

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-17/0336 vom 29. August 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Ankerschienen

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

53 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330008-04-0601, Edition 07/2024

ETA-17/0336 vom 18. Juli 2024

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z204580.25

Seite 2 von 53 | 29. August 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 53 | 29. August 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Ankerschiene (HAC-C) mit Spezialschrauben (HBC) ist ein System bestehend aus einer C-förmigen Schiene aus Stahl oder nichtrostendem Stahl mit mindestens zwei auf dem Profilrücken unlösbar befestigten Ankern und Spezialschrauben.

Die Ankerschiene wird oberflächenbündig einbetoniert. In den Schienen werden Spezialschrauben (HBC) mit entsprechenden Sechskantmuttern und Unterlegscheiben befestigt. In Anhang A ist die Produktbeschreibung dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn die Ankerschiene entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer der Ankerschiene von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produktes im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zuglast (statische und quasi-statische Einwirkungen)	
- Widerstand gegen Stahlversagen der Anker	$N_{Rk,s,a}$ siehe Anhang C1 und C2
 Widerstand gegen Stahlversagen der Verbindung zwischen Anker und Schiene 	$N_{Rk,s,c}$ siehe Anhang C1 und C2
- Widerstand gegen Stahlversagen der Schienen- lippen und Herausziehen der Spezialschraube	$N_{Rk,s,l}^{0}$; $s_{l,N}$ siehe Anhang C1 und C2
- Widerstand gegen Stahlversagen der Spezialschraube	$N_{Rk,s}$ siehe Anhang C14
- Widerstand gegen Stahlversagen durch Überschreitung der Biegefestigkeit der Schiene	s_{max} siehe Anhang B3 und B4 $M_{Rk,s,flex}$ siehe Anhang C3
- Maximales Montagedrehmoment, um Schaden bei der Montage zu vermeiden	$T_{inst,g}$; $T_{inst,s}$ siehe Anhang B5
- Widerstand gegen Herausziehen des Ankers	$N_{Rk,p}$ siehe Anhang C4 bis C6
- Widerstand gegen Betonausbruch	h_{ef} siehe Anhang B3 und B4 $k_{cr,N}$; $k_{ucr,N}$ siehe Anhang C4 bis C6
 Min. Rand-, Achsabstand und min. Bauteildicke, um Spalten bei Montage zu vermeiden 	s_{min} siehe Anhang B3 und B4 c_{min} ; h_{min} siehe Anhang B3 und B4
- Charakteristischer Rand- und Achsabstand gegen Spalten unter Last	$s_{cr,sp}$; $c_{cr,sp}$ siehe Anhang C4 bis C6
 Widerstand gegen lokalen Betonausbruch – lastabtragende Fläche des Ankerkopfes 	A _h siehe Anhang A6

Seite 4 von 53 | 29. August 2025

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Querlast (statische und quasi-statische Einwirkungen)	
- Widerstand gegen Stahlversagen der Spezialschraube unter Querlast ohne Hebelarm	$V_{Rk,s}$ siehe Anhang C15
- Widerstand gegen Stahlversagen durch Biegung der Spezialschraube unter Querlast mit Hebelarm	$M_{Rk,s}^{\ 0}$ siehe Anhang C16
- Widerstand gegen Stahlversagen der Schienenlippen, Stahlversagen der Verbindung zwischen Anker und Schiene und Stahlversagen des Ankers (Querlast senkrecht zur Schienenlängsachse)	$V_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ siehe Anhang C8 und C9
Widerstand gegen Stahlversagen der Verbindung zwischen Schienenlippen und Spezialschraube (Querlast in Schienenlängsrichtung)	$V_{Rk,s,l,x}$ siehe Anhang C10
- Montagebeiwert (Querlast längs)	γ_{inst} siehe Anhang C10
- Widerstand gegen Stahlversagen der Anker (Querlast längs)	$V_{Rk,s,a,x}$ siehe Anhang C8 und C9
- Widerstand gegen Stahlversagen der Verbindung zwischen Anker und Schiene (Querlast längs)	$V_{Rk,s,c,x}$ siehe Anhang C8 und C9
- Widerstand gegen Betonausbruch auf der lastabgewandten Seite	k_8 siehe Anhang C11
- Widerstand gegen Betonkantenbruch	$k_{cr,V}$; $k_{ucr,V}$ siehe Anhang C11
Charakteristischer Widerstand unter kombinierter Zug- und Querlast (statische und quasi-statische Einwirkungen)	
- Widerstand gegen Stahlversagen der Ankerschiene	k_{13} ; k_{14} siehe Anhang C13
Charakteristische Widerstände für zyklische Ermüdungsbeanspruchungen unter Zuglast	
- Ermüdungswiderstand gegen Stahlversagen des gesamten Systems (stetige oder tri-lineare Funktion, Prüfverfahren A1, A2)	$\Delta N_{Rk,s,o,n} \ (n=1 \ { m bis} \ n=\infty)$ siehe Anhang C18
- Dauerermüdungswiderstand gegen Stahlversagen des gesamten Systems (Prüfverfahren B)	$\Delta N_{Rk,s,0,\infty}$ siehe Anhang C20
- Ermüdungswiderstand gegen Stahlversagen des gesamten Systems (Lineare Funktion, Prüfverfahren C)	Leistung nicht bewertet
- Ermüdungswiderstand gegen Betonversagen (Exponentialfunktion, Prüfverfahren A1, A2)	$\Delta N_{Rk,c,0,n}$; $\Delta N_{Rk,p,0,n}$ (n = 1 bis n = ∞) siehe Anhang C19
- Dauerermüdungswiderstand gegen Betonversagen (Prüfverfahren B)	$\Delta N_{Rk,c,0,\infty}$; $\Delta N_{Rk,p,0,\infty}$ siehe Anhang C20
- Ermüdungswiderstand gegen Betonversagen (Lineare Funktion, Prüfverfahren C)	Leistung nicht bewertet

Seite 5 von 53 | 29. August 2025

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für seismischer Beanspruchung (Leistungskategorie C1)	
- Widerstand gegen Stahlversagen für seismische Beanspruchung unter Zuglast (Leistungskategorie C1)	$N_{Rk,s,a.eq}$; $N_{Rk,s,c.eq}$; $N_{Rk,s,l.eq}^0$ siehe Anhang C21 $M_{Rk,s,flex.eq}$ siehe Anhang C22 $N_{Rk,s.eq}$ siehe Anhang C24
- Widerstand gegen Stahlversagen unter seismischer Beanspruchung für Querlast senkrecht zur Schienenlängsachse (Leistungskategorie C1)	$V_{Rk,s.eq}$ siehe Anhang C24 $V^0_{Rk,s,l,y.eq}$; $V_{Rk,s,c,y.eq}$; $V_{Rk,s,a,y.eq}$ siehe Anhang C22
- Widerstand gegen Stahlversagen unter seismischer Querbeanspruchung in Schienenlängsrichtung (Leistungskategorie C1)	$V_{Rk,s,l,x.eq}$ siehe Anhang C23 $V_{Rk,s,a,x.eq}$; $V_{Rk,s,c,x.eq}$ siehe Anhang C22
Charakteristischer Widerstand unter Zug- und/oder Querlast (statische und quasi-statische Einwirkungen)	
- Verschiebungen (statische und quasi-statische Einwirkungen)	$\begin{array}{l} \delta_{\text{N0}} \; ; \; \delta_{\text{N}^{\infty}} \text{siehe Anhang C7} \\ \delta_{\text{V,y,0}} \; ; \; \delta_{\text{V,y,o}} \; ; \; \delta_{\text{V,x,0}} \; ; \; \delta_{\text{V,x,o}} \\ \text{siehe Anhang C12 und C13} \end{array}$

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	N _{Rk,s,fi} ;V _{Rk,s,y,fi} siehe Anhang C25 und C26

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330008-04-0601 gilt folgende Rechtsgrundlage: [2000/273/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Seite 6 von 53 | 29. August 2025

Folgende technische Spezifikationen werden in diesem Bescheid in Bezug genommen:

3	3 3
EN 10025-1:2004	Warmgewalzte Erzeugnisse aus Baustählen - Teil 1: Allgemeine technische Lieferbedingungen
EN 10149-1:2013	Warmgewalzte Flacherzeugnisse aus Stählen mit hoher Streckgrenze zum Kaltumformen - Teil 1: Allgemeine technische Lieferbedingungen
EN 10263-1:2017	Walzdraht, Stäbe und Draht aus Kaltstauch- und Kaltfließpressstählen - Teil 1: Allgemeine technische Lieferbedingungen
EN ISO 898-1:2013	Mechanische Eigenschaften von Verbindungselementen aus Kohlenstoffstahl und legiertem Stahl – Teil 1: Schrauben mit festgelegten Festigkeitsklassen - Regelgewinde und Feingewinde (ISO 898-1:2013)
EN ISO 898-2:2022	Verbindungselemente - Mechanische Eigenschaften von Verbindungselementen aus Kohlenstoffstahl und legiertem Stahl - Teil 2: Muttern mit festgelegten Festigkeitsklassen (ISO 898-2:2022)
EN ISO 7089:2000	Flache Scheiben - Normale Reihe, Produktklasse A (ISO 7089:2000)
EN ISO 7093-1:2000	Flache Scheiben - Große Reihe - Teil 1: Produktklasse A (ISO 7093-1:2000)
EN ISO 4032:2023	Verbindungselemente - Sechskantmuttern (Typ 1) (ISO 4032:2023)
DIN 934:1987-10	Sechskantmuttern; Metrisches Regel- und Feingewinde; Produktklassen A und B
EN ISO 1461:2022	Durch Feuerverzinken auf Stahl aufgebrachte Zinküberzüge (Stückverzinken) - Anforderungen und Prüfungen (ISO 1461:2022)
EN ISO 4042:2022	Verbindungselemente - Galvanisch aufgebrachte Überzugsysteme (ISO 4042:2022)
EN ISO 10684:2004 + AC:2009	Verbindungselemente – Feuerverzinkung (ISO 10684:2004 + Cor. 1:2008)
EN 10088-1:2023	Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle
EN ISO 3506-1:2020	Mechanische Verbindungselemente - Mechanische Eigenschaften von Verbindungselementen aus korrosionsbeständigen nichtrostenden Stählen - Teil 1: Schrauben mit festgelegten Stahlsorten und Festigkeitsklassen (ISO 3506-1:2020)
EN 206:2013 + A2:2021	Beton - Festlegung, Eigenschaften, Herstellung und Konformität
EN 1993-1-4:2006 + A1:2015 + A2:2020	Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-4: Allgemeine Bemessungsregeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
EN 1992-4:2018	Eurocode 2 - Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton
EOTA TR047:2021-05 EOTA TR050:2023-10	Bemessung von Ankerschienen in Ergänzung zu EN 1992-4 Bemessungsverfahren für Ankerschienen unter ermüdungsrelevanter Belastung

8.06.01-21/25 Z204580.25

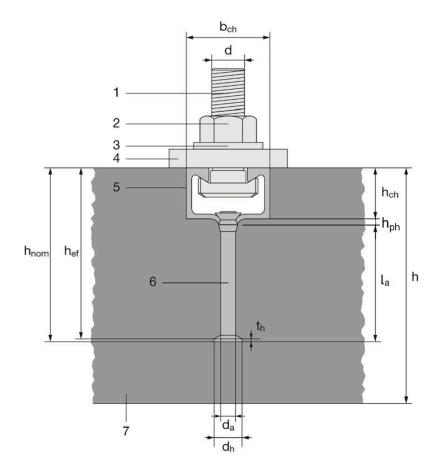
Seite 7 von 53 | 29. August 2025

EN 1992-1-1:2023 Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und

Spannbetontragwerken -

Teil 1-1: Allgemeine Regeln und Regeln für Hochbauten, Brücken

und Ingenieurbauwerke


Ausgestellt in Berlin am 29 August 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt Müller

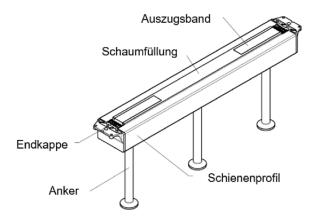
Produkt und Einbauzustand (z.B. warmgewalzte Ankerschiene mit Rundanker)

Legende

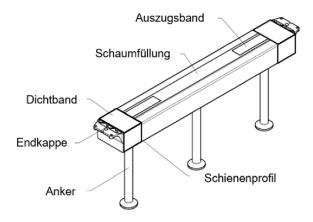
- 1 Spezialschraube
- 2 Sechskantmutter
- 3 Unterlegscheibe
- 4 Anbauteil
- 5 Schienenprofil
- 6 Anker
- 7 Betonbauteil

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

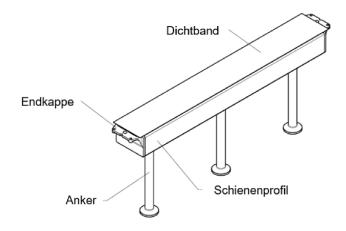
Produktbeschreibung


Einbauzustand

Anhang A1



Dichtung Schienenprofil


Schiene ohne zusätzliche Dichtung

Schiene mit zusätzlicher Dichtung (seitliche Dichtung)

Schiene mit zusätzlicher Dichtung (Dichtung auf der Oberseite)

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Produktbeschreibung

Dichtung des Schienenprofils

Anhang A2

Ankerschienentypen

Ankerschienentypen Warmgewalzte Kaltverformte glatte und gezahnte (-T) glatte Schienenprofil Schienenprofil Legende 1 Sechskantmutter 1 2 Unterlegscheibe 2 2 2 3 Spezialschraube 4 Schienenprofil 3 3 3 3 5 Anker 5 5 5 5 mit angeschweißtem Rundanker Rundanker oder Rundanker **I-Anker** HAC-C-T 29/20, HAC-C 28/15, HAC-C(-P) 40/22, HAC-C-T 40/22, HAC-C-P 40L, HAC-C 38/17, HAC-C-T 40L, HAC-C(-P) 50/30, HAC-C 40/25, HAC-C-T 50/30, HAC-C-P 50L, HAC-C 49/30, HAC-C 52/34 HAC-C 54/33 HAC-C-T 50L, HAC-C-T 53/34 Ankerschienen (HAC-C) mit Spezialschrauben (HBC) Anhang A3 Produktbeschreibung

Kennzeichnung der Hilti Ankerschiene:

 $HAC-C(-T)(-P)(-I) \times WZ$

HAC = Herstellerkennzeichen (<u>H</u>ilti <u>A</u>nchor <u>C</u>hannel)

T = Zusätzliche Kennzeichnung für gezahnte Schienen

P = Zusätzliche Kennzeichnung für Premium Variante

b)

I = Zusätzliche Kennzeichnung für I-Anker (keine Kennzeichnung für Rundanker)

X = Größe der Schiene
W = Schienenlänge

Z = Korrosionsschutz/ Werkstoff (z.B. F für Feuerverzinkt, A4 oder A2 für Nichtrostender Stahl)

a)

HAC-C-T 40/22 300 F Item # ... Lot # ...

