

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0336 of 29 August 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Anchor channels (HAC-C) with channel bolts (HBC)

Anchor channels

Hilti AG

Feldkircherstraße 100

9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Hilti Manufacturing Plants

53 pages including 3 annexes which form an integral part of this assessment

EAD 330008-04-0601, Edition 07/2024

ETA-17/0336 issued on 18 July 2024

Z086700.25

European Technical Assessment ETA-17/0336

English translation prepared by DIBt

Page 2 of 53 | 29 August 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 53 | 29 August 2025

Specific Part

1 Technical description of the product

The anchor channels (HAC-C) with channel bolts (HBC) are a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts (HBC) with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1 and C2
- Resistance to steel failure of the connection between anchors and channel	N _{Rk,s,c} see Annex C1 and C2
Resistance to steel failure of channel lips and subsequently pull-out of channel bolt	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1 and C2
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C14
- Resistance to steel failure by exceeding the bending strength of the channel	s_{max} see Annex B3 and B4 $M_{Rk,s,flex}$ see Annex C3
Maximum installation torque to avoid damage during installation	$T_{inst,g}$; $T_{inst,s}$ see Annex B5
- Resistance to pull-out failure of the anchor	N _{Rk,p} see Annex C4 to C6
- Resistance to concrete cone failure	h_{ef} see Annex B3 and B4 $k_{cr,N}$; $k_{ucr,N}$ see Annex C4 to C6
Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation	s_{min} see Annex B3 and B4 c_{min} ; h_{min} see Annex B3 and B4
Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C4 to C6
- Resistance to blowout failure - bearing area of anchor head	A _h see Annex A6

Page 4 of 53 | 29 August 2025

Essential characteristic	Performance			
Characteristic resistance under shear load (static and quasi-static loading)				
- Resistance to steel failure of channel bolt under shear loading without lever arm	$V_{Rk,s}$ see Annex C15			
- Resistance to steel failure by bending of the channel bolt under shear load with lever arm	$M_{Rk,s}^{\ 0}$ see Annex C16			
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel or steel failure of anchor (shear load in transverse direction) 	$V_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C8 and C9			
- Resistance to steel failure of connection between channel lips and channel bolt (longitudinal shear)	$V_{Rk,s,l,x}$ see Annex C10			
- Factor for sensitivity to installation (longitudinal shear)	γ_{inst} see Annex C10			
- Resistance to steel failure of the anchor (longitudinal shear)	$V_{Rk,s,a,x}$ see Annex C8 and C9			
- Resistance to steel failure of connection between anchor and channel (longitudinal shear)	$V_{Rk,s,c,x}$ see Annex C8 and C9			
- Resistance to concrete pry-out failure	k_8 see Annex C11			
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C11			
Characteristic resistance under combined tension and shear load (static and quasi-static load)				
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C13			
Characteristic resistance under fatigue tension loading				
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2) 	$\Delta N_{Rk,s,0,n}$ $(n=1 \ to \ n=\infty)$ see Annex C18			
- Fatigue limit resistance to steel failure of the whole system (assessment method B)	$\Delta N_{Rk,s,0,\infty}$ see Annex C20			
- Fatigue resistance to steel failure of the whole system (linearized function, assessment method C)	No performance assessed			
- Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2)	$\Delta N_{Rk,c,0,n} \Delta N_{Rk,p,0,n} (n=1 \ to \ n=\infty)$ see Annex C19			
Fatigue limit resistance to concrete related failure (assessment method B)	$\Delta N_{Rk,c,0,\infty} \Delta N_{Rk,p,0,\infty}$ see Annex C 20			
- Fatigue resistance to concrete related failure (linearized function, assessment method C)	No performance assessed			

Page 5 of 53 | 29 August 2025

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
- Resistance to steel failure under seismic tension loading (seismic performance category C1)	$N_{Rk,s,a.eq}$; $N_{Rk,s,c.eq}$; $N_{Rk,s,l.eq}$ see Annex C21
	$M_{Rk,s,flex.eq}$ see Annex C22 $N_{Rk,s.eq}$ see Annex C24
	WRk,s.eq See Alliex 024
- Resistance to steel failure under seismic shear	$V_{Rk,s.eq}$ see Annex C24
loading for shear load in transverse direction (seismic performance category C1)	$V^0_{Rk,s,l,y.eq}$; $V_{Rk,s,c,y.eq}$; $V_{Rk,s,a,y.eq}$ see Annex C22
- Resistance to steel failure under seismic shear	$V_{Rk,s,l,x.eq}$ see Annex C23
loading for shear load in longitudinal channel axis (seismic performance category C1)	$V_{Rk,s,a,x.eq}$; $V_{Rk,s,c,x.eq}$ see Annex C22
Characteristic resistance under static and quasi-static tension and/or shear loading	
- Displacements	δ _{N0} ; δ _{N∞} see Annex C7
	$\delta_{V,y,0}$; $\delta_{V,y,\infty}$; $\delta_{V,x,0}$; $\delta_{V,x,\infty}$ see Annex C12 and C13

