zum freien Rand		150	75	2,00		150	75	2,00	
Zuili ireleli Kallu		150	250	2,00		150	150	2,00	
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _{g⊥,V} II	
Querlast parallel zum freien Rand		60	75	2,00		60	75	2,00	
		150	75	2,00		150	75	2,00	
Zum neien Kand		150	250	2,00		150	150	2,00	

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen - Kalksandvollstein KS-NF

Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren

Anhang C9

Nur für Anwendungen mit hef = 200mm und ohne Siebhülse

Steintyp: Kalksandvollstein KS-NF – Fortsetzung

Tabelle C16: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	ide bei c	≥ c _{cr} und	s ≥ s _{cr}			
A mkovavä () o	Cich	Effolisis	Nutzungsbedingungen									
Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	d/d				w/d w/w	d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{-1}$						V _{Rk,b} 1)			
		[mm]	[kN]						[kN]			
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	8 N/mm ²	2)					
M8	-	80	7,0	6,5	5,0	6,0	5,5	4,0				
M10 / IG-M6	-	≥ 90	7,0	6,5	5,0	6,0	5,5	4,0				
M12 / IG-M8	-	≥ 100	7,0	6,5	5,0	6,0	5,5	4,0				
M16 / IG-M10	-	≥ 100	7,0	6,5	5,0	7,0	6,5	5,0				
M10 - M16 IG-M6 - IG-M10	-	200	9,0	8,5	6,5	5,5	5,0	4,0	7,0			
M8	VM-SH 12	80	7,0	6,5	5,0	6,0	5,5	4,0				
M8 / M10/ IG-M6	VM-SH 16	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0				
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0				

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C5

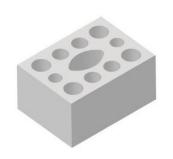
Tabelle C17: Verschiebungen

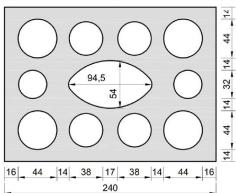
Ankergröße	h _{ef} [mm]	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _V / V [mm/kN]	δν ₀ [mm]	δν∞ [mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δΝο	0,3	0,3*V _{Rk} /3,5	1,5*δ√0
M16					0,1	0,1*V _{Rk} /3,5	

Tabelle C18: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$							
		h _{ef}	R30	R60	R90	R120				
		[mm]		[k	N]					
M8	÷.	80								
M10 / IG-M6	I	≥ 90	0,48	0,41	0,34	0.20				
M12 / IG-M8	ī	≥ 100	0,46			0,30				
M16 / IG-M10	-	≥ 100								
M8	VM-SH 12	80								
M8 / M10 / IG-M6	VM-SH 16	≥ 85	0,47	0,26	keine Leistung	keine Leistung				
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	0,47	0,20	bewertet	bewertet				

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandvollstein KS-NF Charakteristische Widerstände, Verschiebungen, Brandbeanspruchung	Anhang C10


²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C12 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Kalksandlochstein KSL-3DF

Tabelle C19: Beschreibung

Steintyp			Kalksandlochstein KSL-3DF
Rohdichte	ρ	[kg/dm ³]	≥ 1,4
Normierte mittlere Druckfestigkeit	f_b	[N/mm ²]	≥ 14
Umrechnungsfaktor für gerin Druckfestigkeiten	ger	е	$(f_b / 14)^{0.75} \le 1.0$
Norm		[-]	EN 771-2:2011+A1:2015
Hersteller (Länderkennung)		[-]	z.B. KS-Wemding (DE)
Steinabmessungen		[mm]	≥ 240 x 175 x 113
Bohrverfahren		[-]	Drehbohren

Tabelle C20: Montagekennwerte

Ankergröße				M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	T_{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)						240)	
Minimaler Randabstand	Cmin	[mm]	60							
Achsabstand	Scr, II	[mm]	240							
Acrisabstatiu	Scr, ⊥	[mm]	120							
Minimaler Achsabstand	S _{min, II;} S _{min, ⊥}	[mm]	120							

Tabelle C21: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	oot		Querlast								
Zugl	สธเ		senkrecht zu	m freien l	Rand	parallel zum freien Rand					
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II			
•	60	1,00	→	60	0,30		60	1,00			
	120	1,00		240	1,00		120	1,00			

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Kalksandlochstein KSL-3DF
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C11

Steintyp: Kalksandlochstein KSL-3DF – Fortsetzung

Tabelle C22: Faktor für Ankergruppen

	Anordnung parall	el zur Lag	gerfuge		Anordnung senk	recht zur	Lagerfug	je
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
Zuglast		60	120	1,50		60	120	1,00
Zugiast		120	120	2,00		60	120	1,00
		120	240	2,00		120	120	2,00
011		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
Querlast senkrecht		60	120	0,30		60	120	0,30
zum freien Rand		120	120	1,00		60	120	0,30
Zum neien Kana		120	240	2,00		240	120	2,00
0		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _{g⊥,V} II
Querlast		60	120	1,00	•	60	120	1,00
parallel zum freien Rand		120	120	1,60		60	120	1,00
Zaili li cieli ralia		120	240	2,00		120	120	2,00

Tabelle C23: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}									
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen									
	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}			$N_{Rk,b} = I$	N _{Rk,p} 1)		V _{Rk,b} 1)				
		[mm]			[kN	١]		[kN]				
	1	Normierte i	mittlere D	ruckfesti	gkeit f₀ ≥	14 N/mm	2 2)					
M8 / M10	VM-SH 16	≥ 85	2,5	2,5	1,5	2,5	2,5	1,5				
IG-M6	VIVI-SIT 16	130	2,5	2,5	2,0	2,5	2,5	2,0	0.0			
M12 / M16 IG-M8 IG-M10	VM-SH 20	≥ 85	6,5	6,0	4,5	6,5	6,0	4,5	6,0			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|I|} = V_{Rk,c} \perp$ gemäß Anhang C5

Tabelle C24: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	5200 8	2 7 5 5	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,31	0,31*V _{Rk} /3,5	.,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandlochstein KSL-3DF Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	Anhang C12

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C19 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Kalksandlochstein KSL-8DF

Tabelle C25: Beschreibung

Steintyp		Kalksandlochstein KSL-8DF	
Rohdichte ρ	[kg/dm ³]	≥ 1,4	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	
Umrechnungsfaktor für geringer Druckfestigkeiten	е	$(f_b / 12)^{0.75} \le 1.0$	000
Norm	[-]	EN 771-2:2011+A1:2015	A CONTRACTOR CONTRACTO
Hersteller (Länderkennung)	[-]	z.B. KS-Wemding (DE)	
Steinabmessungen	[mm]	≥ 248 x 240 x 238	
Bohrverfahren	[-]	Drehbohren	
		63 63 64 60 E	047

Tabelle C26: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Montagedrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8	
Randabstand	Ccr	[mm]	120	(für Quer	lasten ser	nkrecht zu	ım freien f	Rand: c _{cr} =	= 250)	
Minimaler Randabstand	Cmin	[mm]				50				
Achsabstand	Scr, II	[mm]		250						
Acrisabstand	Scr, ⊥	[mm]	120							
Minimaler Achsabstand	S _{min,} II S _{min,} ⊥	[mm]								

Tabelle C27: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast								
Zugi	สธเ		senkrecht zu	parallel zum freien Rand							
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II			
•	50	1,00		50	0,30		50	1,00			
	120	1,00		250	1,00		120	1,00			

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandlochstein KSL-8DF Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C13

Steintyp: Kalksandlochstein KSL-8DF – Fortsetzung

Tabelle C28: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	^r Lagerfu	ge
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
Zuglast	• •	50	50	1,00		50	50	1,00
		120	250	2,00		120	120	2,00
0 1 1		mit c ≥	mit s ≥	αg II,V⊥	Γ;	mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast senkrecht	•••	50	50	0,45		50	50	0,45
zum freien Rand		250	50	1,15		250	50	1,20
Zam noion rana	ļL	250	250	2,00		250	250	2,00
Quarlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
Querlast parallel zum freien Rand		50	50	1,30		50	50	1,00
		120	250	2,00		120	250	2,00

Tabelle C29: Charakteristische Widerstände unter Zug- und Querlast

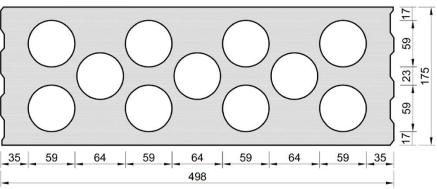
			Charakteristische Widerstände bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
Ankergröße Sieb-	Sieb-	Effektive	Nutzungsbedingungen									
	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}			$N_{Rk,b} = I$	N _{Rk,p} 1)		V _{Rk,b} 1)				
	*	[mm]			[kN	١]		[kN]				
	7	Normierte	mittlere D	ruckfesti	gkeit f₀ ≥	12 N/mm	2 2)					
M8 / M10 IG-M6	VM-SH 16	130	5,0	4,5	3,5	5,0	4,5	3,5	3,5			
M12 / M16 IG-M8 IG-M10	VM-SH 20	≥ 130	5,0	4,5	3,5	5,0	4,5	3,5	6,0			

Tabelle C30: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δ∨∞
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16			o, . o	_ = = = = = = = = = = = = = = = = = = =	0,31	0,31*V _{Rk} /3,5	.,0 010

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen - Kalksandlochstein KSL-8DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C14

N_{Rk,b,c} = N_{Rk,p,c} und V_{Rk,c II} = V_{Rk,c ⊥} gemäß Anhang C5
 Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C25 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Kalksandlochstein KSL-12DF

Tabelle C31: Beschreibung

Steintyp			Kalksandlochstein KSL-12DF
Rohdichte	ρ	[kg/dm ³]	≥ 1,4
Normierte mittlere Druckfestigkeit	f_{b}	[N/mm ²]	≥ 12
Umrechnungsfaktor für geri Druckfestigkeiten	nger	е	$(f_b / 12)^{0.75} \le 1.0$
Norm		[-]	EN 771-2:2011+A1:2015
Hersteller (Länderkennung)	l.	[-]	z.B. KS-Wemding (DE)
Steinabmessungen		[mm]	≥ 498 x 175 x 238
Bohrverfahren		[-]	Drehbohren
NO.			