HAC-C-T 40/22 300 F

Item # / Lot #

HAC-C-T 40/22 F

(Aufkleber und/oder Aufdruck mit Tinte z.B. auf der Rückseite der Schiene z.B. HAC-C-T 40/22 300 F)

HAC-C-T = Gezahnte Ankerschiene 40/22 ¹⁾ = Ankerschienengröße 40/22

F = Feuerverzinkt

300 = 300 mm Schienenlänge (lch)

(Stempel innerhalb der Schiene, e.g. HAC-C-T 40/22 F)

Anmerkung: 1) Ankerschiene HAC-C-T 40/22 kann auch mit Kennzeichnung "38/23" ohne Änderung der Größe des Produktes hergestellt werden. Die 38/23 und 40/22 besitzen die gleichen Leistungen.

Kennzeichnung der Hilti Spezialschraube:

HBC(-T) X (-N) Y Z

HBC = Herstellerkennzeichen (<u>H</u>ilti <u>B</u>olt <u>C</u>hannel)
T = Zusätzliche Kennzeichnung für Zahnschraube

X = Größe der Spezialschraube

N = Zusätzliche Kennzeichnung für Kerbzahnschraube

Y = Festigkeitsklasse (8.8, 70)

Z = Korrosionsschutz/ Werkstoff (z.B. F)

(Stempel auf der Rückseite der Schraube, z.B. HBC-T40 8.8F)

HBC-T = Zahnschraube (für gezahnte Ankerschiene HAC-C-T)

40 = Größe der Spezialschraube (siehe Table 3)

8.8 = Festigkeitsklasse 8.8

F = Feuerverzinkt

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Produktbeschreibung

Kennzeichnung Ankerschiene und Spezialschrauben

Anhang A4

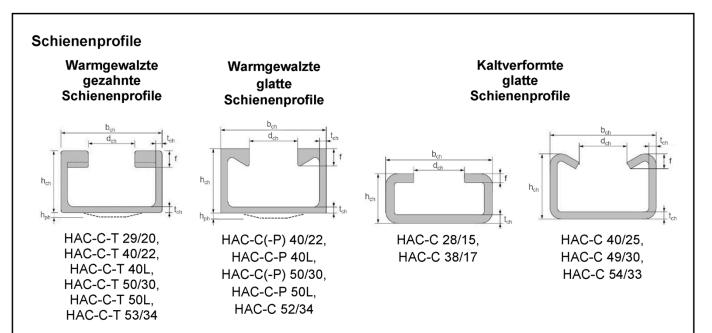


Tabelle 1: Profilabmessungen der Schienenprofile

Aukaraahiana	b _{ch}	h _{ch} 1)	h _{ph} ¹⁾	tch	d _{ch}	f ²⁾	ly
Ankerschiene		[mm]					
Warmgewalzte HAC-C-T	Ankerschie	ene					
HAC-C-T 29/20	30,4	20,0	1,6	3,2	14,0	5,35	11.832
HAC-C-T 40/22 HAC-C-T 40L	38,0	23,0	2,0	3,25	18,0	6,35	21.570
HAC-C-T 50/30 HAC-C-T 50L	50,0	30,0	2,5	3,4	22,5	7,3	58.546
HAC-C-T 53/34	53,5	34,0	4,0	4,5	22,5	8,50	100.900
Warmgewalzte HAC-C(-F	Warmgewalzte HAC-C(-P) Ankerschiene						
HAC-C(-P) 40/22 HAC-C-P 40L	40,1	23,0	1,95	2,7	18,0	6,0	21.504
HAC-C(-P) 50/30 HAC-C-P 50L	49,6	30,0	2,5	3,2	22,5	8,1	57.781
HAC-C 52/34	52,5	34,0	-	4,0	22,5	11,5	97.606
Kaltverformte HAC-C An	kerschiene			•			
HAC-C 28/15	28,0	15,5	-	2,3	12,0	2,3	4.277
HAC-C 38/17	38,0	17,25	-	3,0	18,0	3,0	8.224
HAC-C 40/25	40,0	25,0	-	2,75	18,0	5,6	20.122
HAC-C 49/30	50,0	30,0	-	3,25	22,0	7,4	43.105
HAC-C 54/33	53,5	33,0	-	5,0	21,5	8,0	74.706

¹⁾ Für warmgewalzte gezahnte und glatte Ankerschienen – punktuelle Vergrößerung der Schienenhöhe (Höhe über den gestanzten Löchern) im Bereich des Ankers ist nicht im Maß hch; berückschtigt.

2) Für warmgewalzte gezahnte Schienen (HAC-C-T) beinhaltet die Höhe der Schienenlippen die Höhe der Zähne;

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Produktbeschreibung Schienenprofile (HAC-C)	Anhang A5

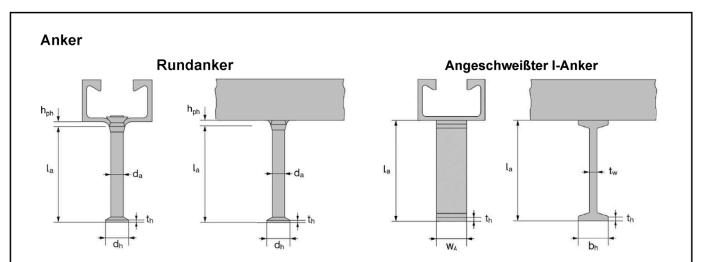
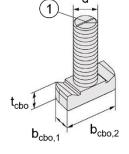


Tabelle 2: Ankerabmessungen (Angeschweißter I-Anker oder Rundanker) 1)

	Rundanker					Ang	eschwei	ßter I-Ar	ıker		
Ankerschiene	min la	da	dh	t h	Ah	min la	t _w	b _h	t h	W A	Ah
		[mr	n]		[mm²]	[mm]				[mm²]	
HAC-C-T (Warmge	walzte Ar	ıkersc	hiene))							
HAC-C-T 29/20	62,4	9,0	18,0	2,0	190,8			_2	2)		
HAC-C-T 40/22	71,2	10,0	21,5	2,2	284,4			_2	2)		
HAC-C-T 40L	87,2	10,0	21,5	2,2	284,4			_2	')		
HAC-C-T 50/30	101,5	11,0	26,0	2,5	435,9			_2	')		
HAC-C-T 50L	141,8	11,0	26,0	2,5	435,9			_2)		
HAC-C-T 53/34	119,5	12,0	26,0	2,5	417,8			_2	')		
HAC-C(-P) (Warmg	ewalzte A	Ankers	schien	e)							
HAC-C 40/22	58,0	8,0	16,0	2,0	151,0	62,0	5,0	20,0	5,0	20,0	300,0
HAC-C-P 40/22	70,0	10,0	21,5	2,2	285,0	125,0	6,0	25,0	5,0	20,0	380,0
HAC-C-P 40L	83,2	10,0	21,5	2,2	285,0			_2	2)		
HAC-C 50/30	66,0	10,0	20,0	2,2	236,0	69,0	5,0	20,0	5,0	25,0	375,0
HAC-C-P 50/30	78,0	11,0	26,0	2,5	436,0	125,0	6,0	25,0	5,0	25,0	475,0
HAC-C-P 50L	118,3	11,0	26,0	2,5	436,0			_2	2)		
HAC-C 52/34	123,5	11,0	24,3	2,5	369,0	125,0	6,0	25,0	5,0	40,0	760,0
HAC-C (Kaltverfori	nte Anke	rschie	ne)								
HAC-C 28/15	31,0	6,0	12,0	1,3	85,0			_2	2)		
HAC-C 38/17	60,8	8,0	16,0	2,0	151,0	_2)					
HAC-C 40/25	56,0	8,0	16,0	2,0	151,0	_2)					
HAC-C 49/30	66,0	10,0	20,0	2,2	236,0	_2)					
HAC-C 54/33	124,5	11,0	24,3	2,5	369,0			_2	()		

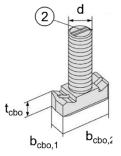
¹⁾ Für kaltverformte Schienenprofile (und for HAC-C 52/34) – hph = 0 und Länge der Anker wie bei den angeschweißten I-Ankern ermittelt; ²⁾ Produkt nicht vorhanden

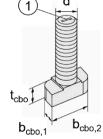
Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Produktbeschreibung Anker	Anhang A6



Spezialschrauben

Tabelle 3: Abmessungen der Spezialschrauben


	Fe			Abmes	sunger	1						
Ankerschiene	Spezial- schraube	-keits- klasse	d	b _{cbo,1}	b _{cbo,2}	t _{cbo}						
	3	1)		[m	m]							
für warmgewalzte	Schienen	(HAC-C	-T)									
HAC-C-T 29/20	HBC-T	8.8,	10	13,5	22,8	8,0						
11/40-0-1 29/20	29/20	A4-70	12	13,5	22,8	8,0						
	HBC-T	8.8,	10	17,1	30,3	9,5						
HAC-C-T 40/22	40/22	6.6, A4-70	12	17,1	30,3	9,5						
	40/22	\\ + -10	16	17,1	30,3	9,5						
HAC-C-T 50/30	HBC-T	8.8,	16	21,0	42,0	13,8						
HAC-C-T 53/34	50/30	A4-70	20	21,0	42,0	13,8						
für warmgewalzte	e und/oder	kaltverfo	ormte S	Schiene	n (HAC	:-C)						
HAC-C(-P) 40/22	HBC- 40/22	0.0	10	14,0	33,0	10,5						
HAC-C-P 40L		8.8, A4-70	12	14,0	33,0	11,5						
HAC-C 40/25	40/22	A4-70	16	17,0	33,0	11,5						
HAC-C-P 40/22 HAC-C-P 40L	HBC- 40/22-N	8.8, A4-70	16	17,0	33,0	11,5						
HAC-C 49/30 HAC-C(-P) 50/30			12	17,0	42,0	14,5						
HAC-C-P 50L HAC-C 52/34	HBC- 50/30			-	_	-	_	- ,	16	17,0	42,0	15,5
HAC-C 54/33			20	21,0	42,0	15,5						
HAC-C-P 50/30 HAC-C-P 50L	нвс-	8.8,	16	21,0	42,0	15,5						
HAC-C 52/34	50/30-N	A4-70	20	21,0	42,0	15,5						
für kaltverformte	Schienen	(HAC-C)										
	⊔вс	8.8,	10	13,0	30,5	6,0						
HAC-C 38/17	HBC- 38/17	6.6, A4-70	12	13,0	30,5	7,0						
	30/17	/\/0	16	16,0	30,5	7,0						
	HBC-	00	8	10,1	22,2	5,0						
HAC-C 28/15	28/15	8.8, A4-70	10	10,1	22,2	5,0						
	20/13	/\ -1 -10	12	11,0	22,2	8,0						


t_{cbo}, 1 b_{cbo,2}

HBC-T 29/20, HBC-T 40/22, HBC-T 50/30

HBC-40/22; HBC-50/30

HBC-40/22-N, HBC-50/30-N

HBC-28/15, HBC-38/17

Anmerkung:

Kennzeichnung Lage der Schraube:

- 1 Einfacher Schlitz;
- (2) Doppelter Schlitz

Tabelle 4: Festigkeitsklasse und Korrosionsschutz

Schraube	Stahl 1)2)	Nichtrostender Stahl 1) 3)
Steel grade	8.8	A4-70
f _{uk} [N/mm ²]	800 / 830	700
fyk [N/mm ²]	640 / 660	450
Korrosionsschutz	G ⁴⁾ ; F ⁵⁾	R

¹⁾ Werkstoffeigenschaften gemäß Anhang A8

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Produktbeschreibung

Spezialschrauben (HBC)

Anhang A7

¹⁾ Werkstoffeigenschaften gemäß Anhang A8

²⁾ Werkstoffeigenschaften gemäß EN ISO 898-1

³⁾ Werkstoffeigenschaften gemäß EN ISO 3506-1

⁴⁾ Galvanisch verzinkt

⁵⁾ Feuerverzinkt

Tabelle 5: Werkstoffe

		Stahl		Nichtrostender Stahl			
Komponente	Werkstoff- eigenschaften	Besch	nichtung	Werkst eigensch			
1	2a	2b	2c	3	4		
Schienenprofil	1.0038, 1.0044, 1.0045 gemäß EN 10025-1 1.0976, 1.0979 gemäß EN 10149-1		nkt ≥ 55 µm ³⁾ nkt ≥ 70 µm ⁴⁾	1.4301 gemäß	1.4362, 1.4401 1.4404, 1.4571,		
Anker	1.0038, 1.0213, 1.0214 gemäß EN 10025-1 1.5523, 1.5535 gemäß EN 10263-1		N ISO 1461, pelle 3	EN 10088-1	1.4578 gemäß EN 10088-1		
Spezialschraube	Festigkeitsklasse 8.8 gemäß EN ISO 898-1	Galvanisch verzinkt gemäß EN ISO 4042	Feuerzinkt ≥ 50 µm gemäß EN ISO 10684	Festigkeitsk gemå EN ISO 3	iß.		
Unterlegscheibe 1) gemäß EN ISO 7089 und EN ISO 7093-1	Härteklasse A ≥ 200 HV	Galvanisch verzinkt gemäß EN ISO 4042 Feuerzinkt ≥ 50 μm gemäß EN ISO 10684		1.4401, 1.4404 1.4571, 1.4578 gemäß EN 10088-1			
Sechskantmutter gemäß EN ISO 4032 oder DIN 934	Klasse 8 gemäß EN ISO 898-2	Galvanisch verzinkt gemäß EN ISO 4042	Feuerzinkt ≥ 50 µm gemäß EN ISO 10684	Klass 50, 70 c gemä EN ISO 3	or 80 iß		

¹⁾ Nur für Kerbzahnschrauben im Lieferumfang enthalten

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Verwendungszweck Werkstoffe	Anhang A8

²⁾ Anker aus Stahl gemäß Spalte 2a können auch verwendet werden, wenn sie angeschweißt sind und deren Betondeckung mehr als 50mm beträgt und die Anlauffarben entfernt sind

³⁾ Ankerschienen gemäß Tabelle 5 Spalte 3 sind mit "A2" gekennzeichnet und gemäß Spalte 4 mit "A4"; 3) für HAC-C-T 29/20; HAC-C(-P) 40/22, 40L; HAC-C 28/15, 38/17, 40/25, 49/30, 54/33; 4) für HAC-C-T 53/34, 50/30, 50L, 40/22, 40L; HAC-C(-P) 50/30, 50L, 53/34.