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	$N_{Rk,s,fi}$; $V_{Rk,s,y,fi}$ see Annex C25 and C26		

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Page 6 of 53 | 29 August 2025

The following standards are referred to in this European Technical Assessment:

EN 10025-1:2004	Hot rolled products of structural steels - Part 1: General technical delivery conditions
EN 10149-1:2013	Hot rolled flat products made of high yield strength steels for cold forming -
EN 10263-1:2017	Part 1: General technical delivery conditions Steel rod, bars and wire for cold heading and cold extrusion - Part 1: General technical delivery conditions
EN ISO 898-1:2013	Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs with specified property classes –
EN ISO 898-2:2022	Coarse thread and fine pitch thread (ISO 898-1:2013) Fasteners - Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes (ISO 898-2:2022)
EN ISO 7089:2000	Plain washers – Normal series, Product grade A (ISO 7089:2000)
EN ISO 7093-1:2000	Plain washers - Large series - Part 1: Product grade A (ISO 7093-1:2000)
EN ISO 4032:2023	Fasteners – Hexagon regular nuts (style 1) (ISO 4032:2023)
DIN 934:1987-10	Hexagon nuts with metric coarse and fine pitch thread; product grades A and B
EN ISO 1461:2022	Hot dip galvanized coatings on fabricated iron and steel articles - Specifications and test methods (ISO 1461:2022)
EN ISO 4042:2022	Fasteners - Electroplated coating systems (ISO 4042:2022)
EN ISO 10684:2004 + AC:2009	Fasteners - Hot dip galvanized coatings (ISO 10684:2004 + Cor. 1:2008)
EN 10088-1:2023	Stainless steels - Part 1: List of stainless steels
EN ISO 3506-1:2020	Fasteners - Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, screws and studs with specified grades and property classes (ISO 3506-1:2020)
EN 206:2013 + A2:2021	Concrete - Specification, performance, production and conformity
EN 1993-1-4:2006 + A1:2015 + A2:2020	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels
EN 1992-4:2018	Eurocode 3: Design of steel structures - Part 4: General rules - Supplementary rules for stainless steels
EOTA TR047:2021-05	Design of anchor channels in addition to EN 1992-4
EOTA TR050:2023-10	Calculation method for the performance of Anchor channels under

Z086700.25 8.06.01-21/25

Fatigue Cyclic Loading

European Technical Assessment ETA-17/0336

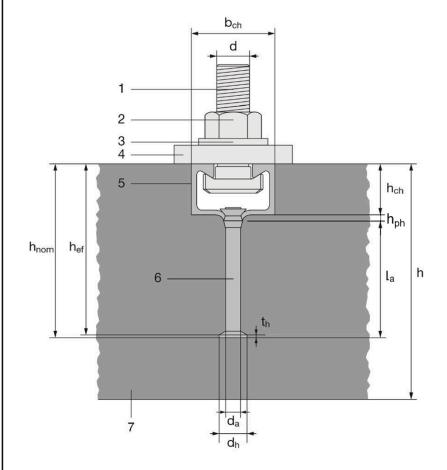
English translation prepared by DIBt

Page 7 of 53 | 29 August 2025

EN 1992-1-1:2023 Eurocode 2: Design of concrete structures -

Part 1-1: General rules - Rules for buildings, bridges and civil

engineering structures


Issued in Berlin on 29 August 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Andreas Kummerow Head of Department

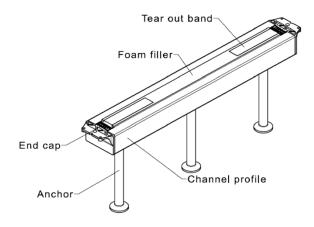
beglaubigt: Müller

Product and installed condition (e.g. hot-rolled channel profile with a round anchor)

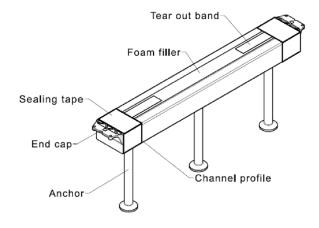
Key

- 1 channel bolt
- 2 hexagonal nut
- 3 washer
- 4 fixture
- 5 channel profile
- 6 anchor
- 7 concrete member