Tabelle C32: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T_{inst}	[Nm]	≤ 4	≤ 4	≤ 5	≤ 5	≤ 4	≤ 5	≤ 5
Randabstand (unter Brandbeanspruchung)	C _{cr} (C _{cr,fi})	[mm]	120 (2 h_{ef}) (für Querlasten senkrecht zum freien Rand: c_{cr} = 500)						
Minimaler Randabstand	Cmin	[mm]	50						
Achsabstand (unter	Scr,II (Scr,fi,II)	[mm]	500 (4 h _{ef})						
Brandbeanspruchung)	$\mathbf{S}_{cr,\perp}\left(\mathbf{S}_{cr,fi,\perp}\right)$	[mm]	120 (4 h _{ef})						
Minimaler Achsabstand	S _{min,} II; S _{min,⊥}	[mm]	50						

Tabelle C33: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast		Querlast							
Zugiast			senkrecht zu	m freien l	Rand	parallel zum freien Rand			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII	
 •	50	1,00	 	50	0,45		50	1,00	
	120	1,00		500	1,00		120	1,00	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung Kalksandlochstein KSL-12DF Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C15

Steintyp: Kalksandlochstein KSL-12DF – Fortsetzung

Tabelle C34: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senkrecht zur Lagerfuge				
	mit c ≥ I		mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
Zuglast	• •	50	50	1,50		50	50	1,00	
		120	500	2,00		120	240	2,00	
	+	mit c ≥	mit s ≥	αg II,V⊥	Т	mit c ≥	mit s ≥	αg⊥,∨⊥	
Querlast		50	50	0,55	•	50	50	0,50	
senkrecht zum freien Rand		500	50	1,00		500	50	1,00	
Zum melen kana		500	500	2,00		500	250	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II	
parallel	••	50	50	2,00		50	50	1,30	
zum freien Rand		120	500	2,00		120	250	2,00	

Tabelle C35: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} Nutzungsbedingungen						nd s ≥ s _{cr}		
Ankergröße	Sieb- hülse	Effektive Veranke- rungs-	d/d			w/d w/w			d/d w/d		d/d w/d w/w
	tiefe		24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		h _{ef}			N _{Rk,b} =	N _{Rk,p} 1)			V _{Rk,b} 1)		
		[mm]			[k	N]			[kN]		
		Normierte i	mittlere [Druckfes	tigkeit f₀	≥ 12 N/m	nm² ²)				
M8 / M10 IG-M6	VM-SH 16	130	3,5	3,5	2,5	3,5	3,5	2,5	3,5		
M12 / M16 IG-M8 /IG-M10	VM-SH 20	≥ 130	3,5	3,5	2,5	3,5	3,5	2,5	7,0		

¹⁾ $N_{Rk,b,c}$ = $N_{Rk,p,c}$ und $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ gemäß Anhang C5

Tabelle C36: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δνο	δ _{N∞}	δ _V / V	δνο	δν∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1, 5 *δ _{V0}
M16	**************************************	***************************************			0,31	0,31*V _{Rk} /3,5	

Tabelle C37: Charakteristische Widerstände unter Brandbeanspruchung

A . l	Sieb- hülse	Effektive Verankerungstiefe	Charakteristischer Widerstand N _{Rk,b,fi} = N _{Rk,p,fi} = V _{Rk,b,fi}					
Ankergröße		h _{ef}	h _{ef} R30 R60		R90	R120		
		[mm]	[kN]					
M8/M10/IG-M6	VM-SH 16	130	8			keine Leistung		
M12/ IG-M8	VM-SH 20	≥ 130	0,37	0,27	0,17	bewertet		
M16/IG-M10	VM-SH 20	≥ 130				0,12		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandlochstein KSL-12DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C16

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C31 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Mauerziegel MZ-1DF Tabelle C38: Beschreibung

Steintyp			Mauerziegel MZ-1DF
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Normierte mittlere Druckfestigkeit	f_{b}	[N/mm ²]	≥ 20
Umrechnungsfaktor für gerir Druckfestigkeiten	nger	е	$(f_b / 20)^{0.5} \le 1.0$
Norm		[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung)		[-]	z.B. Wienerberger (DE)
Steinabmessungen		[mm]	≥ 240 x 115 x 55
Bohrverfahren		[-]	Hammerbohren

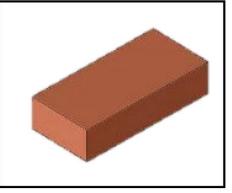


Tabelle C39: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Montagedrehmoment	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	
Randabstand	Ccr	[mm]	150 (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)						= 240)	
Minimaler Randabstand	Cmin	[mm]	60							
Ashashatand	S _{cr,II}	[mm]	240							
Achsabstand $\frac{Sc_{r,1}}{Sc_{r,\perp}}$ [mi			130							
Minimaler Achsabstand	Series III.									

Tabelle C40: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zugl	act		Querlast							
Zugi	ası		senkrecht zu	senkrecht zum freien Rand			parallel zum freien Rand			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII		
	60	0,75	-	60	0,10		60	0,30		
	150	1,00		100	0,50] []	100	0,65		
	180	1,00		240	1,00		150	1,00		

Tabelle C41: Faktor für Ankergruppen

	Anordnung parall	el zur Lag	gerfuge		Anordnung senkrecht zur Lagerfuge				
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
7.ualaat		60	65	0,85	•	60	65	1,00	
Zuglast		150	65	1,15		150	65	1,20	
		150	240	2,00		150	130	2,00	
		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥	
Querlast senkrecht		60	65	0,40		60	65	0,30	
zum freien Rand		240	65	2,00		240	65	2,00	
Zum molom rtuma		240	240	2,00		240	130	2,00	
		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II	
Querlast		60	65	1,75	•	60	65	1,10	
parallel zum freien Rand		150	65	2,00		150	65	2,00	
Zum molem Kana		150	240	2,00		150	130	2,00	

Steintyp: Mauerziegel MZ-1DF – Fortsetzung

Tabelle C42: Charakteristische Widerstände unter Zug- und Querlast

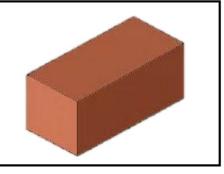
			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}	
Ankergröße	Sieb-	Effektive			Nutzu	ıngsbedi	ngunger	1		
	hülse	Veranke- rungstiefe	d/d				d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$ 1)					V _{Rk,b} 1)	
	[mm] [kN]									
	Normierte mittlere Druckfestigkeit f _b ≥ 20 N/mm ^{2 2)}									
M8	-	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M10 / IG-M6	-	≥ 90	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M12 / IG-M8	-	≥ 100	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,0	6,5	6,5	12,0	
M8	VM-SH 12	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M8 / M10 IG-M6	VM-SH 16	≥ 85	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M12 IG-M8	VM-SH 20	≥ 85	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M16 IG-M10	VM-SH 20	≥ 85	8,0	6,5	6,5	8,0	6,5	6,5	12,0	

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c \perp gemäß Anhang C5

Tabelle C43: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δ _{N0}	0,3	0,3*V _{Rk} /3,5	1,5*δνο
M16		,			0,1	0,1*V _{Rk} /3,5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Mauerziegel MZ-1DF Charakteristische Widerstände und Verschiebungen	Anhang C18


²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C38 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Mauerziegel MZ-2DF

Tabelle C44: Beschreibung

Steintyp			Mauerziegel MZ-2DF
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Normierte mittlere Druckfestigkeit	f _b	[N/mm ²]	≥ 28
Umrechnungsfaktor für geri Druckfestigkeiten	nger	е	$(f_b / 28)^{0.5} \le 1.0$
Norm		[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung)		[-]	z.B. Wienerberger (DE)
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Bohrverfahren		[-]	Hammerbohren

Tabelle C45: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Randabstand (unter Brandbeanspruchung)	Ccr (Ccr,fi)	[mm]	150 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)						240)
Minimaler Randabstand	Cmin	[mm]				50			
Achsabstand (unter	Scr,II (Scr,fi,II)	[mm]				240 (4 h	ef)		
Brandbeanspruchung)	$S_{cr,\perp}$ ($S_{cr,fi,\perp}$)	[mm]	m] 240 (4 h _{ef})						
Minimaler Achsabstand	S _{min,II} ; S _{min,⊥}	[mm]	50						20

Tabelle C46: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	oot			Querlast							
Zugl	ası		senkrecht zu	parallel zum freien Rand							
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II			
	50 ¹⁾	1,00		50	0,20		50	1,00			
	150 ¹⁾	1,00		125	0,50		50	1,00			
	150	1,00		240	1,00		150	1,00			

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C47: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge	Anordnung senk	recht zur	Lagerfu	ge	
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
		50 ¹⁾	50	1,50	1	50 ¹⁾	50	0,80
Zuglast		150 ¹⁾	240	2,00		150 ¹⁾	240	2,00
		180 ²⁾	60	1,00		180 ²⁾	60	1,00
		180 ²⁾	240	1,55		180 ²⁾	120	2,00
		240 ²⁾	240	2,00		180 ²⁾	120	2,00
+	•••	mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast		50	50	0,40		50	50	0,20
senkrecht		240	50	1,20		240	50	0,60
zum freien Rand		240	240	2,00		240	125	1,00
		240	240	2,00	 	240	240	2,00
Quarlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨II
Querlast parallel zum freien Rand		50	50	1,20]	50	50	1,00
		150	240	2,00		50	125	1,00
Zam neien Kana		130	240	2,00		150	240	2,00