Anwendungsbedingungen

Lebensdauer:

Der Nachweis und die Bewertungsmethoden, auf der diese Europäische Technische Bewertung basiert, führt zu der Annahme einer Lebensdauer von mindestens:

- 50 Jahren
 - (Ankerschienen und Spezialschrauben aus Stahl gemäß Anhang A8, Spalten 2a-2c)
- 100 years
 - (Ankerschienen und Spezialschrauben aus nichtrostendem Stahl A4 gemäß Anhang A8, Spalte 4)

Beanspruchung der Ankerschienen und Spezialschrauben:

- Statische und quasi-statischer Zug und Querlast senkrecht zur Schienenlängsrichtung
- Statische und quasi-statische Querlast in Schienenlängsrichtung
 (Ankerschienen HAC-C-P 40/22 und HAC-P 40L mit Kerbzahnschrauben HBC 40/22-N;
 Ankerschienen HAC-C-P 50/30 und HAC-C-P 50L mit Kerbzahnschrauben HBC 50/30-N und
 gezahnte Ankerschienen HAC-C-T mit Zahnschrauben HBC-T)
- Zyklische Ermüdungsbeanspruchung unter Zuglast (Ankerschienen und Spezialschrauben gemäß Anhang C17)
- Seismische Zuglast, seismische Querlast senkrecht zur Schienenlängsrichtung und seismische Querlast in Schienenlängsrichtung (seismische Leistungskategorie C1) (Ankerschienen und Spezialschrauben gemäß Anhang C19);
- Brandbeanspruchung: nur für Betonfestigkeitsklassen C20/25 bis C50/60 unter Zug und Querlast senkrecht zur Schienenlängsrichtung (Ankerschienen und Spezialschrauben gemäß Anhang C23-C25)

Verankerungsgrund:

- Bewehrter oder unbewehrter verdichteter Normalbeton ohne Fasern gemäß EN 206.
- Festigkeitsklassen C12/15 bis C90/105 gemäß EN 206.
- Gerissener oder ungerissener Beton.

Anwendungsbegingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (Ankerschienen und Spezialschrauben gemäß Anhang A8, Tabelle 5, Spalten 2 und 3).
- Bauteile unter den Bedingungen von Innenräumen mit normaler Luftfeuchte (z.B. Küchen, Bäder und Waschküchen in Wohngebäuden mit Ausnahme permanente Dampfeinwirkung und Anwendungen unter Wasser)
 - (Ankerschienen und Spezialschrauben gemäß Anhang A8, Tabelle 5, Spalten 2c und 3).
- Gemäß EN 1993-1-4 entsprechend der Korrosionsbeständigkeitsklasse CRC II (Ankerschienen, Spezialschrauben, Scheiben, Muttern aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571, 1.4362 und 1.4578 gemäß Anhang A8, Tabelle 5, Spalte 3).
- Gemäß EN 1993-1-4 entsprechend der Korrosionsbeständigkeitsklasse CRC III
 (Ankerschienen, Spezialschrauben, Scheiben, Muttern aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571, 1.4362 und 1.4578 gemäß Anhang A8, Tabelle 5, Spalte 4).

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck
Spezifikation

Anhang B1

Bemessung:

- Ankerschienen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Ankerschienen und Spezialschrauben anzugeben (z.B. Lage der Ankerschiene zur Bewehrung oder zu den Auflagern).
- Die Bemessung von Ankerschienen unter statischer und quasi-statischer Belastung sowie Ankerschienen unter Brandbeanspruchung erfolgt gemäß EN 1992-4 und EOTA TR 047.
- Die Bemessung von Ankerschienen unter Ermüdungsbeanspruchung erfolgt gemäß EOTA TR 050.
- Die charakteristischen Widerstände sind mit der minimalen wirksamen Verankerungstiefe zu berechnen.

Einbau:

- Der Einbau der Ankerschienen erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Verwendung der Ankerschiene nur so, wie vom Hersteller geliefert, ohne Veränderungen, Umordnung oder Austausch einzelner Teile.
- Abschneiden der Ankerschienen, nur wenn Stücke einschließlich der Schienenüberstände und minimalen Schienenlängen gemäß Anhang B3, Tabelle 6 und Tabelle 7 sowie Anhang B4 Tabelle 8 erzeugt werden und für den Fall der feuerverzinkten Ankerschienen nur zur Verwendung in trockenen Innenräumen.
- Einbau nach der Montageanleitung des Herstellers gemäß Anhängen B7-B11.
- Die Ankerschienen sind so auf der Schalung, der Bewehrung oder Hilfskonstruktion zu fixieren, dass sie sich beim Verlegen der Bewehrung sowie beim Einbringen und Verdichten des Betons nicht bewegen.
- Einwandfreie Verdichtung des Betons unter dem Kopf der Anker. Die Schienen sind gegen Eindringen von Beton in den Schieneninnenraum geschützt.
- Unterlegscheiben k\u00f6nnen gem\u00e4\u00df Anhang A6 gew\u00e4hlt und separat durch den Anwender bezogen werden.
- Ausrichtung der Spezialschrauben (Schlitz gemäß Anhang B8, B9 und B10) rechtwinklig zur Schienenachse.
- Sechskantschraube muss mit einem kalibrierten Drehmomentenschlüssel angezogen werden. Die erforderlichen Montagedrehmomente in Anhang B5 müssen aufgebracht werden und dürfen nicht überschritten werden.

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Verwendungszweck Spezifikation	<u>Anhang</u> B2

Tabelle 6: Montagekennwerte der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene			HAC-C-T 29/20			HAC-C-T			HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Minimale wirksame Verankerungstiefe	h _{ef,min}			82		9	4	110	108	148	155
Minimaler Achabstand	Smin		100	100	50	80	100	80	80	80	80
Maximaler Achabstand	Smax			200		250			2	50	250
Endabstand	x	[mm]		25 ²⁾		25 ²⁾			30) ²⁾	35
Minimale Schienenlänge	I _{min}]	150	150	100	130	150	130	140	140	170
Minimaler Randabstand	C _{min}		75	50	75	75	50	75	75	75	75
Minimale Bauteildicke	h_{min}		100	125	125	100	125 h _{ef} + t _h	125 + C _{nom} 1)	120	162	178

¹⁾ c_{nom} gemäß EN 1992-1-1

Tabelle 7: Montagekennwerte der HAC-C(-P) (warmgewalzten) Ankerschienen

Ankerschiene			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Minimale wirksame Verankerungstiefe	h _{ef,min}		79	91	106	94	106	148	155
Minimaler Achabstand	Smin		100	50	50	100	50 ³⁾	50	100
Maximaler Achabstand	Smax					250			
Endabstand	х	[mm]			2	5 ²⁾	35 ⁴⁾		
Minimale Schienenlänge	I _{min}		150	100	100	150	100	100	170 ⁵⁾
Minimaler Randabstand	C _{min}		50 75						75
Minimale Bauteldicke	h _{min}		100	100	120 h	105 _{ef} + t _h + c _{no}	120 m ¹⁾	162	165

¹⁾ c_{nom} gemäß EN 1992-1-1

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck

Montageparameter der Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

²⁾ Der Endabstand kann von 25 mm auf 35 mm vergrößert werden

² Der Endabstand kann von 25 mm auf 35 mm vergrößert werden

³⁾ s_{min} = 100 mm in Kombination mit Kerbzahnschraube

⁴⁾ x = 25 mm für geschweißte I-Anker

⁵⁾ I_{min} = 150 mm für geschweißte I-Anker

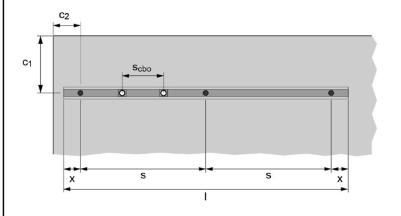


Tabelle 8: Montagekennwerte der HAC-C (kaltverformten) Ankerschienen

Ankerschiene			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33	
Minimale wirksame Verankerungstiefe	h _{ef,min}		45	76	79	94	155	
Minimaler Achabstand	Smin		50	100				
Maximaler Achabstand	Smax		20	0		250		
Endabstand	x	[mm]			25 ²⁾			
Minimale Schienenlänge	I _{min}		100		15	50		
Minimaler Randabstand	C _{min}		40	50	50	75	100	
Minimale Bauteldicke	h .		70	100	100	120	180	
INITITIALE DAUTERGICKE	h _{min}				h _{ef} + t _h + c _{nom} 1)		

¹⁾ c_{nom} gemäß EN 1992-1-1

²⁾ Der Endabstand kann von 25 mm auf 35 mm vergrößert werden

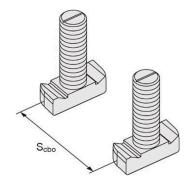


Tabelle 9: Minimaler Achsabstand der Spezialschrauben

Spezialschraube			M8	M10	M12	M16	M20
Minimaler Achsabstand der Spezialschrauben	Scbo,min	[mm]	40	50	60	80	100

scbo = Achsabstand der Spezialschrauben (scbo,min = 5d)

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck

Montageparameter der Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

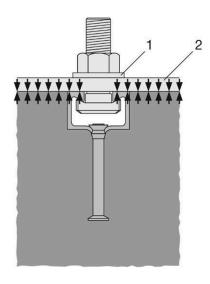
Tabelle 10: Erforderliches Montagedrehmoment Tinst

		Mont	agedrehmoment T _{inst} [Nm] 1)
Spezialschrau	be	Allgemein: T _{inst,g} [Nm]	Allge T _{inst,g}	mein: [Nm]
		8.8, A4-70	8.8	A4-70
Schrauben für warmgew	alzte (HAC-C-	T) Ankerschienen 2)		
HBC-T 29/20	M10	40	40	40
ПDC-1 29/20	M12	60	60	60
	M10	40	40	40
HBC-T 40/22	M12	60	60	60
	M16	100	100	100
HBC-T 50/30	M16	100	100	100
HBC-1 50/30	M20	120	120	120
Schrauben für warmgew	alzte und/ode	r kaltverformte (HAC	-C) Ankerschienen ²⁾	
	M10	15	_3)	22
HBC 40/22	M12	25	45	50
	M16	30	100	90
HBC 40/22-N	M16	30	160	_3)
	M12	25	45	50
HBC 50/30	M16	60	100	130
	M20	75	360	250
LIDO FO/20 N	M16	60	185	_3)
HBC 50/30-N	M20	75	320	_3)
Schrauben für kaltverfor	mte glatte (HA	AC-C) Ankerschienen	2)	
	M8	7	20	15
HBC 28/15	M10	10	40	30
	M12	13	60	50
	M10	15	_3)	22
HBC 38/17	M12	25	45	50
	M16	40	100	90

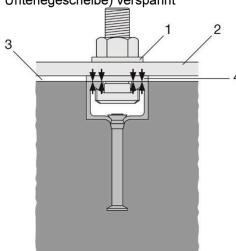
¹⁾ T_{inst} darf nicht überschritten werden

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck
Montagekennwerte der Spezialschrauben (HBC)

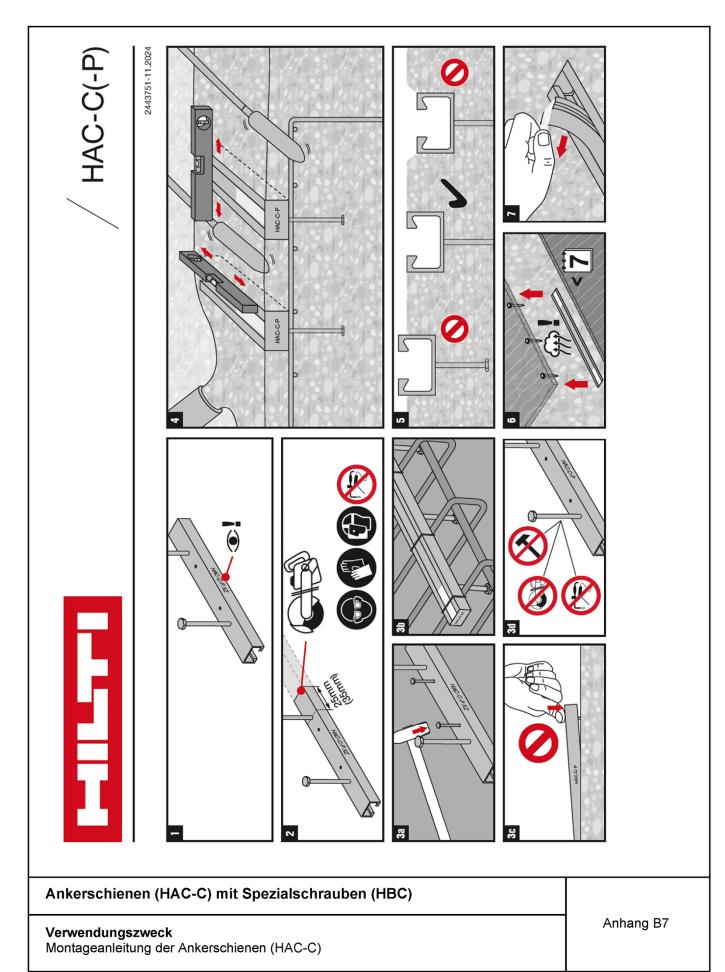

Anhang B5

²⁾ gemäß Tabelle 3

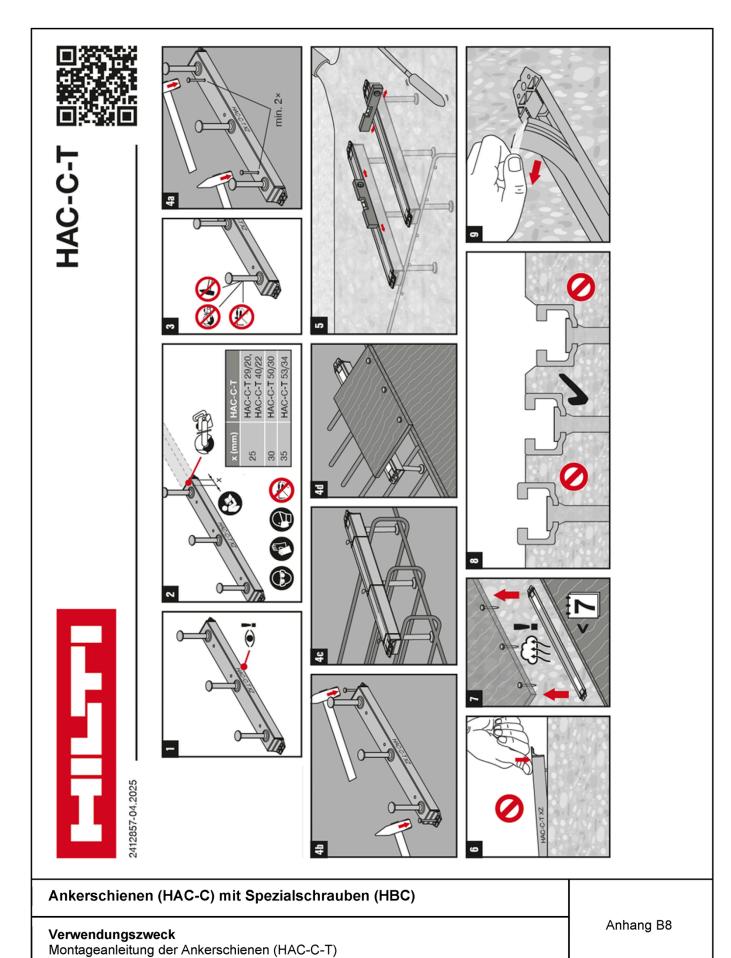

³⁾ Produkt nicht vorhanden

<u>Allgemein:</u> Das Anbauteil ist in Kontakt mit dem Schienenprofil und der Betonoberfläche