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen - Mauerziegel MZ-2DF

Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren

Anhang C19

²⁾ Nur für Anwendungen mit hef = 200mm und ohne Siebhülse

Steintyp: Mauerziegel MZ-2DF - Fortsetzung

Tabelle C48: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}			
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen								
3	hülse	Veranker ungs- tiefe		d/d w/w				d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C			alle Temperatur- bereiche				
		h _{ef}			$N_{Rk,b} = I$	N _{Rk,p} 1)			V _{Rk,b} 1)			
		[mm]			[kN	١]			[kN]			
	N	ormierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	28 N/mm ²	2)					
M8	_	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M10 / IG-M6	_	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M12 / IG-M8	_	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12,0			
M16 / IG-M10	_	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12,0 ³⁾			
M10 / M12 IG-M6 / IG-M8	-	200	11,5	11,5	10,0	6,0	6,0	5,0	8,0			
M16 / IG-M10	-	200	11,5	11,5	10,0	6,0	6,0	5,0	12,0			
M8	VM-SH 12	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M8 / M10 IG-M6	VM-SH 16	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M12 / IG-M8	VM-SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0			
M16 / IG-M10	VM-SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0 ³⁾			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C49: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Allkergrobe	[mm]	[mm/kN] [mm]		[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δνο	0,3	0,3*V _{Rk} /3,5	1,5*δ√0
M16			389 5033 8		0,1	0,1*V _{Rk} /3,5	1.60

Sikla Injektionssystem VMU plus für Mauerwerk

Leistung - Mauerziegel MZ-2DF
Charakteristische Widerstände und Verschiebungen

Anhang C20

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C44 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

³⁾ Gültig für alle Steinfestigkeitsklassen bis min. 10 N/mm²

Tabelle C50: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$						
		h _{ef}	R30	R60	R90	R120			
		[mm]	[kN]						
M8	1	80							
M10 / IG-M6	1	≥ 90	0.51	0.44	0,36	0.22			
M12 / IG-M8	-	≥ 100	0,51	0,44	0,36	0,33			
M16 / IG-M10	T	≥ 100							
M8	VM-SH 12	80	0,36	0,26	0,15	0,10			
MO / M40 / IC MC	\/\	≥ 85	0,36	0,26	0,15	0,10			
M8 / M10 / IG-M6	VM-SH 16	130	0,92	0,74	0,57	0,49			
M12 / M16	VM-SH 20	≥ 85	0,36	0,26	0,15	0,10			
IG-M8 / IG-M10		≥ 130	0,92	0,74	0,57	0,49			

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen - Mauerziegel MZ-2DF

Charakteristische Widerstände unter Brandbeanspruchung

Anhang C21

Steintyp: Hochlochziegel Hlz-10 DF

Tabelle C51: Beschreibung

Steintyp		Hochlochziegel Hlz-10 DF	
Rohdichte ρ	[kg/dm³]	≥ 1,25	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 20	
Umrechnungsfaktor für geringe Druckfestigkeiten	re	$(f_b / 20)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (DE)	
Steinabmessungen	[mm]	300 x 240 x 249	
Bohrverfahren	[-]	Drehbohren	1

Tabelle C52: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T _{inst}	[Nm]	≤ 5	≤ 10	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10
Randabstand (unter Brandbeanspruchung)	Ccr; (Ccr,fi)	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 300)					300)	
Minimaler Randabstan	[mm]	50							
Achsabstand (unter	Scr,II (Scr,fi,II)	[mm]				300 (4 h	ef)		
Brandbeanspruchung)						250 (4 h	ef)		
$\begin{array}{c} \text{Minimaler} \\ \text{Achsabstand} \end{array} \hspace{0.5cm} s_{\text{min,II;}} s_{\text{min,\bot}} \hspace{0.5cm} [\text{mm}]$			-			50			

300

Tabelle C53: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	oot			Querlast								
Zugl	สรเ		senkrecht zu	m freien F	parallel zum freien Rand							
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II				
•	50	1,00	│	50	0,20		50	1,00				
	120	1,00		300	1,00		120	1,00				

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Hlz-10 DF
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C22

Steintyp: Hochlochziegel Hlz-10 – Fortsetzung

Tabelle C54: Faktor für Ankergruppen

	Anordnung parall	Anordnung senkrecht zur Lagerfuge						
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast		50	50	1,55		50	50	1,00
		120	300	2,00		120	250	2,00
Ouerleet		mit c ≥	mit s ≥	αg II,V⊥	+	mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast senkrecht		50	50	0,30		50	50	0,20
zum freien Rand		300	50	1,40		300	50	1,00
Zuili li eleli Naliu		300	300	2,00		300	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
parallel		50	50	1,85	1 1	50	50	1,00
zum freien Rand		120	300	2,00		120	250	2,00

Tabelle C55: Charakteristische Widerstände unter Zug- und Querlast

	0.1	=======================================	С	harakteri		Viderstär Ingsbedi			s ≥ s _{cr}
Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe		d/d		w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}		:	$N_{Rk,b} = I$	V _{Rk,p} 1)	<i>y</i>		V _{Rk,b} 1)
		[mm]			[kN	J]		[kN]	
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	0 N/mm ²	2)		
M8	VM-SH 12	80	2,5	2,5	2,0	2,5	2,5	2,0	8,0
M8 / M10 /IG-M6	VM-SH 16	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	8,0
M12 / IG-M8	VM-SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	8,0
M16 / IG-M10	VM-SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	11,5

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Tabelle C56: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δνο	δ _{N∞}	δ _V / V	δ∨0	δν∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16		20	10 parties 10	N 965550 1	0,31	0,31*V _{Rk} /3,5	

Tabelle C57: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	$\begin{tabular}{c c} Charakteristischer Widerstand \\ N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi} \\ \hline R30 & R60 & R90 & R120 \\ \hline [kN] \\ \end{tabular}$				
Annorgrous		h _{ef}					
		[mm]					
M8 / M10 / IG-M6	VM-SH 16	130					
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 130	0,57	0,39	0,21	0,12	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Hlz-10 DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C23

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C51 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Porotherm Homebric

Tabelle C58: Beschreibung

Rohdichte $ ho$ [kg/dm ²	3] ≥ 0,70	
	_	
Normierte mittlere Druckfestigkeit f _b [N/mm²	2] ≥ 10	
Jmrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 10)^{0,5} \le 1,0$	
lorm [-]	EN 771-1:2011+A1:2015	
lersteller (Länderkennung) [-]	z.B. Wienerberger (FR)	
Steinabmessungen [mm]	500 x 200 x 299	
Bohrverfahren [-]	Drehbohren	
7,9 25 4,5	54 - 54 - 54 - 54 - 54 - 54 - 54 - 54 -	10.5

Tabelle C59: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T_{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120	(für Quer	lasten ser	nkrecht zu	m freien F	Rand: c _{cr} =	500)
Minimaler Randabstand	Cmin	[mm]	120						
Achsabstand	S _{cr,II}	[mm]	500						
Achsabstand	S _{cr,⊥}	[mm]	300						
Minimaler Achsabstand	S _{min,II} S _{min,⊥}	[mm]	120						

Tabelle C60: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast				Querlast							
Zuglast					senkrecht zum freien Rand parallel zum frei					eien Rand	
		mit c ≥	αedge,N	+		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II	
	_	120	1,00	l		120	0,30		120	0.60	
	•	120	1,00	l		250	0,60		120	0,60	
		120	1,00			500	1,00		200	1,00	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Porotherm Homebric Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C24

Steintyp: Hochlochziegel Porotherm Homebric – Fortsetzung

Tabelle C61: Faktor für Ankergruppen

	Anordnung parall	el zur Lag	gerfuge		Anordnung senkrecht zur Lagerfuge				
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	$lpha_{ t gL,N}$	
7ugloot		120	100	1,00		120	100	1,00	
Zuglast		200	100	2,00		200	100	1,20	
		120	500	2,00		120	300	2,00	
		mit c ≥	mit s ≥	αg II,V⊥	Н	mit c ≥	mit s ≥	αд⊥,∨⊥	
Querlast		120	100	0,30		120	100	0,30	
senkrecht		250	100	0,60		250	100	0,60	
zum freien Rand		500 120	100 500	1,00 2,00		120	300	2,00	
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II	
Querlast parallel		120	100	1,00		120	100	1,00	
zum freien Rand		120	500	2,00		120	300	2,00	

Tabelle C62: Charakteristische Widerstände unter Zug- und Querlast

			С	Charakteristische Widerstände bei c≥ c _{cr} und						
Ankergröße	Sieb-	Sieb- Effektive		Nutzungsbedingungen						
	hülse	Veranke- rungstiefe		d/d			w/d w/w		d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		h _{ef}			$N_{Rk,b} = I$	V Rk,p 1)			V _{Rk,b} 1)	
		[mm]			[kN	1]		[kN]		
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	2 2)			
M8	VM-SH 12	80			1,2	2			3,0	
M8 / M10/	\/M CII 40	≥ 85			1,2	2			3,0	
IG-M6	VM-SH 16	130			1,	5			3,5	
M12 / M16/	VM CH CO	≥ 85			1,2	2			4,0	
IG-M8 / IG-M10	VM-SH 20	≥ 130			1,	5			4,0	

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Tabelle C63: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Alikergroße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16		7			0,31	0,31*V _{Rk} /3,5	

Sikla Injektionssystem VMU plus für Mauerwerk	Anhang C25
Leistungen – Hochlochziegel Porotherm Homebric Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C58 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel BGV Thermo

Tabelle C64: Beschreibung

Steintyp	Hochlochziegel BGV Thermo	EMmo
Rohdichte ρ [kg/dm ³]	≥ 0,60	
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 10	
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 10)^{0.5} \le 1.0$	
Norm [-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung) [-]	z.B. Leroux (FR)	
Steinabmessungen [mm]	500 x 200 x 314	
Bohrverfahren [-]	Drehbohren	
	500	2000 2