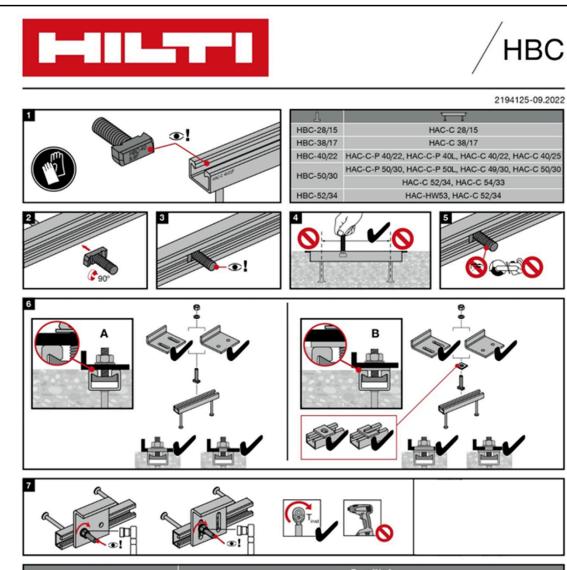
<u>Stahl-Stahl Kontakt:</u> Das Anbauteil ist nicht in Kontakt mit der Betonoberfläche. Das Anbauteil ist mit der Ankerschiene durch ein geeignetes Stahlteil (z.B. Unterlegescheibe) verspannt


Legende

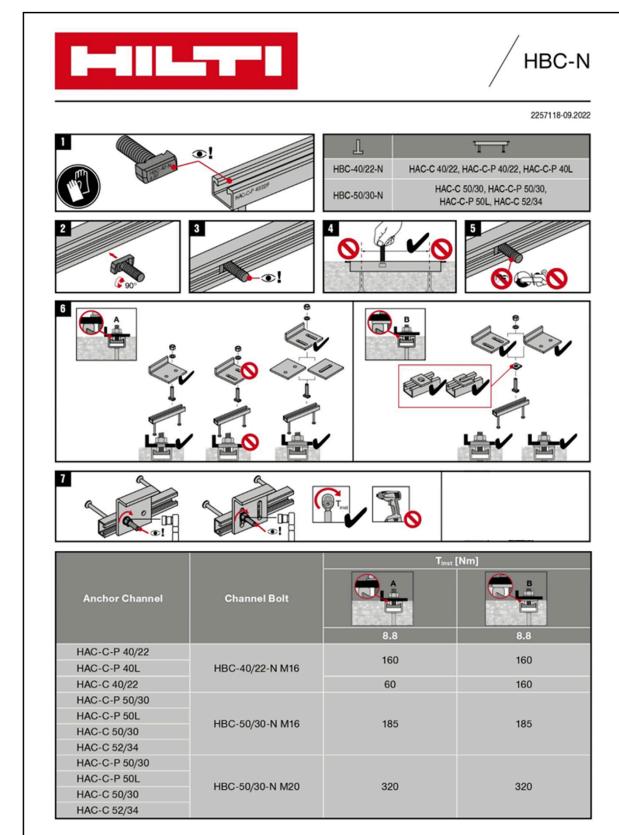
- Unterlegscheibe
- 2 Anbauteil
- 3 Abstand
- 4 geeignetes Stahlteil


Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck Lage des Anbauteils



			Tinst [Nm]					
Channel bolt			B B					
		8.8, A4-70	8.8		A4-70			
	M8	7	20	-	15			
HBC-28/15	M10	10	40		30			
	M12	13	60		50			
	M10	15	15		22			
HBC-38/17	M12	25	45		50			
	M16	40	100		90			
	M10	15	15		22			
HBC-40/22	M12	25	45		50			
	M16	30	100		90			
	M12	25	45		50			
HBC-50/30	M16	55	100		130			
	M20	55	360		250			
HBC-52/34	M20	55	360		-			


Tinst darf nicht überschritten werden

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck

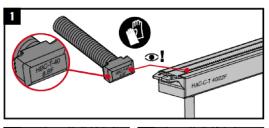
Montageanleitung der Spezialschrauben (HBC)

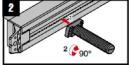
Tinst darf nicht überschritten werden

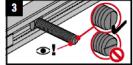
Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

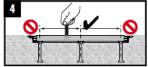
Verwendungszweck

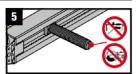
Montageanleitung der Kerbzahnschrauben (HBC-N)

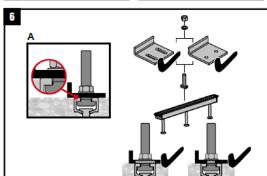


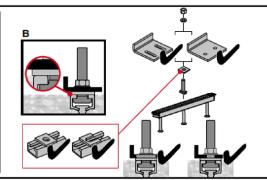

HBC-T

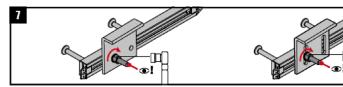



2412973-05.2025




T-bolt	Channel
HBC-T-29/20	HAC-C-T 29/20
HBC-T-40/22	HAC-C-T 40/22
HBC-T-50/30	HAC-C-T 50/30
	HAC-C-T 53/34





Channel I	bolt	T _{inst} [Nm] = 8.8 / A4-70
HBC-T-29/20	M10	40
1150 1 20/20	M12	60
	M10	40
HBC-T-40/22	M12	60
	M16	100
HBC T 50/20	M16	100
HBC-T-50/30	M20	120

Tinst darf nicht überschritten werden

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Verwendungszweck

Montageanleitung der Zahnschrauben (HBC-T)

Tabelle 11: Charakteristische Widerstände unter Zuglast – Stahlversagen der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene	HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34			
Stahlversagen: Ank	er								
Charakteristischer	Stahl				41	1,0			
Widerstand	Nichtrostender Stahl	N _{Rk,s,a}	[kN]	35,0	45,0		57	7,0	73,5
Teilsicherheitsbeiwei	rt	γ _{Ms} 1)	[-]			1	,8		
Stahlversagen: Ver	bindung zwischen	Anker	und Sc	hiene					
Charakteristischer	Stahl			33,0	40	0,0	55	5,0	
Widerstand	Nichtrostender Stahl	N _{Rk,s,c}	Rk,s,c [kN]	35,0	42,0		60,0		73,5
Teilsicherheitsbeiwei	rt	γ _{Ms,ca} 1)	[-]	1,8					
Stahlversagen: Auf	biegen der Schien								
Teilsicherheitsbeiwei	t N _{Rk,s,l}	S _{I,N}	[mm]	61	76		100		107
Charakteristischer	Stahl				45	5,0			
Widerstand	Nichtrostender Stahl	N ⁰ Rk,s,I	[kN]	35,0	42	2,0	64	l ,0	85,0
Teilsicherheitsbeiwei	rt	γMs,I ¹⁾	[-]	1,8					

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 12: Charakteristische Widerstände unter Zuglast – Stahlversagen der HAC-C(-P) (glatten warmgewalzten) Ankerschienen

Ankerschiene	HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34		
Stahlversagen: Anker									
Charakteristischer Widerstand	N _{Rk,s,a}	[kN]	20,0	40,0	40,0	31,0	57,0	57,0	55,0
Teilsicherheits-beiwert	γ _{Ms} 1)	γ _{Ms} ¹⁾ [-] 1,8							
Stahlversagen: Verbindung zwischen Anker und Schiene									
Charakteristischer Widerstand	N _{Rk,s,c}	[kN]	20,0	39,6	39,6	31,0	50,6	50,6	55
Teilsicherheits-beiwert	γMs,ca ¹⁾	[-]	1,8						
Stahlversagen: Aufbiegen der Schiene									
Charakteristischer Achsabstand der Spezialschrauben für N _{Rk,s,I}	SI,N	[mm]	79	79	79	98	98	98	105
Charakteristischer Widerstand	N ⁰ Rk,s,I	[kN]	47,9	47,9	47,9	50,5	50,5	50,5	65,0
Teilsicherheits-beiwert	[-]				1,8				

¹⁾ Sofern andere nationale Regelungen fehlen.

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Zuglast - Stahlversagen	Anhang C1

Tabelle 13: Charakteristische Widerstände unter Zuglast – Stahlversagen der HAC-C (kaltverformten) Ankerschienen

Ankerschiene						HAC-C 54/33		
N _{Rk,s,a}	[kN]	9,0	18,0	20,0	31,0	55,0		
γ _{Ms} 1)	[-]	1,8						
Anker	ınd Scl	hiene						
N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0		
γMs,ca ¹⁾	[-]	1,8						
enlippe								
SI,N	[mm]	56 76 80 100						
N ⁰ Rk,s,l [kN] 9,0 18,0 20,0 31,0					55,0			
Teilsicherheitsbeiwert $\gamma_{Ms,l}^{(1)}$ [-] 1,8								
	γ _{Ms} 1) A Anker u N _{Rk,s,c} γ _{Ms,ca} 1) Thenlippe S _{I,N} N ⁰ _{Rk,s,l}	γ _{Ms} 1) [-] A Anker und Scl N _{Rk,s,c} [kN] γ _{Ms,ca} 1) [-] nenlippe S _{I,N} [mm] N ⁰ _{Rk,s,l} [kN]	γ _{Ms} 1) [-] A Anker und Schiene N _{Rk,s,c} [kN] 9,0 γ _{Ms,ca} 1) [-] Thenlippe S _{I,N} [mm] 56 N ⁰ _{Rk,s,l} [kN] 9,0	N _{Rk,s,a}	N _{Rk,s,a}	N _{Rk,s,a} [kN] 9,0 18,0 20,0 31,0 γ _{Ms} 1 1,8 1 1,8 1 1,8		

¹⁾ Sofern andere nationale Regelungen fehlen.

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Zuglast - Stahlversagen	Anhang C2

Tabelle 14: Charakteristischer Biegewiderstand der HAC-C-T (gezahnten warmgewalzten) Schienen unter Zuglast

Ankerschiene	HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40 L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34				
Stahlversagen: Bieg	ung der Schiene	•								
Charakteristischer	Stahl			977	15	1557 3256 4				
Biegewiderstand der Schiene	M _{Rk,s,flex}	[Nm]	1100	17	54	3366		4626		
Teilsicherheitsbeiwer	γMs,flex ¹⁾	[-]	1,15							

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle 15: Charakteristischer Biegewiderstand der HAC-C(-P) (warmgewalzten) Schienen unter Zuglast

Ankerschiene	HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34				
Stahlversagen: Bieg	ung der Schiene	•									
Charakteristischer Biegewiderstand der Schiene Stahl Nichtrostender Stahl NRk,s,flex [Nm]				1013	1704	1704	2084	3448	3448	3435	
Teilsicherheitsbeiwer	γMs,flex ¹⁾	[-]		1,15							

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle 16: Charakteristischer Biegewiderstand der HAC-C (kaltverformten) Schienen unter Zuglast

Ankerschiene	HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33						
Stahlversagen: Biegung der Schiene											
Charakteristischer	Stahl				538		1669	2929			
Biegewiderstand der Schiene	M _{Rk,s,flex}	[Nm]	316	527	979	1702	2832				
Teilsicherheitsbeiwert γ _{Ms}			[-]	1,15							

¹⁾ Sofern andere nationale Regelungen fehlen.