Tabelle C65: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Montagedrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)						
Minimaler Randabstand	C _{min}	[mm]	120						
Achsabstand	Scr,II	[mm]	500						
Achsabstand	Scr,⊥	[mm]	315						
Minimaler Achsabstand	S _{min,II} S _{min,⊥}	[mm]	120						

Tabelle C66: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
Zugia	ası		senkrecht zu	m freien F	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II		
	120	1,00	-	120	0,30		120	0.60		
	120	1,00		250	0,60		120	0,60		
	120	1,00		500	1,00		250	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung – Hochlochziegel BGV Thermo Beschreibung, Montagekennwerte und Reduktionsfaktoren	Anhang C26

Steintyp: Hochlochziegel BGV Thermo – Fortsetzung

Tabelle C67: Faktor für Ankergruppen

	Anordnung parall	el zur Lag	gerfuge		Anordnung senk	recht zur	^r Lagerfu	ge
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	$lpha_{ t gL,N}$
Zuglast		120	100	1,00		120	100	1,00
		200	100	1,70		200	100	1,10
		120	500	2,00		120	315	2,00
Querlast		mit c ≥	mit s ≥	α _g II,∨⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
senkrecht	•••	120	100	1,00	-	120	100	1,00
zum freien Rand		120	500	2,00		120	315	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨II
senkrecht zur Lagerfuge	•	120	100	1,00		120	100	1,00
		120	500	2,00		120	315	2,00

Tabelle C68: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstä	nde bei c	≥ c _{cr} und	s ≥ s _{cr}			
Ankergröße	Sieb-	Effektive Veranke- rungstiefe		Nutzungsbedingungen								
	hülse			d/d		w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ 1)					V _{Rk,b} 1)				
		[mm]			[kl	٧]		[kN]				
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	l0 N/mm²	2 2)					
M8	VM-SH 12	80			0,	9			3,5			
M8 / M10/	VM CH 16	≥ 85			0,	9			3,5			
IG-M6	VM-SH 16	130	2,0	2,0	1,5	2,0	2,0	1,5	4,0			
M12 / M16/	VM-SH 20	≥ 85	0,9						4,0			
IG-M8 / IG-M10	VIVI-SH ZU	≥ 130	2,0	2,0	1,5	2,0	2,0	1,5	4,0			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|I|} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C69: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	διο	δn∞	δ _V / V	δνο	δν∞
Alikergrose	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16	alle		-,		0,31	0,31*V _{Rk} /3,5	, , , , , , ,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel BGV Thermo Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C27

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C64 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Calibric R+

Tabelle C70: Beschreibung

Steintyp			Hochlochziegel Calibric R+	
Rohdichte	ρ	[kg/dm ³]	≥ 0,60	
Normierte mittlere Druckfestigkeit	f _b	[N/mm ²]	≥ 12	
Umrechnungsfaktor für geri Druckfestigkeiten	ngere		$(f_b / 12)^{0,5} \le 1,0$	
Norm		[-]	EN 771-1:2011+A1:201	5
Hersteller (Länderkennung) [-]			z.B. Leroux (FR)	
Steinabmessungen		[mm]	500 x 200 x 314	
Bohrverfahren		[-]	Drehbohren	
				20 5 200
				N
	-	40	500	_

Tabelle C71: Montagekennwerte

Ankergröße	Ankergröße					M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	T_{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)							
Minimaler Randabstand	Cmin	[mm]	120							
Achsabstand	Scr, II	[mm]	500							
Acrisabstand	Scr, ⊥	[mm]	315							
Minimaler Achsabstand	S _{min, II} S _{min, ⊥}	[mm]	120							

Tabelle C72: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
Zugi	ası		senkrecht zu	m freien F	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II		
	120	1,00	-	120	0,15		120	0,30		
		1,00		250	0,30] []	120	0,30		
	120	1,00		500	1,00		250	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Calibric R+ Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C28

Steintyp: Hochlochziegel Calibric R+ – Fortsetzung

Tabelle C73: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	^r Lagerfu	ge
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	$lpha_{ t gL,N}$
Zuglast		120	100	1,00		120	100	1,00
Zuglast		175	100	1,70		175	100	1,10
		120	500	2,00		120	315	2,00
Querlast		mit c ≥	mit s ≥	α _g II,∨⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
senkrecht	•••	120	100	1,00		120	100	1,00
zum freien Rand		120	500	2,00		120	315	2,00
Quarlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨II
Querlast parallel zum freien Rand	•	120	100	1,00		120	100	1,00
		120	500	2,00		120	315	2,00

Tabelle C74: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive			Nutzu	ıngsbedi	ingunger	1	
3	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}			$N_{Rk,b} = 1$	V Rk,p 1)			V _{Rk,b} 1)
		[mm]			[kN	1]			[kN]
		Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 1	2 N/mm ²	2 2)		
M8	VM-SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,0
M8 / M10/	V/M CLI4C	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,5
IG-M6	VM-SH16	130	1,5	1,5	1,2	1,5	1,5	1,2	5,5
M12 / M16	V/M CLIOO	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	8,5
IG-M8 /IG-M10	VM-SH20	≥ 130	1,5	1,5	1,2	1,5	1,5	1,2	8,5

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|l} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C75: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	33300 3300 APARES				0,31	0,31*V _{Rk} /3,5	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Calibric R+ Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	Anhang C29

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C70 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Urbanbric

Tabelle C76: Beschreibung

Steintyp	Hochlochziegel Urbanbric	
Rohdichte ρ [kg/dm ³]	≥ 0,70	
Normierte mittlere Druckfestigkeit f_b [N/mm 2]	≥ 12	
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 12)^{0,5} \le 1,0$	
Norm [-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung) [-]	z.B. Imerys (FR)	
Steinabmessungen [mm]	560 x 200 x 274	
Bohrverfahren [-]	Drehbohren	
	5,5 Ø ^{AO}	20 6,5 200
9 40 6	560	3,6

Tabelle C77: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120	(für Quer	lasten ser	nkrecht zu	ım freien F	Rand: c _{cr} =	500)
Minimaler Randabstand	Cmin	[mm]				120			
Ashashatand	Scr, II	[mm]				560			
Achsabstand	Scr, ⊥	[mm]				275			ý
Minimaler Achsabstand	S _{min, II;} S _{min, ⊥}	[mm]				100			

Tabelle C78: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zugl	last		Querlast							
Zugi	ası		senkrecht zum freien Rand			parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II		
	120	1.00	-	120	0,25		120	0.50		
	120	1,00		250	0,50	 	120	0,50		
	120	1,00		500	1,00		250	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Urbanbric Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C30

Steintyp: Hochlochziegel Urbanbric – Fortsetzung

Tabelle C79: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	Lagerfug	je
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast		120	100	1,00		120	100	1,00
Zuglast		185	100	1,90		185	100	1,10
		120	560	2,00		120	275	2,00
Querlast		mit c ≥	mit s ≥	α _g II,∨⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
senkrecht	•••	120	100	1,00	-	120	100	1,00
zum freien Rand		120	560	2,00		120	275	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _{g⊥,} ∨ II
parallel	•	120	100	1,00		120	100	1,00
zum freien Rand		120	560	2,00		120	275	2,00

Tabelle C80: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive			Nutzu	ıngsbedi	ngunger	1	
	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}			$N_{Rk,b} = I$	V _{Rk,p} 1)			V _{Rk,b} 1)
		[mm]			[kN	1]			[kN]
		Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 1	2 N/mm ²	2)		
M8	VM-SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,5
M8 / M10/	\/M_CLL4C	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	4,5
IG-M6	VM-SH 16	130	3,0	3,0	2,5	3,0	3,0	2,5	4,5
M12 / M16	VM CH 20	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,0
IG-M8 / IG-M10	VM-SH 20	≥ 130	3,0	3,0	2,5	3,0	3,0	2,5	5,0

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|II} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C81: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δ∨∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16		,			0,31	0,31*V _{Rk} /3,5	. ,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Urbanbric Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C31

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C76 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Lochziegel Brique Creuse C40

Tabelle C82: Beschreibung

Steintyp		Lochziegel Brique Creuse C40	
Rohdichte ρ	[kg/dm ³]	≥ 0,70	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	
Jmrechnungsfaktor für geringer Druckfestigkeiten	е	$(f_b / 12)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Terreal (FR)	
Steinabmessungen	[mm]	500 x 200 x 200	
Bohrverfahren	[-]	Drehbohren	
		000 95 80 200	

Tabelle C83: Montagekennwerte

Ankergröße	Ankergröße					M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	nm] 120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)						
Minimaler Randabstand	Cmin	[mm]	120						
Achsabstand	Scr, II	[mm]				500			
Acrisabstand	Scr, ⊥	[mm]	200						
Minimaler Achsabstand	200								

Tabelle C84: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zugl	act		Querlast								
Zugi	สธเ		senkrecht zu	m freien F	Rand	parallel zum freien Rand					
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II			
•	120	1,00	│	120	0,83		120	1,00			
	120	1,00		500	1,00		250	1,00			

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Brique Creuse C40 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C32

Steintyp: Lochziegel Brique Creuse C40 – Fortsetzung

Tabelle C85: Faktor für Ankergruppen

	Anordnung parall	Anordnung senk	recht zui	r Lagerfu	ge			
=======================================		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast		120	500	2,00		120	200	2,00
Overlant		mit c ≥	mit s ≥	α _g II,∨⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast senkrecht zum freien Rand		120	500	2,00	•	120	200	2,00
Overdent		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
Querlast parallel zum freien Rand		120	500	2,00		120	200	2,00

Tabelle C86: Charakteristische Widerstände unter Zug- und Querlast

			С	Charakteristische Widerstände bei $c \ge c_{cr}$ und $s \ge s_{cr}$								
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen								
	hülse	Veranke- rungs- tiefe		d/d		w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}			$N_{Rk,b} = I$	V Rk,p 1)			V _{Rk,b} 1)			
		[mm]			[kN	1]			[kN]			
	1	Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 1	2 N/mm ²	2)					
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	1,5			
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85										

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Tabelle C87: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	διο	δn∞	δ _V / V	δνο	δν∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	alle 0,13 0,13*N _{Rk} / 3,5		2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16	3,200	,		= 5116	0,31	0,31*V _{Rk} /3,5	.,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Brique Creuse C40 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C33

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C82 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C88: Beschreibung

Steintyp		Lochziegel Blocchi Leggeri	
Rohdichte ρ	[kg/dm ³]	≥ 0,60	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	
Umrechnungsfaktor für geringer Druckfestigkeiten	е	$(f_b / 12)^{0,5} \le 1,0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (IT)	
Steinabmessungen	[mm]	250 x 120 x 250	
Bohrverfahren	[-]	Drehbohren	
	43 6	250	32 6

Tabelle C89: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Montagedrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	m] 120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						
Minimaler Randabstand	C _{min}	[mm]	60						
	Scr, II	[mm]				250			
Achsabstand	Scr, ⊥	[mm]	250						
Minimaler Achsabstand	S _{min, II} S _{min, ⊥}	[mm]	100						

Tabelle C90: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zugl	act		Querlast							
Zugi	สธเ		senkrecht zu	m freien F	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II		
•	60	1,00		60	0,40		60	0,40		
	120	1,00		250	1,00		120	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Blocchi Leggeri Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C34

Steintyp: Lochziegel Blocchi Leggeri – Fortsetzung

Tabelle C91: Faktor für Ankergruppen

	Anordnung parall	el zur Lag	gerfuge		Anordnung senk	recht zui	ır Lagerfuge			
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N		
Zuglast	• •	60	100	1,00		60	100	2,00		
		120	250	2,00		120	250	2,00		
Overlant		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥		
Querlast senkrecht		60	100	0,40		60	100	0,40		
zum freien Rand		250	100	1,00		250	100	1,00		
Zum melen Kana		250	250	2,00		250	250	2,00		
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II		
Querlast parallel		60	100	0,40		60	100	0,40		
zum freien Rand		120	100	1,00		120	100	1,00		
		120	250	2,00		120	250	2,00		

Tabelle C92: Charakteristische Widerstände unter Zug- und Querlast

			С	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}									
Ankergröße	Sieb-	ieb- Effektive		Nutzungsbedingungen									
	hülse	Veranke- rungs- tiefe	d/d			w/d w/w			d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche				
		h _{ef}			N _{Rk,b} = 1	V Rk,p 1)	S)	V _{Rk,b} 1)					
		[mm]			[kN	1]		[kN]					
		Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 1	2 N/mm ²	2)						
M8	VM-SH 12	80											
M8 / M10/ IG-M6	VM-SH 16	≥ 85	0,6	0,6	0,6	0,6	0,6	0,6	3,5				
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85											

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Tabelle C93: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞	
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ _{V0}	
M16			,		0,31	0,31*V _{Rk} /3,5	,	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Blocchi Leggeri Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C35

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C88 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Doppio Uni

Tabelle C94: Beschreibung

Steintyp		Hochlochziegel Doppio Uni	
Rohdichte p	[kg/dm³]	≥ 0,90	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 28	
Jmrechnungsfaktor für geringe Druckfestigkeiten	re	$(f_b / 28)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
lersteller (Länderkennung)	[-]	z.B. Wienerberger (IT)	
Steinabmessungen	[mm]	250 x 120 x 120	
Bohrverfahren	[-]	Drehbohren	
			11 31 120

Tabelle C95: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	T_{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 250)							
Minimaler Randabstand	C _{min}	[mm]	100							
Achsabstand	Scr, II	[mm]		250						
Achsabstand	Scr, ⊥	[mm]	120							
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	Militar							

Tabelle C96: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zug	last		Querlast							
Zugi	ası		senkrecht zum freien Rand parallel zum f				freien Rand			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II		
•	100	1,00		100	0,50		100	1,00		
	120	1,00		250	1,00	V	120	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Doppio Uni Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C36

Steintyp: Hochlochziegel Doppio Uni- Fortsetzung

Tabelle C97: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	Lagerfug	e
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast	• •	100	100	1,00		100	120	2,00
	120 250 2,00	120	120	2,00				
Querlast		mit c ≥	mit s ≥	α _g II,∨⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
senkrecht	•••	100	100	1,00	-	100	100	1,00
zum freien Rand		250	250	2,00		250	120	2,00
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
Querlast parallel	• •	100	100	1,00		100	100	1,00
zum freien Rand	nd	120	250	2,00		120	120	2,00

Tabelle C98: Charakteristische Widerstände unter Zug- und Querlast

			С	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}								
Ankergröße	Sieb-	Effektive										
	hülse	Veranke- rungstiefe		d/d			w/d w/w		d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}		N _{Rk,b} =		V _{Rk,p} 1)		V _{Rk,b} 1)				
		[mm]			[kN	1]		[kN]				
		Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 2	8 N/mm²	2)					
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,5			
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85										

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Tabelle C99: Verschiebungen

Ankergröße	h _{ef}	δη / Ν	δινο	δn∞	δ _V / V	δνο	δν∞	
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ _{∨0}	
M16	2000				0,31	0,31*V _{Rk} /3,5	.,	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Doppio Uni Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C37

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C94 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Coriso WS07 mit integrierter Wärmedämmung

Tabelle C100: Beschreibung

Steintyp		Hochlochziegel Coriso WS07	
Füllung		Mineralwolle	
Rohdichte ρ	[kg/dm³]	≥ 0,55	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 6	
Umrechnungsfaktor für geringere Druckfestigkeiten		$(f_b / 6)^{0,5} \le 1,0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Unipor (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren	[-]	Drehbohren	
14		365 8	

Tabelle C101: Montagekennwerte

Ankergröße	Ankergröße				M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Randabstand	Ccr	[mm]	$ \begin{array}{ c c c c c c } \hline [Nm] & \leq 5 & \leq 5 & \leq 10 & \leq 10 & \leq 5 & \leq 5 & \leq 5 \\ \hline [mm] & 120 \ (f\"{u}r \ Querlasten \ senkrecht \ zum \ freien \ Rand: \ c_{cr} = 250) \\ \hline [mm] & 50 \\ \hline [mm] & 250 \\ \hline [mm] & 250 \\ \hline \end{array} $			250)			
Minimaler Randabstand	Cmin	[mm]	50						
Achsabstand	Scr, II	[mm]				250			
Acrisabstand	Scr, ⊥	[mm]				250		≤5 ≤5	
Minimaler Achsabstand	S _{min, II} S _{min, ⊥}	[mm]				50			

Tabelle C102: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	Zuglast			Querlast							
Zugi	ası		senkrecht zu	t zum freien Rand parallel zum freien Rand				ınd			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII			
•	50	1,00	│	50	0,30		50	1,00			
	120	1,00		250	1,00	1	120	1,00			

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Coriso WS07 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C38

Steintyp: Hochlochziegel Coriso WS07- Fortsetzung

Tabelle C103: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	Lagerfug	je
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast	• •	50	50	1,50		50	50	1,00
		120	250	2,00		120	250	2,00
2	 	mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast		50	50	0,40		50	50	0,40
senkrecht zum freien Rand		250	50	1,00		250	50	1,20
		250	250	2,00		250	250	2,00
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _{g⊥,} ∨ II
Querlast parallel	•	50	50	1,65		50	50	1,00
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C104: Charakteristische Widerstände unter Zug- und Querlast

			r									
			Charakteristische Widerstände bei c ≥ ccr und s ≥ scr									
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen								
	hülse VM-SH	Veranke- rungs- tiefe		d/d		w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}			$N_{Rk,b} = I$	N _{Rk,p} 1)			V _{Rk,b} 1)			
		[mm]			[kN	١]		[kN]				
		Normierte m	nittlere Dr	uckfestig	keit f _b ≥ (6 N/mm²	2)					
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0			
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85										

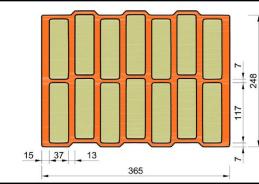
¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C105: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δv / V δv0	
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16		2.	,		0,31	0,31*V _{Rk} /3,5	,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Coriso WS07 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C39

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C100 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Hochlochziegel T7 MW mit integrierter Wärmedämmung

Tabelle C106: Beschreibung

Steintyp			Hochlochziegel T7 MW
Füllung			Mineralwolle
Rohdichte	ρ	[kg/dm ³]	≥ 0,59
Normierte mittlere Druckfestigkeit	f_b	[N/mm ²]	≥ 8
Umrechnungsfaktor für gerii Druckfestigkeiten	ngere	Э	$(f_b / 8)^{0,5} \le 1,0$
Norm		[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung)		[-]	e.g. Wienerberger (DE)
Steinabmessungen		[mm]	248 x 365 x 249
Bohrverfahren		[-]	Drehbohren

Tabelle C107: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG- M10
Montagedrehmoment	T_{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤5
Randabstand (unter Brandbeanspruchung)	Ccr; (Ccr,fi)	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						50)
Minimaler Randabstan	d c _{min}	[mm]							
Achsabstand (unter	Scr, II (Scr,fi, II)	[mm]	250 (4 h _{ef})						
Brandbeanspruchung)	$S_{cr, \perp}(S_{cr,fi, \perp})$	[mm]				250 (4 he	ef)	and: c _{cr} = 250)	
Minimaler Achsabstand	S _{min,} II; S _{min,} ⊥	[mm]				50			

Tabelle C108: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	Zuglast			Querlast							
Zugi	ası		senkrecht zu	m freien F	Rand	parallel zum	mit c ≥ α _{edge,∨ II} 50 1,00				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II			
 •	50	1,00	│	50	0,35		50	1,00			
	120	1,00		250	1,00		120	1,00			

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T7 MW Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C40