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Zuglast - Stahversagen	Anhang C3

Tabelle 17: Charakteristische Widerstände unter Zuglast – Betonversagen der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene		HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34						
Ankertyp ²⁾	R	R	R	R	R	R							
Betonversagen: Herau	sziehen												
Charakteristischer Widel gerissenem Beton C12/1			[kN]	17,2	25	5,6	39	9,2	37,6				
Charakteristischer Wider ungerissenem Beton C1		N _{Rk,p}	[KIV]	24,0	35	5,8	54	1,9	52,6				
	C16/20					1,	33						
	C20/25	1		1,67									
	C25/30		[-]	2,08									
Faktor für N _{Rk,p} = N _{Rk,p(C12/15)} ·Ψ _c	C30/37	ψο		2,50									
	C35/45					2,	92						
	C40/50					3,	33						
	C45/55					3,	75						
	C50/60					4,	17						
	C55/67			4,58									
	≥C60/75			5,00									
Teilsicherheitsbeiwert		$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]	1,5									
Betonversagen: Beton	ausbruch												
Produktfaktor k₁	gerissener	k cr,N	[-]	7,9	8,1	8,3	8,2	8,6	8,7				
Produktiaktor ki	unge- rissener	k _{ucr,N}	[-]	11,3	11,5	11,8	11,8	12,3	12,4				
Teilsicherheitsbeiwert			[-]	1,5									
Betonversagen: Spalte	n												
Charakteristischer Rand	abstand	C _{cr,sp}	[mm]	246	282	330	324	444	465				
Charakteristischer Achsabstand			[mm]	492	564	660	648	888	930				
Teilsicherheitsbeiwert			[-]		•	1	,5	•					

¹⁾ Sofern andere nationale Regelungen fehlen.²⁾ Ankertyp gemäß Anhang A3 und A6

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	Anhong C4
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C-T) unter Zuglast - Betonversagen	Anhang C4

Tabelle 18: Charakteristische Widerstände unter Zuglast – Betonversagen der HAC-C(-P) (warmgewalzten) Ankerschienen

Ankerschiene		HAC-C 40/22		HAC-C-P	40/22	HAC-C-P 40L		HAC-C 50/30		HAC-C-P 50/30		HAC-C-P 50L		HAC-C	52/34			
Ankertyp ³⁾				I	R	ı	R	ı	R	ı	R	ı	R	-	R	ı	R	
Betonversa	ıgen: Heraı	ıszieh	en															
Charakteristischer Widerstand in gerissenem Beton C12/15 Charakteristischer Widerstand in ungerissenem Beton C12/15						25,6 35,8								39,2 54,9	68,4 95,8			
	C16/20 C20/25				1,33 1,67													
C25/30				2,08														
- I	C30/37				2,50													
Faktor für N _{Rk,p} =	C35/45			2,92														
NRk,p(C12/15)	C40/50	Ψο	[-]		3,33													
	C45/55			3,75														
	C50/60				4,17													
	C55/67			4,58														
	<u>></u> C60/75			5,00														
Teilsicherhe	eitsbeiwert	$\gamma_{Mp} = \gamma_{Mc}^{2}$	[-]							1	,5							
Betonversa	igen: Betor	nausbi	ruch															
Produkt-	gerissener	k _{cr,N}	[-]	7	,9	8	,0	8	,2	8	,1	8	,2	8	,6	8	,7	
faktor k₁	unge- rissener	k ucr,N	[-]	11	1,2	11	1,5	11	,7	11	,6	11	,7	12	2,3	12	2,4	
Teilsicherheits- beiwert γ _{Mc 2)} [-]										1	,5							
Betonversa	igen: Spalt	en																
Charakteristischer Randabstand c _{cr,sp} [mm]			[mm]	23	37	2	73	3	18	28	32	31	18	4	44	40	35	
Charakteristischer Achsabstand scr,sp [mm]		[mm]	47	474 546 636 564 636 888 930							30							
Teilsicherhe		$\gamma_{Mp} = \gamma_{Mc}^{2)}$	[-]							1	,5							

¹⁾ Produkt nicht vorhanden

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Zuglast- Betonversagen	Anhang C5

8.06.01-21/25 Z204587.25

Sofern andere nationale Regelungen fehlen
 Ankertyp gemäß Anhang A3 und A6

Tabelle 19: Charakteristische Widerstände unter Zuglast - Betonversagen der HAC-C (kaltverformten) Ankerschienen

Ankerschiene				HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33		
Ankertyp ²⁾				R	R	R	R	R		
Betonversagen: Herau	sziehen									
Charakteristischer Wide gerissenem Beton C12/		N _{Rk,p}	FIANIT.	7,6	13,6	13,6	21,2	33,2		
Charakteristischer Widerstand in ungerissenem Beton C12/15			[kN]	10,7	19,0	19,0	29,7	46,5		
	C16/20		[-]			1,33				
	C20/25			1,67						
	C25/30			2,08						
	C30/37			2,50						
Faktor für $N_{Rk,p} = N_{Rk,p(C12/15)} \cdot \Psi_c$	C35/45	Ψο				2,92				
	C40/50	_ Ψ ^c				3,33				
	C45/55					3,75				
	C50/60					4,17				
	C55/67	_		4,58						
	<u>≥</u> C60/75					5,00				
Teilsicherheitsbeiwert		$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]			1,5				
Betonversagen: Beton	ausbruch									
Produktfaktor k₁	gerissener	k cr,N	[-]	7,2	7,8	7,9	8,1	8,7		
FIOURIIANIOI N	ungerissener	k ucr,N	[-]	10,3	11,2	11,2	11,6	12,4		
Teilsicherheitsbeiwert γ _{Mc} 1)			[-]			1,5				
Betonversagen: Spalte	en									
Charakteristischer Randabstand			[mm]	135	228	237	282	465		
Charakteristischer Achs	abstand	Scr,sp	[mm]	270	456	474	564	930		
Teilsicherheitsbeiwert			[-]			1,5				

¹⁾ Sofern andere nationale Regelungen fehlen
2) Ankertyp gemäß Anhang A3 und A6

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Zuglast - Betonversagen	Anhang C6

Tabelle 20: Verschiebungen der HAC-C-T (gezahnten warmgewalzten) Ankerschienen unter Zuglast

Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
	Stahl		[kN]	14,8	20,1	20,1	34,6	34,6	50,8
Zuglast	Nichtrostender Stahl	N		17,3	21,0	21,0	37,3	37,3	50,2
Kurzzeit-	Stahl		[mm]	0,9	1,5	1,5	1,2	1,2	1,8
verschiebung 1)	Nichtrostender Stahl	δ_{N0}		0,9	1,5	1,5	1,7	1,7	1,6
Langzeit-	Stahl			1,8	3,0	3,0	2,4	2,4	3,6
verschiebung 1)	Nichtrostender Stahl	δ _{N∞}	[mm]	1,8	3,0	3,0	3,4	3,4	3,2

¹⁾ Verschiebung in der Mitte zwischen zwei Ankern der Ankerschiene, einschließlich Schlupf der Schraube, Schienenlippenverformung, Biegung der Schiene und Schlupf der Ankerschiene im Beton.

Tabelle 21: Verschiebungen der (warmgewalzten) HAC-C(-P) Ankerschienen unter Zuglast

Ankerschiene			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Zuglast	N	[kN]	13,9	15,3	15,3	14,3	25,8	25,8	25,8
Kurzzeit-verschiebung 1)	δ_{N0}	[mm]	2,3	1,1	1,1	2,2	1,4	1,4	1,4
Langzeit-verschiebung 1)	δ _{N∞}	[mm]	4,6	2,2	2,2	4,4	2,8	2,8	2,8

¹⁾ Verschiebung in der Mitte zwischen zwei Ankern der Ankerschiene, einschließlich Schlupf der Schraube, Schienenlippenverformung, Biegung der Schiene und Schlupf der Ankerschiene im Beton.

Tabelle 22: Verschiebungen der (kaltverformten) HAC-C Ankerschienen unter Zuglast

Ankerschiene			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Zuglast	Ν	[kN]	3,6	7,1	7,9	12,3	21,8
Kurzzeit-verschiebung 1)	δ_{N0}	[mm]	0,6	1,3	1,4	1,4	1,6
Langzeit-verschiebung 1)	δ _{N∞}	[mm]	1,2	2,6	2,8	2,8	3,2

¹⁾ Verschiebung in der Mitte zwischen zwei Ankern der Ankerschiene, einschließlich Schlupf der Schraube, Schienenlippenverformung, Biegung der Schiene und Schlupf der Ankerschiene im Beton.

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Verschiebungen unter Zuglast.	Anhang C7

Tabelle 23: Charakteristische Widerstände unter Querlast – Stahlversagen der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
Stahlversagen:	Anker									
Charakteris-	Stahl				52	2,0	80	0,0		
tischer Widerstand	Nichtrostender Stahl	$V_{Rk,s,a,y}$	[kN]	(N] 37,0	49),5	10	0,0	120,0	
Charakteris-	Stahl				24	,7			44,1	
tischer Widerstand	Nichtrostender Stahl	V _{Rk,s,a,x} [kN		22,9	28	28,3		37,1		
Teilsicherheits-	Stahl									
beiwert Nichtrostender Stahl		γ _{Ms} ¹⁾	[-]			1	,5			
Stahlversagen:	Verbindung zwisc	hen Ank	er und	Schiene						
Charakteris-	Stahl		Rk,s,c,y [kN]		52	2,0	80,0			
tischer Widerstand	Nichtrostender Stahl	V _{Rk,s,c,y}		37,0	49),5	10	100,0		
Charakteris-	Stahl			19,8	24	,0	33,0		44,1	
tischer Widerstand	Nichtrostender Stahl	V _{Rk,s,c,x}	[kN]	21,0	25	5,2	36	36,0		
Teilsicherheitsbe	iwert	γ _{Ms} 1)	[-]	1,8						
Stahlversagen:	Aufbiegen der Sc	hienenlip	pe unt	er Querla	ast senkro	echt zur S	Schienen	ängscric	tung	
Charakteristische der Spezialschra		S _{I,V}	[mm]	61,0	76	5,0	10	0,0	107,0	
Charakteris-	Stahl				52	52,0		80,0		
tischer Widerstand	Nichtrostender Stahl	V^0 Rk,s,l,y	ı,y [kN]	37,0	49,5		100,0		120,0	
Teilsicherheitsbe	iwert	γMs,I 1)	[-]			1	,8			

¹⁾ Sofern andere nationale Regelungen fehlen

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Querlast- Stahlversagen	Anhang C8

Tabelle 24: Charakteristische Widerstände unter Querlast – Stahlversagen der HAC-C(-P) (warmgewalzten) Ankerschienen

Ankerschiene			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	C-C-P	HAC-C 52/34
			H 64	H 6	± 64	H A 50,	H 20	HAC. 50L	H A 52
Stahlversagen: Anker									
Char. Widerstand	$V_{Rk,s,a,y}$	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Char. Widerstand	$V_{Rk,s,a,x}$	[kN]	_2)	24,0	24,0	_2)	34,2	34,2	33,1
Teilsicherheitsbeiwert	γMs ¹⁾	[-]			1,5				
Stahlversagen: Verbindung zwischen Anker und Schiene									
Char. Widerstand	$V_{Rk,s,c,y}$	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Char. Widerstand	$V_{Rk,s,c,x}$	[kN]	_2)	23,8	23,8	_2)	30,4	30,4	28,1
Teilsicherheitsbeiwert	γMs,ca ¹⁾	[-]				1,8			
Stahlversagen: Aufbiegen der Sc	Stahlversagen: Aufbiegen der Schienenlippe unter Querlast senkrecht zur Schienenlängsrichtung								
Charakteristischer Achsabstand der Spezialschrauben für V _{Rk,s,l}	S _{I,V}	[mm]	80	80	80	99	99	99	105
Char. Widerstand	V^0 Rk,s,l,y	[kN]	55,0	55,0	55,0	91,7	91,7	91,7	71,5
Teilsicherheitsbeiwert	γMs,I ¹⁾	[-]		·	·	1,8			·

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 25: Charakteristische Widerstände unter Querlast – Stahlversagen der HAC-C (kaltverformten) Ankerschienen

Ankerschiene			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33		
Stahlversagen: Anker									
Char. Widerstand	$V_{Rk,s,a,y}$	[kN]	9,0	18,0	20,0	31,0	55,0		
Teilsicherheitsbeiwert	[-]	1,5							
Stahlversagen: Verbindung zwisc	hen Ank	er und	Schiene						
Char. Widerstand	V _{Rk,s,c,y}	[kN]	9,0	18,0	20,0	31,0	55,0		
Teilsicherheitsbeiwert	γMs,ca ¹⁾	[-]			1,8		55,0 55,0		
Stahlversagen: Aufbiegen der Sc	•	pe unt	er Querlas	t senkrecht	zur Schiei	nenlängsric	htung		
Charakteristischer Achsabstand der Spezialschrauben für V _{Rk,s,l}	S _{I,V}	[mm]	56	76	80	100	107		
Char. Widerstand	V^0 Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0		
Teilsicherheitsbeiwert	γ _{Ms,l} 1)	[-]			1,8				

¹⁾ Sofern andere nationale Regelungen fehlen

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Querlast- Stahlversagen	Anhang C9

²⁾ Leistung nicht bewertet

Tabelle 26: Charakteristische Widerstände unter Querlast in Schienenlängsrichtung – Stahlversagen der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene	e				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
Stahlversage	Stahlversagen: Verbindung zwischen Schienenlippen und Spezialschraube										
	HBC-T 29/20 M10	Stahl Nichtrostender Stahl			20,0			_ 1)			
	HBC-T 29/20 M12	Stahl Nichtrostender Stahl			24,0	_ 1)					
	HBC-T 40/22 M10	Stahl Nichtrostender Stahl		[kN]	_ 1)	28,0		_ 1)			
Charakteris- tischer Widerstand	HBC-T 40/22 M12	Stahl Nichtrostender Stahl	$V_{Rk,s,l,x}$		_ 1)	28,0		_ 1)			
	HBC-T 40/22 M16	Stahl Nichtrostender Stahl			_ 1)	40,0		_ 1)			
	нвс-т	Stahl	1					50	,0	50,0	
	50/30 M16	Nichtrostender Stahl				_ 1)		71	,4	51,0	
	нвс-т	Stahl]			4)		55	,0	55,0	
	50/30 M20	Nichtrostender Stahl				_ 1)		71	,4	51,0	
Stahl		Stahl			1,2	1	,2	1	4	1,4	
Montagefaktor	Montagefaktor		γinst	[-]	1,0	1	,2	1	4	1,0	

¹⁾ Produkt nicht vorhanden

Tabelle 27: Charakteristische Widerstände unter Querlast in Schienenlängsrichtung – Stahlversagen der (warmgewalzten) HAC-C(-P) Ankerschienen

Ankerschiene			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34	
Stahlversagen: Verbindung zwischen Schienenlippen und Spezialschraube										
Charakteris- tischer Widerstand	HBC-40/22-N M16 8.8F	$V_{Rk,s,l,x}$	[kN]	_ 2)	12,5	12,5		_ 1)		
	HBC-50/30-N M16 8.8F				_ 2)		_ 2)	8,3	8,3	8,3
	HBC-50/30-N M20 8.8F							8,3	8,3	8,3
Montagefaktor		γinst	[-]	_ 2)	1	,4	_ 2)	1,0		