Steintyp: Hochlochziegel T7 MW – Fortsetzung

Tabelle C109: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	^r Lagerfu	ge
Zuglast		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
	• •	50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast		50	50	0,60	•	50	50	0,40
senkrecht zum freien Rand		250	50	1,55		250	50	1,00
Zam noion rama	L	250	250	2,00	ļL	250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _g ⊥,∨ II
parallel zum freien Rand	•	50	50	2,00		50	50	1,20
		120	250	2,00		120	250	2,00

Tabelle C110: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}						
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen					
	hülse	Veranke- rungstiefe	d/d			w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}			$N_{Rk,b} = 1$	V Rk,p 1)			V _{Rk,b} 1)
		[mm]			[kN	1]			[kN]
		Normierte m	nittlere Dr	uckfestig	ykeit f₀ ≥ 8	8 N/mm²	2)		
M8	VM-SH 12	80							
M8 / M10/ IG-M6	VM-SH 16	≥ 85	2.0	2.0	1 5	2.0		1 5	3,0
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5	
M16 / IG-M10	VM-SH 20	≥ 85							4,5

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c\,II} = V_{Rk,c\,\perp}$ gemäß Anhang C5

Tabelle C111: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			.,		0,31	0,31*V _{Rk} /3,5	.,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T7 MW Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C41

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C106 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C112: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand N _{Rk,b,fi} = N _{Rk,p,fi} = V _{Rk,b,fi}					
Alikeigiose		h _{ef}	R30 R60 R90 R120					
		[mm]	[kN]					
M8 / M10 / IG-M6	VM-SH 16	130				kojno Loistung		
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	keine Leistung bewertet		

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel T7 MW
Charakteristische Widerstände unter Brandbeanspruchung

Anhang C42

Steintyp: Hochlochziegel T8 P mit integrierter Wärmedämmung

Tabelle C113: Beschreibung

Steintyp		Hochlochziegel T8 P	
Füllung		Perlite	War.
Rohdichte	complements [kg/dm³]	≥ 0,56	
Normierte mittlere Druckfestigkeit	_b [N/mm ²]	≥ 6	
Umrechnungsfaktor für gering Druckfestigkeiten	ere	$(f_b / 6)^{0,5} \le 1,0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren	[-]	Drehbohren	1
		113 8 113 6 248	

365

Tabelle C114: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Montagedrehmoment	T_{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4	
Randabstand	Ccr	[mm]	120	(für Quer	lasten ser	nkrecht zu	ım freien F	Rand: c _{cr} =	250)	
Minimaler Randabstand	C _{min}	[mm]				50				
Achsabstand	Scr, II	[mm]	250							
Acrisabstand	Scr, ⊥	[mm]	250							
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	50							

Tabelle C115: Reduktionsfaktoren für Einzelanker unter Randeinfluss

36 14

Zugl	act		Querlast								
Zugi	สธเ		senkrecht zum freien Rand parallel zum freien Ra					and			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII			
•	50	1,00		50	0,25		50	1,00			
	120	1,00		250	1,00		120	1,00			

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T8 P Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C43

Steintyp: Hochlochziegel T8 P – Fortsetzung

Tabelle C116: Faktor für Ankergruppen

	Anordnung senkrecht zur Lagerfuge							
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	$lpha_{ t g oldsymbol{\perp}, N}$
Zuglast	• •	50	50	1,30		50	50	1,10
		120	250	2,00		120	250	2,00
	 	mit c ≥	mit s ≥	αg II,V⊥	I +г	mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast		50	50	0,40		50	50	0,30
senkrecht zum freien Rand		250	50	1,35		250	50	1,20
Zam neien Kana		250	250	2,00		250	250	2,00
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
Querlast parallel	• •	50	50	1,70		50	50	1,00
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C117: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstäi	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive			Nutzu	ıngsbedi	1		
	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ 1)					V _{Rk,b} 1)	
		[mm]			[kN	١]			[kN]
		Normierte m	nittlere Dr	uckfestig	jkeit f₀ ≥ (6 N/mm²	2)		
M8	VM-SH 12	80							
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	4,5
M12 / IG-M8	VM-SH 20	≥ 85			,				
M16 / IG-M10	VM-SH 20	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	7,0

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C118: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	διο	δn∞	δ _V / V	δνο	δ∨∞	
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0	
M16		,	,	3110	0,31	0,31*V _{Rk} /3,5	,	

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T8 P Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C44

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C113 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Thermoplan MZ90-G mit integrierter Wärmedämmung Tabelle C119: Beschreibung

Steintyp		Hochlochziegel Thermoplan MZ90-G	
Füllung		Mineralwolle	
Rohdichte ρ	[kg/dm ³]	≥ 0,68	I have been all and
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	Carl Manager
Umrechnungsfaktor für geringer Druckfestigkeiten	е	$(f_b / 12)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Mein Ziegelhaus (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren	[-]	Drehbohren	
	13	13 17 365	13 13 13 13 13 13 13 13 13 13 13 13 13 1

Tabelle C120: Montagekennwerte

Ankergröße	Ankergröße					M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T_{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						
Minimaler Randabstand	Cmin	[mm]	50						
Achsabstand	Scr, II	[mm]	250						
Acrisabstand	S _{cr, ⊥}	[mm]				250			
Minimaler Achsabstand	S _{min, II} S _{min, ⊥}	[mm]	50						

Tabelle C121: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	oot		Querlast							
Zugl	ası		senkrecht zu	m freien F	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII		
•	50	1,00	│	50	0,25		50	1,00		
	120	1,00		250	1,00		120	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Thermoplan MZ90-G
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C45

Steintyp: Hochlochziegel Thermoplan MZ90-G – Fortsetzung

Tabelle C122: Faktor für Ankergruppen

	Anordnung parall	el zur Lag	gerfuge		Anordnung senk	recht zur	^r Lagerfu	ge
Zuglast		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
	• •	50	50	1,00		50	50	1,00
		120	250	2,00		120	250	2,00
0 1 1		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast senkrecht		50	50	0,75		50	50	0,50
zum freien Rand		250	50	2,00		250	50	1,70
Zum moiem rama		250	250	2,00		250	250	2,00
Quarlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
Querlast parallel		50	50	1,65		50	50	1,15
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C123: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstäi	1de bei c	≥ c _{cr} und	s ≥ s _{cr}			
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen								
	hülse	Veranke- rungs- tiefe	d/d			w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p} ^{1)}$						V _{Rk,b} 1)			
		[mm]		[kN]								
	-	Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 1	2 N/mm ²	2 2)	-				
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	4,0			
M12 / IG-M8	VM-SH 20	≥ 85										
M16 / IG-M10	VM-SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,5			

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ und $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ gemäß Anhang C5

Tabelle C124: Verschiebungen

Ankergröße	h _{ef}	δη / Ν	δινο	δn∞	δ _V / V	δνο	δν∞
Alikergrose	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16		2	,		0,31	0,31*V _{Rk} /3,5	200.0

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Thermoplan MZ90-G Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C46

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C119 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung

Tabelle C125: Beschreibung

abelle C125: Beschreibung		I	
Steintyp		Hochlochziegel Poroton FZ7,5	
Füllung		Mineralwolle	
Rohdichte ρ	[kg/dm ³]	≥ 0,70	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 8	
Umrechnungsfaktor für geringere Druckfestigkeiten)	$(f_b / 8)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B.: Schlagmann (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren	[-]	Drehbohren	
	210		16

Tabelle C126: Montagekennwerte

Ankergröße					M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T_{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Randabstand (unter Brandbeanspruchung)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						250)
Minimaler Randabstand	d c _{min}	[mm]							
Achsabstand (unter	Scr, II (Scr,fi, II)	[mm]	250 (4 h _{ef})						
Brandbeanspruchung)	Scr, \(\) (Scr,fi, \(\))	[mm]	250 (4 h _{ef})						
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]				50			

365 (425) (490)

Tabelle C127: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zug	loot		Querlast							
Zugl	เสรเ		senkrecht zu	m freien F	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V ⊥		mit c ≥	αedge,VII		
•	50	1,00		50	0,35		50	1,00		
	120	1,00		250	1,00		120	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton FZ7,5 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C47

Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung – Fortsetzung Tabelle C128: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zui	· Lagerfu	ge
Zuglast		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
	• •	50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
Querlast senkrecht zum freien Rand		mit c ≥	mit s ≥	αg II,V ⊥	-1	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
		50	50	0,60	-	50	50	0,40
		250	50	1,55		250	50	1,00
Zuili li eleli Kallu		250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
Parallel	•	50	50	2,00		50	50	1,20
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C129: Charakteristische Widerstände unter Zug- und Querlast

Al. a	Oi-h	F. G. L. L. L.	С	≥ c _{cr} und	s ≥ s _{cr}				
Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	d/d			w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}	$N_{Rk,b} =$			V _{Rk,p} 1)		V _{Rk,b} 1)	
		[mm]			[kN	1]		[kN]	
		Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ l	8 N/mm ²	2)	-	
M8	VM-SH 12	80							,
M8 / M10 /IG-M6	VM-SH 16	≥ 85	20	2,0	1.5	2,0	0.0	4.5	3,0
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5	10000
M16 / IG-M10	VM-SH 20	≥ 85							4,5

Tabelle C130: Verschiebungen

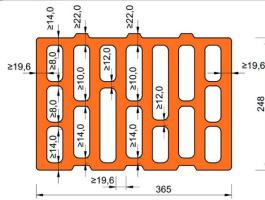
Ankorarößo	h _{ef}	δ _N / N	δνο	δ _{N∞}	δ _V / V	δ∨0	δν∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δ _{Ν0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16		80	55 S	0000	0,31	0,31*V _{Rk} /3,5	

Tabelle C131: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,b,fi} = V_{Rk,b,fi}$					
J		h _{ef}	R30	R60	R90	R120		
		[mm]	[kN]					
M8 / M10 /IG-M6	VM-SH 16	130				kojno Lojetuna		
M12 / M16 / IG-M8 – IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	keine Leistung bewertet		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton FZ7,5 Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	Anhang C48

¹⁾ N_{Rk,b,c} = N_{Rk,p,c} und V_{Rk,c ||} = V_{Rk,c \preceded} gemäß Anhang C5
2) Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C125 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung

Tabelle C132: Beschreibung

Steintyp			Hochlochziegel Poroton FZ9				
Füllung			Mineralwolle				
Rohdichte	ρ	[kg/dm ³]	≥ 0,90				
Normierte mittlere Druckfestigkeit	f _b	[N/mm ²]	≥ 10				
Umrechnungsfaktor für gering Druckfestigkeiten	ger	е	$(f_b / 10)^{0.5} \le 1.0$				
Norm		[-]	EN 771-1:2011+A1:2015				
Hersteller (Länderkennung)		[-]	z.B. Wienerberger (DE)				
Steinabmessungen		[mm]	248 x 365 x 249				
Bohrverfahren		[-]	Drehbohren				
		214,0	120 222.0				

Tabelle C133: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Randabstand (unter Brandbeanspruchung)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)					250)	
Minimaler Randabstar	nd c _{min}	[mm]	50						
Achsabstand (unter	Scr, II (Scr,fi, II)	[mm]	250 (4 h _{ef})						
Brandbeanspruchung)	$S_{cr, \perp} (S_{cr,fi, \perp})$	[mm]	250 (4 h _{ef})						
Minimaler Achsabstand	S _{min,II} ; S _{min,⊥}	[mm]							

Tabelle C134: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast				Querlast								
Zugi	สธเ		senkrecht zu	m freien F	Rand	parallel zum freien Rand						
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII				
 •	50	1,00	│	50	0,35		50	1,00				
	120	1,00		250	1,00	V	120	1,00				

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Poroton FZ9 mit Wärmedämmung
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C49

Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung – Fortsetzung

Tabelle C135: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	· Lagerfu	ige
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast		50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
Querlast senkrecht zum freien Rand	+	mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
		50	50	0,60	•	50	50	0,40
		250	50	1,55		250	50	1,00
Zuili ireleli Kallu		250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel	•••	50 50 2,00	50	50	1,20			
zum freien Rand		120	250	250 2,00		120	250	2,00

Tabelle C136: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri		Viderstär Ingsbedi			s ≥ s _{cr}
Ankergröße	Sieb- hülse	Effektive Veranke- rungs- tiefe	d/d			w/d w/w			d/d w/d w/w
		uere	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}	N _{Rk,b} =			V Rk,p 1)		V _{Rk,b} 1)	
		[mm]			[kN	J]		[kN]	
	1	Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	. 2)		
M8	VM-SH 12	80							
M8 / M10 /IG-M6	VM-SH 16	≥ 85		2,0	1.5	2,0	0.0	4.5	3,0
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5	
M16 / IG-M10	VM-SH 20	≥ 85							4,5

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|II} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C137: Verschiebungen

Ankergröße	h _{ef}	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _{N∞}	δv / V [mm/kN]	δν ₀ [mm]	δν∞ [mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ _{V0}
M16	4900000	100 * 10,000000	Recipie (\$200-2001) (\$2.5 Performance) (\$2.5 Performance)		0,31	0,31*V _{Rk} /3,5	,

Tabelle C138: Charakteristische Werte unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
3	Salestania (h _{ef}	R30	R60	R90	R120		
		[mm]	[kN]					
M8 / M10 /IG-M6	VM-SH 16	130				kojno Lojetuna		
M12 / M16 / IG-M8 IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	keine Leistung bewertet		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton FZ9 Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	Anhang C50

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C132 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Poroton S9 mit integrierter Wärmedämmung

Tabelle C139: Beschreibung

Steintyp	Hochlochziegel Poroton S9	Property of the Control of the Contr
Füllung	Perlite	
Rohdichte ρ [kg/dm ³]	≥ 0,85	
Normierte mittlere Druckfestigkeit f _b [N/mm²]	≥ 12	
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 12)^{0.5} \le 1.0$	
Norm [-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung) [-]	e.g. Schlagmann (DE)	
Steinabmessungen [mm]	248 x 365 x 249	
Bohrverfahren [-]	Drehbohren	
11.5 × 22.1		248

Tabelle C140: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Montagedrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5		
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)								
Minimaler Randabstand	Cmin	[mm]				50					
Ashashatand	S _{cr, II} [mm				250						
Achsabstand -	[mm]	250									
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	50								

Tabelle C141: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
Zugi	ası		senkrecht zur	m freien F	Rand	parallel zum	freien Ra	and		
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII		
•	50	1,00		50	0,30		50	1,00		
	120	1,00		250	1,00	*	120	1,00		

Sikla Injektions	system VMU plus für Mauerwerk	
	chlochziegel Poroton S9 g, Montagekennwerte, Reduktionsfaktoren	Anhang C51

Steintyp: Hochlochziegel Poroton S9 – Fortsetzung

Tabelle C142: Faktor für Ankergruppen

	Anordnung parall	Anordnung senk	recht zui	^r Lagerfu	ge			
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
Zuglast	• •	50	50	1,50		50	50	1,00
		120	250	2,00		120	250	2,00
		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
Querlast senkrecht	•••	50	50	0,40		50	50	0,40
zum freien Rand		250	50	1,00		250	50	1,20
241111010111141114		250	250	2,00		250	250	2,00
Overleet		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\text{II}}$
Querlast parallel		50	50	1,65		50	50	1,00
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C143: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}			
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen								
	hülse	Veranke- rungstiefe	d/d				w/d w/w	d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}	, and the second	N _R		V Rk,p 1)		V _{Rk,b} 1)				
		[mm]			[kN	1]		[kN]				
		Normierte m	ittlere Dr	uckfestig	keit f₀ ≥ 1	2 N/mm ²	2)					
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0			
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85										

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|II} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C144: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	διο	δn∞	δ _V / V	δνο	δν∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√ο
M16		,	-,	_ 3110	0,31	0,31*V _{Rk} /3,5	.,. 010

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton S9 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C52

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C139 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Thermopor TV8+ mit integrierter Wärmedämmung

Tabelle C145: Beschreibung

Steintyp	Hochlochziegel Thermopor TV8+	
Füllung	Mineralwolle	
Rohdichte ρ [kg/dm ³]	≥ 0,70	
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 10	
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 10)^{0.5} \le 1.0$	
Norm [-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung) [-]	e.g. THERMOPOR GmbH (DE)	
Steinabmessungen [mm]	247 x 365 x 249	
Bohrverfahren [-]	Drehbohren	
13	8 8 8 18 18 18	247
-	365	-

Tabelle C146: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Montagedrehmoment	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4		
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)								
Minimaler Randabstand	C _{min}	[mm]	50								
Achsabstand	Scr, II [mm]				250						
Achsabstand	[mm]		250								
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]									

Tabelle C147: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
Zugi	ası		senkrecht zu	m freien F	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII		
•	50	1,00		50	0,25		50	1,00		
	120	1,00		250	1,00	1	120	1,00		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Thermopor TV8+ Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C53

Steintyp: Hochlochziegel Thermopor TV8+ – Fortsetzung

Tabelle C148: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senkrecht zur Lagerfuge				
Zuglast		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	$lpha_{ t gL,N}$	
	• •	50	50	1,00		50	50	1,00	
		120	250	2,00		120	250	2,00	
		mit c ≥	mit s ≥	αg II,∨⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
Querlast senkrecht	•••	50	50	0,75		50	50	0,50	
zum freien Rand		250	50	2,00		250	50	1,70	
Zam noion rana		250	250	2,00		250	250	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _{g ⊥,} γ II	
parallel zum freien Rand	•	50	50	1,65		50	50	1,15	
		120	250	2,00		120	250	2,00	

Tabelle C149: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	1de bei c	≥ c _{cr} und	s ≥ s _{cr}			
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen								
	hülse	Veranke- rungstiefe	d/d				w/d w/w	d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ 1)					V _{Rk,b} 1)				
		[mm]		[kN]								
	**	Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	? 2)		7			
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	3,5			
M12 / IG-M8	VM-SH 20	≥ 85										
M16 / IG-M10	VM-SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,0			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c \, II} = V_{Rk,c \, \perp}$ gemäß Anhang C5

Tabelle C150: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	διο	δn∞	δ _V / V	δνο	δ∨∞
Allkergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16	100 mm 200 mm	,			0,31	0,31*V _{Rk} /3,5	,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Thermopor TV8+ Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C54

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C145 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Leichtbetonlochstein HBL 16DF

Tabelle C151: Beschreibung

Steintyp		Leichtbetonlochstein HBL 16DF	
Rohdichte ρ	[kg/dm³]	≥ 1,0	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 3,1	
Umrechnungsfaktor für gering Druckfestigkeiten	jere	$(f_b / 3,1)^{0,5} \le 1,0$	
Norm	[-]	EN 771-3:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. KLB Klimaleichtblock (DE)	
Steinabmessungen	[mm]	500 x 250 x 240	
Bohrverfahren	[-]	Drehbohren	
			240 25 50 25

185

42,5 50 25 50 25

Tabelle C152: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG- M10			
Montagedrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 5	≤ 5	≤ 2	≤ 5	≤ 5	
Randabstand (unter Brandbeanspruchung)	Ccr; (Ccr,fi)	[mm]	n] 120 (2 h _{ef}) (für Querlasten senkrecht zum fre				en Rand: c _{cr} = 250)			
Minimaler Randabstan	Minimaler Randabstand c _{min} [mm]			50						
Achsabstand (unter	Scr, II (Scr,fi, II)	[mm]		500 (4 h _{ef})						
Brandbeanspruchung)	$S_{cr, \perp} (S_{cr,fi, \perp})$	[mm]	250 (4 h _{ef})							
Minimaler Achsabstand S _{min, II} ; _{S_{min, ⊥} [mm]}		[mm]	50							