¹⁾ Produkt nicht vorhanden

²⁾ Leistung nicht bewertet

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Querlast- Stahlversagen	Anhang C10

Tabelle 28: Charakteristische Widerstände unter Querlast – Betonversagen der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene					HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Betonversagen: Betonausbruch auf der lastabgewandten Seite									
Produktfal	ktor	k 8	[-]	2,0					
Teilsicher	heitsbeiwert	γMc ¹⁾	[-]			1	,5		
Betonver	sagen: Betonkanter	bruch							
Produkt-	gerissener	k cr,V	[-]	7,5					
faktor k ₁₂	ungerissener	k _{ucr,V}	[-]	10,5					
Teilsicher	heitsbeiwert	γ _{Mc} ¹⁾	[-]	1,5					

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 29: Charakteristische Widerstände unter Querlast – Betonversagen der HAC-C(-P) (warmgewalzten) Ankerschienen

Ankerschiene Retonversagen: Retonaushruch auf der lastabge					HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Betonver	Betonversagen: Betonausbruch auf der lastabgewandten Seite									
Produktfa	ktor	k 8	[-]	2,0						
Teilsicher	heitsbeiwert	γ _{Mc} 1)	[-]				1,5			
Betonver	sagen: Betonkantenbrud	h								
Produkt-	gerissener	k _{cr,V}	[-]	7,5						
faktor k ₁₂	ungerissener	k ucr,V	[-]	10,5						
Teilsicher	heitsbeiwert	γ _{Mc} ¹⁾ [-] 1,5								

Sofern andere nationale Regelungen fehlen

Tabelle 30: Charakteristische Widerstände unter Querlast – Betonversagen der HAC-C (kaltverformten) Ankerschienen

Ankersch	iiene sagen: Betonausbruch :	astabae	HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33		
Produktfal		k 8	[-]	1,0		2	,0		
Teilsicher	heitsbeiwert	γ _{Mc} 1)	[-]	,	<u> </u>	1,5	,		
Betonver	sagen: Betonkantenbru	ch							
Produkt-	gerissener	k _{cr,V}	[-]	6,9	6,9 7,5				
faktor k ₁₂	ungerissener	k _{ucr,V}	[-]	9,6	9,6 9,6 10,5				
Teilsicher	heitsbeiwert	γ _{Mc} 1)	[-]	1,5					

¹⁾ Sofern andere nationale Regelungen fehlen

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen (HAC-C) unter Querlast- Betonversagen	Anhang C11

Tabelle 31: Verschiebungen unter Querlast der HAC-C(-T) (gezahnten warmgewalzten) Ankerschienen

Ankerschiene			HAC-C-T	29/20	HAC-C-T 40/22; HAC-C-T 40L			HAC-C-T 50/30; HAC-C-T 50L		HAC-C-T 53/34	
Schraubendurchmesser			M10	M12	M10	M12	M16	M16	M20	M16	M20
Stahl											
Senkrechte Querlast	Vy	[kN]	23	3,3		32,8		51	,9	69	9,0
Kurzzeit-Verschiebung 1)	$\delta_{V0,y}$	[mm]	1	,6		2,1		2,	,0	2	,8
Langzeit-Verschiebung 1)	δ _{V∞,y}	[mm]	2	,4	3,2		3,0		4,2		
Längsquerlast	V _x	[kN]	13,2	15,7	14,5	19,1	25,1	35,4	49,6	33,1	40,6
Kurzzeit-Verschiebung 1)	$\delta_{\text{V0,x}}$	[mm]	1,1	0,7	0,9	1,0	1,2	1,4	1,5	1,4	1,5
Langzeit-Verschiebung 1)	δ∨∞,χ	[mm]	1,7	1,1	1,4	1,5	1,8	2,1	2,3	2,1	2,3
Nichtrostender Stahl											
Senkrechte Querlast	Vy	[kN]	25	5,0		34,7		61	,8	66	6,8
Kurzzeit-Verschiebung 1)	$\delta_{\text{V0,y}}$	[mm]	1	,7		2,5		2,	,5	2	,5
Langzeit-Verschiebung 1)	δ _{∨∞,y}	[mm]	2	,6	3,8		3,	,8	3,	,8	
Längsquerlast	V _x	[kN]	14,5	,5 17,1 16,9 20,4 26,5		42,1	53,8	38	3,4		
Kurzzeit-Verschiebung 1)	$\delta_{\text{V0,x}}$	[mm]	1,1	2,4	0,7	2,1	0,9	1,4	1,6	1,	,3
Langzeit-Verschiebung 1)	δ _{V∞,X}	[mm]	1,6	3,6	1,1	3,2	1,4	2,1	2,4	2,	,0

¹⁾ Verschiebung in der Mitte zwischen zwei Ankern der Ankerschiene, einschließlich Schlupf der Schraube, Schienenlippenverformung und Schlupf der Ankerschiene im Beton

Tabelle 32: Verschiebungen unter Querlast der HAC-C(-P) (warmgewalzten) Ankerschienen

Ankerschiene			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Senkrechte Querlast	Vy	[kN]	10,3	29,0	29,0	16,0	39,7	28,4	28,4
Kurzzeit-Verschiebung 1)	$\delta_{\text{V0,y}}$	[mm]	2,1	2,0	2,0	2,6	2,7	3,7	3,7
Langzeit-Verschiebung 1)	δ∨∞,у	[mm]	3,1	3,5	3,5	3,9	4,0	5,5	5,5
Längsquerlast	V _x	[kN]	2)	5,2	5,2	2)	3,3	3,3	7,9
Kurzzeit-Verschiebung 1)	$\delta_{\text{V0,x}}$	[mm]	2)	0,1	0,1	2)	0,1	0,1	1,4
Langzeit-Verschiebung 1)	δ∨∞,χ	[mm]	2)	0,2	0,2	2)	0,2	0,2	2,0

¹⁾ Verschiebung in der Mitte zwischen zwei Ankern der Ankerschiene, einschließlich Schlupf der Schraube, Schienenlippenverformung und Schlupf der Ankerschiene im Beton;

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Verschiebungen unter Querlast	Anhang C12

²⁾ Leistung nicht bewertet

Tabelle 33: Verschiebungen unter Querlast senkrecht zur Schienenlängsachse der HAC-C (kaltverformten) Ankerschienen

Ankerschiene	HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33		
Senkrechte Querlast	V_y	[kN]	3,6	7,1	7,9	12,3	21,8
Kurzzeit-verschiebung 1)	$\delta_{\text{V0,y}}$	[mm]	0,6	1,3	1,4	1,4	1,6
Langzeit-verschiebung 1)	δ∨∞,γ	[mm]	0,9	2,0	2,1	2,1	2,4

¹⁾ Verschiebung in der Mitte zwischen zwei Ankern der Ankerschiene, einschließlich Schlupf der Schraube, Schienenlippenverformung und Schlupf der Ankerschiene im Beton

Tabelle 34: Charakteristische Widerstände unter kombinierter Zug- und Querlast der HAC-C-T (gezahnten warmgewalzten) Ankerschienen

Ankerschiene	HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34				
Stahlversagen der Schienenlipp	Stahlversagen der Schienenlippe und Biegung der Ankerschiene									
Produktfaktor	k 13	[-]	W W	/erte gemä	iß EN 199	2-4, Absc	hnitt 7.4.3	.1		
Stahlversagen des Ankers und der Verbindung zwischen Anker und Schiene										
Produktfaktor	k ₁₄ [-] Werte gemäß EN 1992-4, Abschnitt 7.4.3.1									

Tabelle 35: Charakteristische Widerstände unter kombinierter Zug- und Querlast der HAC-C(-P) (warmgewalzten) Ankerschienen

Ankerschiene				HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Stahlversagen der Schienenlipp	e und B	Biegung	der Ank	erschie	ne				
Produktfaktor	k 13	[-]	,	Werte ge	mäß EN	1992-4,	Abschni	tt 7.4.3.1	
Stahlversagen des Ankers und der Verbindung zwischen Anker und Schiene									
Produktfaktor	k ₁₄	(14 [-] Werte gemäß EN 1992-4, Abschnitt 7.4.3.1							

Tabelle 36: Charakteristische Widerstände Ankerschienen unter kombinierter Zug- und Querlast der HAC-C (kaltverformten)

Ankerschiene	HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33				
Stahlversagen der Schienenlipp	e und B	Biegung	der Ankers	chiene					
Produktfaktor	k 13	[-]	Wer	te gemäß E	N 1992-4, A	bschnitt 7.4	.3.1		
Stahlversagen des Ankers und der Verbindung zwischen Anker und Schiene									
Produktfaktor	k ₁₄	[-]	Werte gemäß EN 1992-4, Abschnitt 7.4.3.1						

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung	Anhang C13
Verschiebungen unter Querlast.	
Charakteristische Widerstände unter kombinierter Zug- und Querlast	

Tabelle 37: Charakteristische Widerstände unter Zuglast – Stahlversagen der Spezialschrauben (HBC)

Spezialschraube						M10	M12	M16	M20				
Stahlversagen													
			Schrauben für H	AC-C-T (wa	armgewal	zten) Ank	erschiene	n					
			HBC-T 29/20	8.8	_ 3)	46,4	67,4	-	3)				
			HBC-1 29/20	A4-70 ¹⁾	_ 3)	40,6	59,0	-	3)				
			HBC-T 40/22	8.8	_ 3)	46,4	67,4	125,6	_ 3)				
			HBC-1 40/22	A4-70 1)	_ 3)	40,6	59,0	109,9	_ 3)				
			HBC-T 50/30	8.8		_ 3)		125,6	203,4				
				A4-70 ¹⁾		_ 3)		109,9	171,5				
			Schrauben für H Ankerschienen	AC-C (warr	ngewalzte	en und/od	er kaltverf	ormten)					
			HBC-40/22	8.8	_ 3)	_ 3)	67,4	125,6	_ 3)				
Charakteristischer Widerstand (Zuglast)		ПВС-40/22	A4-70 ¹⁾	_ 3)	20,5	59,0	schienen 67,4 59,0 67,4 125,6 59,0 109,9 125,6 203,4 109,9 171,5 kaltverformten) 67,4 125,6 59,0 91,0 125,6 -3) 125,6 -3) 67,4 125,6 147,1 59,0 109,9 121,2 125,6 186,6 -3) nen 44,3 -3) 51,3 -3) 35,4 55,8 -3) 47,2 53,0 -3)						
	N _{Rk,s} 1)	$N_{Rk,s}^{1)}$ [kN]	HBC-40/22-N	8.8		_ 3)		125,6	125,6 - 3)				
			ПВС-40/22-N	A4-70 ¹⁾			_ 3)		- ³⁾				
			HBC-50/30	8.8	_ 3)		67,4	125,6	147,1				
			HBC-50/50	A4-70 ¹⁾			59,0	109,9	121,2				
			HBC-50/30-N	8.8	_ 3)			125,6	186,6				
			HBC-50/30-N	A4-70 ¹⁾			_ 3)						
			Schrauben für H	AC-C kaltve	erformten	Ankersch	ienen						
			HBC-28/15	8.8	22,4	35,4	44,3	-	3)				
			HBC-20/13	A4-70 1)	25,6	38,9	51,3	-	3)				
			HBC-38/17	8.8	_ 3)	35,4	35,4	55,8	- 3)				
				A4-70 ¹⁾	_ 3)	20,5	47,2	53,0	- ³⁾				
			HBC-T 29/20 HBC-T 40/22 8.8 1,50 and 1,5 HBC-T 50/30				51 ⁴⁾						
Teilsicherheitsbeiwert $\gamma_{Ms}^{(2)}$ [-]		HBC-40/22(-N) HBC-50/30(-N) HBC-28/15 HBC-38/17	A4-70 ¹⁾	1,87									

¹⁾ Werkstoffe gemäß Tabelle 5, Anhang A8

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Spezialschrauben unter Zuglast	Anhang C14

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Produkt nicht vorhanden

 $^{^{4)}}$ Teilsicherheitsbeiwert γ_{Ms} = 1,51 nur für HBC-T 53/34 M20 und 1,5 für die übrigen Schrauben

Tabelle 38: Charakteristische Widerstände unter Querlast – Stahlversagen der Spezialschrauben (HBC)

Spezialschraube			M8	M10	M12	M16	M20				
Stahlversagen											
			Schrauben für HAC-C-T (warmgewalzten) Ankerschienen								
			LIDO T 00/00	8.8	_ 3)	23,2	33,7	-	3)		
			HBC-T 29/20	A4-70 1)	_ 3)	24,4	35,4	-	3)		
			HBC-T 40/22	8.8	_ 3)	23,2	33,7	62,8	_ 3)		
			HBC-1 40/22	A4-70 1)	_ 3)	24,4	35,4	65,9	_ 3)		
			HBC-T 50/30	8.8		_ 3)		62,8	101,7		
			HBC-1 50/30	A4-70 1)		_ 3)		65,9	102,9		
			Schrauben für H	AC-C (gewa	ılzten und	/oder kalt	verformte	n) Ankers	chienen		
			HBC-40/22	8.8	_ 3)	23,2	33,7	62,8	_ 3)		
Charakteristischer	akteristischer	ПВС-40/22	A4-70 1)	_ 3)	24,4	35,4	65,9	_ 3)			
Widerstand	$V_{Rk,s}^{1)}$	[kN]	HBC-40/22-N		_ 3)		62,8	_ 3)			
(Querlast)		ПВС-40/22-N	A4-70 1)			_ 3)					
			HBC-50/30	8.8	-	3)	33,7	62,8	101,7		
			ПВС-30/30	A4-70 1)	-	3)	35,4	65,9	,9 102,9		
			HBC-50/30-N	8.8		_ 3)		62,8	101,7		
			ПВС-30/30-N	A4-70			_ 3)				
			Schrauben für H	AC-C kaltve	rformten Ankerschienen						
			HBC-28/15	8.8	14,6	23,2	33,7	-	3)		
			ПВС-20/13	A4-70	15,4	24,4	35,4	-	3)		
			UDC 20/47	8.8	_ 3)	23,2	33,7	62,8	_ 3)		
			HBC-38/17	A4-70 ¹⁾	_ 3)	24,4	35,4	65,9	_ 3)		
			HBC-T 29/20 HBC-T 40/22 HBC-T 50/30	8.8	1,25 and 1,26 ⁴⁾						
peiwert γ_{Ms}^{2} [-] HBC-4 HBC-5		HBC-1 50/30 HBC-40/22(-N) HBC-50/30(-N) HBC-28/15 HBC-38/17	A4-70			1,56					