30

125

497

30 25

25 50 25 50 42,5

Tabelle C153: Reduktionsfaktoren für Einzelanker unter Randeinfluss

25 30

Zual	loot				Querlast				
Zugl	ası		senkrecht zu	parallel zum	llel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII	
•	50	1,00		50	0,30		50	1,00	
	120	1,00		250	1,00		120	1,00	

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Leichtbetonlochstein HBL 16DF
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C55

Steintyp: Leichtbetonlochstein HBL 16DF – Fortsetzung

Tabelle C154: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senkrecht zur Lagerfuge				
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N	
Zuglast	• •	50	50	2,00		50	50	1,55	
		120	500	2,00		120	250	2,00	
Quarlant	+	mit c ≥	mit s ≥	αg II,V⊥	1	mit c ≥	mit s ≥	α _{g⊥,} ∨⊥	
Querlast senkrecht	•••	50	50	0,60	•	50	50	0,35	
zum freien Rand		120	50	2,00		120	50	1,15	
Zuili lieleli Kallu	 	120	500	2,00	 	120	250	2,00	
Quartast	+	mit c ≥	mit s ≥	αg II,V II	t	mit c ≥	mit s ≥	αg⊥,∨ II	
Querlast parallel zum freien Rand		50	50	1,30		50	50	1,00	
		120	250	2,00		50	50	1,00	
Zum melen Kana		120	500	2,00		120	250	2,00	

Tabelle C155: Charakteristische Widerstände unter Zug- und Querlast

	Tabelle 9 100. Ollarakteriotioolie Widerotaliae aliter Lag and Queriaet								
			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
A nkovavä (o	Sich	Effoltivo			Nutzu	ıngsbedi	ngunger	1	
Ankergröße	Sieb- hülse	Effektive Veranke- rungs- tiefe	d/d				w/d w/w	d/d w/d w/w	
		цете	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		h _{ef}	N _{Rk,b} =			V Rk,p 1)		V _{Rk,b} 1)	
	,	[mm]			[kN	l]			[kN]
	No	ormierte mi	ttlere Dru	uckfestig	keit f _b ≥ 3	,1 N/mm ²	2 2)		
M8 / M10/IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,0
M12 / IG-M8	VM-SH 20	≥ 85	1 5	1 5	1.0	1 5	1 5	1.0	3,0
M16 / IG-M10	VM-SH 20	≥ 85	1,5	1,5	1,2	1,5	1,5	1,2	5,0

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|I|} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C156: Verschiebungen

Ankergröße	h ef [mm]	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δv / V [mm/kN]	δ ν₀ [mm]	δ _{V∞}
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	Se 2008/184	000 4 00 000000	100 10 10 10 10 10 10 10 10 10 10 10 10		0,31	0,31*V _{Rk} /3,5	

Tabelle C157: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
		h _{ef}	R30	R60	R90	R120		
		[mm]		[k	N]			
M8 / M10 /IG-M6	VM-SH 16	130	0,29	0.21	keine Leistung	Iraina I aistuus		
M12 / IG-M8	VM-SH 20	≥ 130	0,29	0,21	bewertet	keine Leistung bewertet		
M16 / IG-M10	VM-SH 20	≥ 130	0,29	0,21	0,12	Deweilet		

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung – Leichtbetonlochstein HBL 16DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C56

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C151 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Betonlochstein Bloc Creux B40

Tabelle C158: Beschreibung

Steintyp	Betonlochstein Bloc Creux B40
Rohdichte ρ [kg/d	dm³] ≥ 0,8
Normierte mittlere Druckfestigkeit f_b [N/m	nm²] ≥ 5,2
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 5,2)^{0,5} \le 1,0$
Norm [-	-] EN 771-3:2011+A1:2015
Hersteller (Länderkennung) [-	z.B. Leroux (FR)
Steinabmessungen [m	m] 500 x 200 x 200
Bohrverfahren [-	Drehbohren
	195
17 130	17 130 17 130 17
-	495

Tabelle C159: Montagekennwerte

Ankergröße	Ankergröße				M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 170)							
Minimaler Randabstand	Cmin	[mm]	50							
Achsabstand	Scr, II	[mm]	170							
Acrisabstand	Scr, ⊥	[mm]	200							
Minimaler Achsabstand Smin, II Smin, 1 [mm] 50										

Tabelle C160: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	Zuglast			Querlast								
Zugi	ası		senkrecht zu	m freien l	Rand parallel zum freien Rand							
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII				
•	50	1,00		50	0,35		50	1,00				
	120	1,00		170	1,00		120	1,00				

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistung – Betonlochstein Bloc Creux B40 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C57

Steintyp: Betonlochstein Bloc Creux B40 – Fortsetzung

Tabelle C161: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senkrecht zur Lagerfuge				
	†T	mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N	
7alaat		50	50	1,50		50	50	1,40	
Zuglast		50	170	2,00		50	200	2,00	
		120	170	2,00		120	200	2,00	
		mit c ≥	mit s ≥	α _g II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥	
Querlast senkrecht		50	50	0,55		50	50	0,35	
zum freien Rand		120	50	1,30		120	50	0,85	
Zam nelen kana		120	170	2,00		120	200	2,00	
		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II	
Querlast		50		1,10	•	50	50	1,00	
parallel zum freien Rand		50	50			50	200	2,00	
Zam molem Rama		120	170	2,00		120	200	2,00	

Tabelle C162: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ ccr und s ≥ scr								
Ankergröße	Sieb-	Effektive	ffektive Nutzungsbedingungen								
	hülse	Veranke- rungs- tiefe		d/d		w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		h _{ef}			$N_{Rk,b} = I$	V _{Rk,p} 1)	A		V _{Rk,b} 1)		
		[mm]			[kN	1]		[kN]			
	No	ormierte mi	ttlere Dru	ıckfestigl	keit f₀ ≥ 5	,2 N/mm ²	2 2)				
M8 / M10 IG-M6	VM-SH 16	130	2.0	1.5	1.0	2.0	4.5	4.0	6.0		
M12 / M16 IG-M8 /IG-M10	VM-SH 20	≥ 130	2,0	1,5	1,2	2,0	1,5	1,2	6,0		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C163: Verschiebungen

Ankergröße	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Allkeigiose	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16		2.	,		0,31	0,31*V _{Rk} /3,5	,

Sikla Injektionssystem VMU plus für Mauerwerk	
Leistungen – Betonlochstein Bloc Creux B40 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C58

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C158 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Leichtbetonvollstein VBL

Tabelle C164: Beschreibung

Steintyp			Leichtbetonvollstein VBL
Rohdichte	ρ	[kg/dm ³]	≥ 0,6
Normierte mittlere Druckfestigkeit	f_{b}	[N/mm ²]	≥ 2
Umrechnungsfaktor für gerir Druckfestigkeiten	nger	е	$(f_b / 2)^{0,5} \le 1,0$
Norm		[-]	EN 771-3:2011+A1:2015
Hersteller (Länderkennung)		[-]	z.B. Bisotherm (DE)
Steinabmessungen		[mm]	≥ 240 x 300 x 113
Bohrverfahren		[-]	Drehbohren

Tabelle C165: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	150						
Minimaler Randabstand	C _{min}	[mm]	60						
Achsabstand	Scr, II	[mm]	300						
Acrisabstand	Scr, ⊥	[mm]				300			
Minimaler Achsabstand	S _{min, I} S _{min, ⊥}	[mm]				120			

Tabelle C166: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zual	Zuglast			Querlast								
Zugi	ası		senkrecht zu	m freien F	Rand	parallel zum freien Rand						
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,VII				
•	60	1,00		60	0,25		60	0,40				
	150	1,00		150	1,00		100	1,00				

Tabelle C167: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	^r Lagerfu	ge
Zuglast		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg⊥,N
	• •	60	120	1,00		60	120	1,00
		150	300	2,00		150	300	2,00
0		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αд⊥,∨⊥
Querlast senkrecht		60	120	0,25		60	120	0,25
zum freien Rand		150	120	1,00		150	120	1,00
Zam noion rana		150	300	2,00		150	300	2,00
		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,∨ II
Querlast		60	120	0,40	•	60	120	0,40
parallel zum freien Rand		100	120	1,00		100	120	1,00
Zam noion Rana		150	300	2,00		150	300	2,00

Sikla Injektionssystem VMU plus für Mauerwerk Leistungen – Leichtbetonvollstein VBL Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren Anhang C59

Steintyp: Leichtbetonvollstein VBL – Fortsetzung

Tabelle C168: Charakteristische Widerstände unter Zug- und Querlast

	Sieb-	Effektive	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}								
Ankergröße			Nutzungsbedingungen								
	hülse	Veranke- rungstiefe	d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{-1}$					V _{Rk,b} 1)			
		[mm]			[kN	1]			[kN]		
Normierte mittlere Druckfestigkeit f _b ≥ 2 N/mm² ²⁾											
M8	-	80	3,0	2,5	2,0	2,5	2,0	1,5	3,0		
M10 / IG-M6	-	90									
M12 / M16 / IG-M8 / IG-M10	-	100									
M8	VM-SH 12	80	2,5	2,5	2,0	2,5	2,0	1,5			
M8 / M10 / IG-M6	VM-SH 16	≥ 85									
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85									

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|l} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C169: Verschiebungen

Ankergröße	h _{ef} δ _N / N		δνο	δn∞	δ _V / V	δνο	δν∞	
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	alle	0,10	0,10*N _{Rk} / 3,5	2*δνο	0,30	0,30*V _{Rk} /3,5	1,5*δνο	
M16	5.5567-55.54.07				0,10	0,10*V _{Rk} /3,5	.,,	

Sikla Injektionssystem VMU plus für Mauerwerk

Leistungen – Leichtbetonvollstein VBL
Charakteristische Widerstände und Verschiebungen

Anhang C60

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C164 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.