¹⁾ Werkstoffe gemäß Tabelle 5, Anhang A8

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Leistung
Charakteristische Widerstände der Spezialschrauben unter Querlast

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Produkt nicht vorhanden

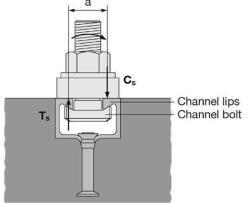

⁴⁾ Teilsicherheitsbeiwert γ_{Ms} = 1,26 nur für HBC-T 53/34 M20 und 1,25 für übrige Schrauben

Tabelle 39: Charakteristische Widerstände unter Querlast mit Hebelarm – Stahlversagen der Spezialschrauben (HBC)

Spezialschraube						M10	M12	M16	M20	
Stahlversagen								•	•	
			LIDC T 20/20	8.8	_ 3)	59,8	104,8	-	3)	
			HBC-T 29/20	A4-70 ²⁾	_ 3)	52,3	91,7	-	3)	
			LIDO T 40/00	8.8	_ 3)	59,8	104,8	266,4	_ 3)	
			HBC-T 40/22	A4-70 ²⁾	_ 3)	52,3	91,7	233,1	_ 3)	
Charakteristischer	M ⁰ Rk,s ⁵⁾	[Nm]	LIDO T 50/20	8.8		_ 3)		266,4	538,7	
Biegewiderstand		-	HBC-T 50/30	A4-70 ²⁾		_ 3)		233,1	454,4	
		HBC-50/30(-N) HBC-40/22(-N)	8.8	30,0	59,8	104,8	266,4	538,7		
		HBC-38/17 HBC-28/15	A4-70 ²⁾	26,2	52,3	91,7	233,1	454,4		
		HBC-T 29/20 HBC-T 40/22 HBC-T 50/30	8.8		1,2	25 und 1,2	6 4)			
Teilsicherheits- beiwert	γMs ¹⁾	[-]	HBC-1 50/30 HBC-40/22(-N) HBC-50/30(-N) HBC-28/15 HBC-38/17	A4-70 ²⁾	1,56					
			HBC-T 29/20	29/20	- ³⁾	19,0	20,0	-	3)	
			HBC-T 40/22	40/22	_ 3)	23,0	24,0	26,0	_ 3)	
Innerer			HBC-T 50/30	50/30 53/34		_ 3)	•	32,0	34,0	
Hebelarm	а	[mm]	HBC-40/22(-N)	40/22	_ 3)	24,3	25,7	27,3	_ 3)	
			HBC-50/30(-N)	50/30	-	3)	29,9	31,7	33,9	
			HBC-28/15	28/15	17,3	18,7	20,0	-	3)	
			HBC-38/17	38/17	_ 3)	23,0	24,3	26,3	_ 3)	

¹⁾ Sofern andere nationale Regelungen fehlen

⁵⁾ Der charakteristische Biegewiderstand gemäß Tabelle 39 ist wie folgt begrenzt:

 $M^0_{Rk,s} \leq 0, 5 \cdot N_{Rk,s,l} \cdot a \quad (N_{Rk,s,l} \ gem\"{a} \ B \ Tabelle \ 11, \ 12 \ und \ 13)$ und

 $M^{0}_{Rk,s} \le 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} gemäß Tabelle 29)

a = innerer Hebelarm gemäß Tabelle 30

Ts = Zugkraft auf die Schienenlippe

C_s = Druckkraft auf die Schienenlippe

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Leistung

Charakteristische Widerstände der Spezialschrauben unter Querlast mit Hebelarm

Anhang C16

²⁾ Werkstoffe gemäß Tabelle 5, Anhang A8;

³⁾ Produkt nicht vorhanden;

⁴⁾ Teilsicherheitsbeiwert 1,26 für HBC-T 50/30 M20 und 1,25 für übrige Schrauben

Tabelle 40: Kombination der Ankerschienen und Spezialschrauben für Ermüdungsbeanspruchung unter Zuglast (Bemessungsmethode I oder II für Bewertungsverfahren A1, A2 und B gemäß EOTA TR050)

Aı	nkerschiene			Spezi	alschraube	
Ankerschiene	Ankertyp 1)	Beschictung	Spezial- Durch- schraube messer		Festigkeits- klasse	Beschichtung
HAC-C-T 29/20			HBC-T 29/20	M10		
HAC-C-1 29/20			HBC-1 29/20	M12		
HAC-C-T 40/22			HBC-T 40/22	M12		
HAC-C-T 40L			NBC-1 40/22	M16	8.8	G F
HAC-C-T 50/30 HAC-C-T 50L			HBC-T 50/30	M16		
HAC-C-T 53/34	R	F	1100-1 30/30	M20		
HAC-C-P 40/22			HBC-40/22	M12		
HAC-C-P 40L			ПВС- 4 0/22	M16		
HAC-C-P 50/30			UDC 50/20	M16		
HAC-C-P 50L			HBC-50/30	M20		
UAC C 52/24			UPC 50/20	M16		
HAC-C 52/34			HBC-50/30	M20		

¹⁾ R – Rundanker gemäß Anhang A3 und A6

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast gemäß Bewertungsverfahren A1, A2 und B	Anhang C17

Tabelle 41: Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast Stahlversagen nach n Lastzyklen ohne statischen Lastanteil (N_{Ed} = 0) (Bemessungsmethode I gemäß EOTA TR050) für HAC-C-T (warmgewalzte gezahnte) Ankerschienen

Ankerschiene	, o			HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Stahlversagen									
			≤ 10 ⁴	15,4	20	,4	20),3	33,5
			≤ 10 ⁵	8,4	10	,8	ပြဲ ပြဲ ၂		18,2
Charakteristische Widerstände			≤ 10 ⁶	4,4	4,	,9	4	,5	9,0
unter Ermüdungsbeanspruchung (Zug) ohne statische Vorlast	$\Delta N_{Rk,s,0,n}$	[kN]	≤ 2 · 10 ⁶	3,9	4,	,1	4	,2	7,5
$(N_{Ed} = 0)$			≤ 5 · 10 ⁶	≤ 5 · 10 ⁶ 3,4		3,4 4,0		6,1	
			≤ 10 ⁸	3,0	2,	,8	3	,9	4,6
			> 10 ⁸	3,0	2,	,8	3	,9	4,5

Tabelle 42: Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast Stahlversagen nach n Lastzyklen ohne statischen Lastanteil (N_{Ed} = 0) (Bemessungsmethode I gemäß EOTA TR050) für HAC-C(-P) (warmgewalzte) Ankerschienen

Ankerschiene	HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34			
Stahlversagen								
			≤ 10 ⁴	16	6,4	20),9	24,3
			≤ 10 ⁵	7	,7	9	,0	12,5
Charakteristische Widerstände			≤ 10 ⁶	3	,2	4	,2	7,1
unter Ermüdungsbeanspruchung (Zug) ohne statische Vorlast	$\Delta N_{Rk,s,0,n}$	[kN]	≤ 2 · 10 ⁶	2	,6	3	,7	6,4
$(N_{Ed} = 0)$			≤ 5 · 10 ⁶	2	,2	3	,4	5,9
			≤ 10 ⁸	2	,0	3	,3	5,7
			> 108	1,	,8	3	,2	5,5

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast gemäß Bewertungsverfahren A1, A2 und B	Anhang C18

Tabelle 43: Abminderungsfaktor $\eta_{c,fat}$ für Ermüdungsbeanspruchung unter Zuglast – Betonversagen nach n Lastzyklen ohne statischen Lastanteil (N_{Ed} = 0) für HAC-C-T (warmgewalzte gezahnte) Ankerschienen (Bemessungsmethode I oder II für Bewertungsverfahren A1, A2 und B gemäß EOTA TR050)

Ankerschiene Herausziehen und Betonausbruch	HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34					
Abminderungsfaktor nach n	Abminderungsfaktor nach n					0,736 0,665					
Lastzyklen ohne statische Vorlast (N _{Ed} = 0) für:			≤ 10 ⁵ ≤ 10 ⁶	0,600							
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$	$\eta_{c,fat}$	[-]	≤ 2·10 ⁶		0,582						
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$	1-1		≤ 5·10 ⁶			0,5	559				
mit N _{Rk,p} gemäß Anhang C3 und			≤ 6·10 ⁷			0,5	500				
C4 und N _{Rk,c} berechnet gemäß EN 1992-4 and EOTA TR 047			> 6·10 ⁷ 1)	0,500							

 $^{^{1)}}$ für $\Delta N_{\text{Rk},p;0;\infty}$, $\Delta N_{\text{Rk},c;0;\infty}$

Tabelle 44: Abminderungsfaktor $\eta_{c,fat}$ für Ermüdungsbeanspruchung unter Zuglast – Betonversagen nach n Lastzyklen ohne statischen Lastanteil (N_{Ed} = 0) für HAC-C (warmgewalzte) Ankerschienen (Bemessungsmethode I oder II für Bewertungsverfahren A1, A2 und B gemäß EOTA TR050)

Ankerschiene	HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34			
Herausziehen und Betonausbruch	1							
Abminderungsfaktor nach n			≤ 10 ⁴			0,736		
Lastzyklen ohne statische Vorlast			≤ 10 ⁵			0,665		
(N _{Ed} = 0) für:			≤ 10 ⁶			0,600		
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$	η _{c,fat}	[-]	≤ 2·10 ⁶			0,582		
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$	i (c,iai		≤ 5·10 ⁶			0,559		
mit N _{Rk,p} gemäß Anhang C3 und			≤ 6·10 ⁷			0,500		
C4 und N _{Rk,c} berechnet gemäß EN 1992-4 und EOTA TR 047			> 6·10 ⁷ 1)			0,500		

 $^{^{1)}}$ für $\Delta N_{Rk,p;0;\infty}$, $\Delta N_{Rk,c;0;\infty}$

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast gemäß	Anhang C19
Bewertungsverfahren A1, A2 und B	

Tabelle 45: Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast − Stahlversagen mit n → ∞ Lastzyklen ohne statischen Lastanteil (N_{Ed} = 0) (Bemessungsmethode II für Bewertungsverfahren B gemäß EOTA TR050) für HAC-C-T (warmgewalzte gezahnte) Ankerschienen

Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Stahlversagen									
Charakteristischer Ermüdungs- grenzwiderstand (n → ∞) für alle Stahlversagensarten ohne statischen Lastanteil (N _{Ed} = 0)	ΔN _{Rk,s;0;∞}	[kN]	n→∞	3,0	2,	,8	3,9		4,5
Herausziehen und Betonausbruch	1								
Abminderungsfaktor für Ermüdungsgrenzwiderstand (n → ∞) für Betonversagen ohne statischen Lastanteil (N _{Ed} = 0)	ηc,fat	[-]	n→∞			0	,5		

Tabelle 46: Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast − Stahlversagen mit n → ∞ Lastzyklen ohne statischen Lastanteil (N_{Ed} = 0) (Bemessungsmethode II für Bewertungsverfahren B gemäß EOTA TR050) für HAC-C-T (warmgewalzte) Ankerschienen

Ankerschiene				HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Stahlversagen								
Charakteristischer Ermüdungs- grenzwiderstand (n → ∞) für alle Stahlversagensarten ohne statischen Lastanteil (N _{Ed} = 0)	ΔNRk,s;0;∞	[kN]	n→∞	1	,8	3	3,2	5,5
Herausziehen und Betonausbruch	า							
Abminderungsfaktor für Ermüdungsgrenzwiderstand (n → ∞) für Betonversagen ohne statischen Lastanteil (N _{Ed} = 0)	η _{c,fat}	[-]	n→∞			0,5		

Für die Reduzierung der in den Tabellen 41, 42, 45 und 46 angegebenen charakteristischen Widerstände im Übergangsbereich vom statischen Widerstand zum Ermüdungsgrenzwiderstand werden die Teilsicherheitsbeiwerte wie folgt berechnet:

Sofern andere nationale Regelungen fehlen, werden die folgenden Teilsicherheitsbeiwerte γ_M und $\gamma_{M,fat}$ für die Bemessungsmethode I gemäß EOTA TR 050 empfohlen:

γ_M gemäß Anhang C1

 $\gamma_{M,fat} = 1,35$

Sofern andere nationale Regelungen fehlen, wird der folgende Teilsicherheitsbeiwert $\gamma_{M,fat}$ für die Bemessungsmethode II (Tabelle 34) gemäß EOTA TR 050 empfohlen:

 $\gamma_{M,fat} = 1,35$

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände für Ermüdungsbeanspruchung unter Zuglast gemäß Bewertungsverfahren A1, A2 und B	Anhang C20

Tabelle 47: Kombinationen der Ankerschienen und Spezialschrauben für seismische Beanspruchung (Seismische Leistungskategorie C1)

Ankerschiene		Spezialschraube							
Schienenprofil	Spezialschraube	Durch- messer	Festigkeits- klasse	Korrosionsschutz					
HAC C T 20/20	HPC T 20/20	M10							
HAC-C-T 29/20 	ПВС-1 29/20	HBC-T 29/20 M12							
HAC-C-T 40/22	LIDO T 40/00	M12	8.8	F 1)					
HAC-C-T 40L	HBC-T 40/22	M16	A4	R ²⁾					
HAC-C-T 50/30	HPC T 50/20	M16							
HAC-C-T 50L HAC-C-T 53/34	HBC-T 50/30	M20							

¹⁾ Feuerverzinkt;

Tabelle 48: Charakteristische Widerstände für seismische Beanspruchung unter Zuglast – Stahlversagen der HAC-C-T (warmgewalzte gezahnte) Ankerschienen

		<u> </u>								
Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
Stahlversagen: Ank	ær									
Charakteristischer	Stahl		[kN]		41	,0				
Widerstand	Nichtrostender Stahl	N _{Rk,s,a,eq}		35,0	45,0		57,0		73,5	
Teilsicherheitsbeiwe	icherheitsbeiwert $\gamma_{Ms,eq}^{-1}$ [-]					1	,8			
Stahlversagen: Ver	bindung zwische	n Anker ı	und Sc	hiene						
Charakteristischer	Stahl	N _{Rk,s,c,eq}	a [kN]	33,0	40,0		55,0			
Widerstand	Nichtrostender Stahl			35,0	42,0		60,0		73,5	
Teilsicherheitsbeiwe	rt	γMs,ca,eq ¹⁾	[-]		1,8					
Stahlversagen: Auf	biegen der Schie									
Charakteristischer A Spezialschrauben fü	SI,N,eq	[mm]	61	7	76 100		00	107		
Charakteristischer					45,0					
Widerstand	Nichtrostender Stahl	N ⁰ Rk,s,l,eq	[kN]	35,0	42	2,0	64,0		85,0	
Teilsicherheitsbeiwe	rt	γMs,I,eq ¹⁾	[-]			1	,8			

¹⁾ Sofern andere nationale Regelungen fehlen

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen und Spezialschrauben für seismische Beanspruchung (Seismische Leistungskategorie C1)	Anhang C21

²⁾ Nichtrostender Stahl

Tabelle 49: Charakteristischer Biegewiderstand der HAC-C-T (warmgewalzte gezahnte) Ankerschienen für seismische Beanspruchung unter Zuglast

Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40 L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Stahlversagen: Bieg	ung der Ankerso	chiene							
Charakteristischer	Stahl			977	15	57	3256		
Biegewiderstand der Schiene	eq [Nm]	1100	1754		3366		4626		
Teilsicherheitsbeiwert	γMs,flex,eq 1)	[-]	1,15						

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 50: Charakteristische Widerstände für seismische Beanspruchung unter Querlast – Stahlversagen der HAC-C-T (warmgewalzte gezahnte) Ankerschienen

Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Stahlversagen: Ank	er								
Charakteristischer	Stahl				52,0		80	0,0	
Widerstand	Nichtrostender Stahl	V _{Rk,s,a,y,eq}	[kN]	37,0	49,5		10	0,0	120,0
Charakteristischer Stahl					24,7		35	5,2	
Widerstand	Nichtrostender Stahl	V _{Rk,s,a,x,eq}	[kN]	22,9	28,3		37	7 ,1	44,1
Teilsicherheitsbeiwert Stahl Nichtrostender Stahl									
		γ̃Ms,eq ¹⁾	[-]		1,5				
Stahlversagen: Ver	bindung zwische	n Anker ur	ıd Schi	ene					
Charakteristischer	Stahl	V _{Rk,s,c,y,eq}	V _{Rk,s,c,y,eq} [kN]		52,0		80,0		
Widerstand	Nichtrostender Stahl			37,0	49	,5	10	0,0	120,0
Charakteristischer	Stahl			19,8	24	,0	31	1,4	
Widerstand	Nichtrostender Stahl	V _{Rk,s,c,x,eq}	[kN]	21,0	25	5,2	36	3,0	44,1
Teilsicherheitsbeiwei	t	γMs,eq ¹⁾	[-]			-	1,8		
Stahlversagen: Auf	biegen der Schie	nenlippe u	nter Qı	uerlast s	enkrech	t zur Sc	hienenlä	ängsrich	tung
Charakteristischer Achsabstand der Spezialschrauben für V _{Rk,s,l}		SI,V,eq	[mm]	61,0	76	5,0	10	0,0	107,0
Charakteristischer	Stahl				52	2,0	80	0,0	
Widerstand	Nichtrostender Stahl	V^0 Rk,s,l,y,eq	[kN]	37,0	49),5	100,0		120,0
Teilsicherheitsbeiwei	t	γMs,l,eq 1)	[-]			-	1,8		

¹⁾ Sofern andere nationale Regelungen fehlen

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen für seismische Beanspruchung (Seismische Leistungskategorie C1)	Anhang C22

Tabelle 51: Charakteristische Widerstände für seismische Beanspruchung unter Querlast in Schienenlängsrichtung – Stahlversagen der HAC-C-T (warmgewalzte gezahnte) Ankerschienen

Ankerschiene	•		HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34				
Stahlversage	n: Verbindun	pen ur	nd Spez	ialschra	ube							
	HBC-T 29/20 M10	Stahl Nichtrostender Stahl			20,0			_ 1)				
	HBC-T 29/20 M12	Stahl Nichtrostender Stahl		, [kN]	24,0			_ 1)	_ 1)			
	HBC-T 40/22 M10	Stahl Nichtrostender Stahl			_ 1)	-	1)	_ 1)				
Charakteris- tischer Widerstand	HBC-T 40/22 M12	Stahl Nichtrostender Stahl	V _{Rk,s,l,x,eq}		_ 1)	2	8,0					
	HBC-T 40/22 M16	Stahl Nichtrostender Stahl			_ 1)	4	0,0		_ 1)			
	НВС-Т	Stahl Nichtrostender				_ 1)		50	,0	50,0		
	50/30 M16	Stahl						71		51,0		
	HBC-T 50/30 M20	Stahl Nichtrostender Stahl				_ 1)		52 71	,	55,0 51,0		
		Stahl			1,2	1	,2	1,	4	1,4		
Montagefaktor	· 	Nichtrostender Stahl	γinst,eq	[-]	1,0	1	,2	1,	4	1,0		

¹⁾ Leistung nicht bewertet

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen und Spezialschrauben für seismische Beanspruchung (Seismische Leistungskategorie C1)	Anhang C23

Tabelle 52: Charakteristische Widerstände für seismische Beanspruchung unter Zug- und Querlast – Stahlversagen der Spezialschrauben (HBC)

Spezialschraub	е				M10	M12	M16	M20	
Stahlversagen									
			HBC-T 29/20	8.8	46,4	67,4	_ ;	3)	
Charakteris-			ПВС-1 29/20	A4-70 1)	40,6	59,0	_ ;	3)	
tischer	N - 1)	[LAI]	UDC T 40/22	8.8	- ⁴⁾	67,4	125,6	_ 3)	
Widerstand	N _{Rk,s,eq} 1)	[kN]	HBC-T 40/22	A4-70 1)	_ 4)	59,0	109,9	_ 3)	
(Zuglast)			UDC T 50/20	8.8	_	3)	125,6	203,4	
			HBC-T 50/30	A4-70 ¹⁾	-	3)	109,9	171,5	
Teilsicherheits- beiwert	γ _{Ms,eq} ²⁾ [-]		HBC-T 50/30 HBC-T 40/22	8.8	1,50 und 1,51 ⁵⁾				
Delweit				A4-70 1)	1,87				
			HBC-T 29/20	8.8	23,2	33,7	_ 3)		
Charakteris-			ПВС-1 29/20	A4-70 ¹⁾ 24,4 35,4		_ 3)			
tischer	1)	[LAI]	UDC T 40/22	8.8	_ 5)	33,7	62,8	_ 3)	
Widerstand	$V_{Rk,s,eq}^{1)}$	[kN]	HBC-T 40/22	A4-70 1)	_ 5)	35,4	65,9	_ 3)	
(Querlast)			UDO T 50/20	8.8	-	3)	62,8	101,7	
			HBC-T 50/30	A4-70 1)		3)	65,9	102,9	
Teilsicherheits- beiwert	γMs,eq ²⁾	[-]	HBC-T 50/30 HBC-T 40/22	8.8	1,25 und 1,26 ⁵⁾				
DOIWOIL			HBC-T 29/20	A4-70		1,	56		

¹⁾ gemäß Tabelle 5, Anhang A8

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Leistung
Charakteristische Widerstände der Spezialschrauben für seismische
Beanspruchung (Seismische Leistungskategorie C1)

Anhang C24

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Produkt nicht vorhanden

⁴⁾ Leistung nicht bewertet

⁵⁾ Teilsicherheitsbeiwert 1,51 und 1,26 für HBC-T 50/30 M20; 1,5 und 1,25 für übrige Schrauben

Tabelle 53: Charakteristische Widerstände der Ankerschienen unter Brandbeanspruchung – Stahlversagen für HAC-C-T (warmgewalzte gezahnte) Ankerschienen

Spezialschrauben					M10	M12	M16	M20	
Stahlversagen: An	ker, Verbindung z	wischen A	nker und Sc	hiene u	nd Aufbi	egen der	Schiener	lippe	
Stahl, Nichtrosten	der Stahl A2								
		R30			1,2	11,1			
	HAC-C-T	R60			0,9	0,9	2)	2)	
	29/20	R90			0,6	0,6	/	/	
	Part								
		R30			1,2	1,2	6,2	2)	
	HAC-C-T	R60			0,9	0,9	4,6		
Charakterischer	40/22	R90	N.I		0,6	0,6	2,9	/	
Widerstand unter		R120		[FNI]	0,5	0,5	2,1		
Brandbean-		R30		[KIN]			6,4	10,7	
spruchung	HAC-C-T	R60	▼ IXK,5,y,II		_ 2)	_ 2)	4,8	8,0	
	50/30	R90			_ ′	_ ′	3,2	5,2	
		R120					2,3	3,8	
		R30					6,5	9,0	
		R60			_ 2)	_ 2)	5,0	6,7	
		R90			- /	_ ′	3,4	4,5	
		R120					2,7		
Nichtrostender Sta	hl A4								
Michitiosteriaer 30	HAC-C-T A4	R30			9,9				
		R60			6,1	7,2	_ 2)	_ 2)	
Widerstand unter Brandbean- spruchung Nichtrostender Stahl Charakterischer	29/20	R90			2,2	3,4	_ ′	- /	
		R120			0,3	1,4			
		R30			9,9	11,1	20,0		
	HAC-C-T A4	R60			6,1	7,2	17,7	_ 2)	
Charakterischer	40/22	R90	NI		2,2	3,4	8,2		
Widerstand unter		R120	N _{Rk,s,fi}	[kN]	0,3	1,4	3,5		
		R30	$V_{Rk,s,y,fi}$	[[(, 4]			20,0	20,0	
spruchung	HAC-C-T A4	R60			_ 2)	_ 2)	17,7	17,7	
	50/30	R90					8,2	- 2) 10,7 8,0 5,2 3,8 9,0 6,7 4,5 3,4 - 2) 20,0 17,7 8,2 3,5 20,0	
		R120					3,5		
	HAC-C-T A4 53/34	R30					20,0	20,0	
		R60			_ 2)	_ 2)	17,7	17,7	
		R90			_ ·		8,2	8,2	
		R120					3,5	3,5	
Teilsicherheitsbeiwe	ert tionale Baselungen		γ Ms,fi $^{1)}$	[-]		1	,0		

¹⁾ Sofern andere nationale Regelungen fehlen

²⁾ Produkt nicht vorhanden

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen und Spezialschrauben unter Brandbeanspruchung	Anhang C25

Tabelle 54: Charakteristische Widerstände der Ankerschienen unter Brandbeanspruchung – Stahlversagen für HAC-C(-P) (warmgewalzte) Ankerschienen

Spezialschrauben			M10	M12	M16	M20				
Stahlversagen: Anker, Verbindung zwischen Anker und Schiene und Aufbiegen der Schienenlippe										
Stahl und Nichtrostender Stahl (A4)										
Charakterischer Widerstand unter Brandbean- spruchung	HAC-C(-P) 40/22 HAC-C-P 40L HAC-C(-P) 50/30 HAC-C-P 50L	R60				_ 3)	3,5			
		R90	N _{Rk,s,fi} = V _{Rk,s,y,fi}		_ 3)	_ 3)	2,2	_ 2)		
		R120		[LAI]			1,5			
		R60		[kN]		3,8	3,	9		
		R90			_ 2)	2,5	2,	9		
	HAC-C 52/34	R120				1,9	2,4			
Teilsicherheitsbeiwert			γMs,fi ¹⁾	[-]	1,0					

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 55: Charakteristische Widerstände der Ankerschienen unter Brandbeanspruchung – Stahlversagen für HAC-C (kaltverformte) Ankerschienen

Spezialschrauben		M10	M12	M16	M20					
Stahlversagen: An	Stahlversagen: Anker, Verbindung zwischen Anker und Schiene und Aufbiegen der Schienenlippe									
Stahl und Nichtrostender Stahl (A4)										
		R60			0	,8				
	HAC-C 28/15	R90	NRk,s,fi = VRk,s,y,fi		0,	,6	- 2)	_ 2)		
		R120			0,	,5				
	HAC-C 40/25 HAC-C 49/30	R60					1,9			
		R90			_ 3)	_ 3)	1,3	_2		
Charakterischer Widerstand in		R120		[kN]			1,0			
gerissenem Beton		R60		ן נאואן	1,7	3	,5			
genoschem Beton		R90			1,2	3,5 2,2	_ 2)			
		R120			0,9	1	,5			
		R60				3,8	3,	9		
		R90			_ 2)	2,5	2,	9		
		R120				1,9	2,	4		
Teilsicherheitsbeiwert			γMs,fi ¹⁾	[-]	1,0					

¹⁾ Sofern andere nationale Regelungen fehlen

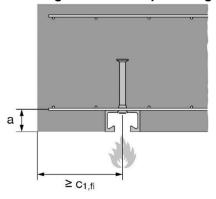
Ankerschienen (HAC-C) mit Spezialschrauben (HBC)	
Leistung Charakteristische Widerstände der Ankerschienen und Spezialschrauben unter Brandbeanspruchung	Anhang C26

²⁾ Produkt nicht vorhanden

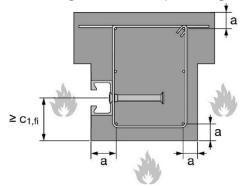
³⁾ Leistung nicht bewertet

²⁾ Produkt nicht vorhanden

³⁾ Leistung nicht bewertet


Tabelle 56: Minimaler Achsabstand der Bewehrung – für HAC-C-T (warmgewalzte gezahnte) Ankerschienen

Ankerschiene				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
	R30				35		50			
Minimaler Achsabstand	R60		a [mm]		35		50			
Minimaler Achsabstand	R90	а		45				50		
	R120				55			55		


Tabelle 57: Minimaler Achsabstand der Bewehrung – für HAC-C (kaltverformte) and HAC-C(-P) (warmgewalzte) Ankerschienen

Ankerschiene				HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C(-P) 40/22	HAC-C-P 40L	HAC-C 49/30	HAC-C(-P) 50/30	HAC-C-P 50L	HAC-C 54/33	HAC-C 52/34
	R60		[mm]	35						50			
Minimaler Achsabstand	R90	а		45				50					
	R120			55				55 55					

Einseitige Brandbeanspruchung

Mehrseitige Brandbeanspruchung

Ankerschienen (HAC-C) mit Spezialschrauben (HBC)

Leistung

Charakteristische Widerstände der Ankerschienen und Spezialschrauben unter Brandbeanspruchung

Anhang C27