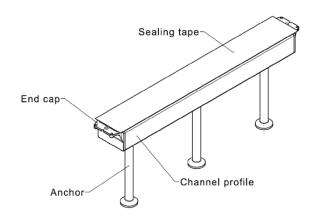
Hilti anchor channels (HAC-C) with channel bolts (HBC)


Product Description Installed condition

Annex A1

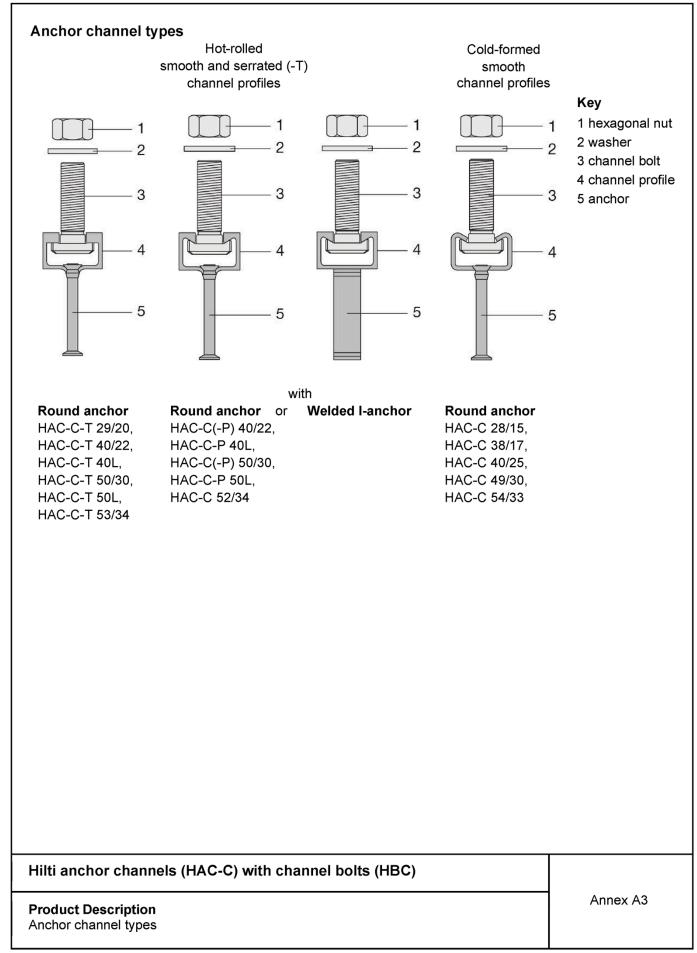


Channel profiles sealing


Channel without additional sealing

Channel with additional sealing (side sealing)

Channel with additional sealing (top sealing)


Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description

Sealing of the channel profile

Annex A2

Marking of the Hilti anchor channel:

 $HAC-C(-T)(-P)(-I) \times WZ$

HAC = Identifying mark of the manufacturer (<u>H</u>ilti <u>A</u>nchor <u>C</u>hannel)

T = Additional marking for serrated channels
P = Additional marking for premium line

b)

I = Additional marking for I-anchors (no marking in case of round anchors)

X = Size of the channel W = Channel length

Z = Corrosion protection/material (e.g. F for Hot dip galvanized, A4 or A2 for Stainless steel)

a)

HAC-C-T 40/22 300 F

Item # ... Lot # ... HAC-C-T 40/22 300 F

Item # / Lot #

HAC-C-T 40/22 F

(sticker and/or ink printed mark e.g. on the back side of the channel e.g. HAC-C-T 40/22 300 F)

HAC-C-T = Serrated anchor channel 40/22 ¹⁾ = Anchor channel size 40/22 F = Hot dip galvanized 300 = 300 mm channel length (lch) (stamp mark inside of the channel, e.g. HAC-C-T 40/22 F)

Note: 1) Anchor channel HAC-C-T 40/22 can be produced as well with marking "38/23" without changes in the sizes of the product. The same performance parameters are applicable to 38/23 as they are for 40/22.

Marking of the Hilti channel bolt:

HBC(-T) X (-N) Y Z

HBC = Identifying mark of the manufacturer (<u>H</u>ilti <u>B</u>olt <u>C</u>hannel)

T = Additional marking for serrated bolt

X = Size of the bolt

N = Additional marking for notching bolt

Y = Steel grade/strength class

Z = Corrosion protection/material (e.g. F)

(stamp mark on the back side of the bolt, e.g. HBC-T40 8.8F)

HBC-T = Serrated bolt (for serrated anchor channel HAC-C-T)

= Size of the channel bolt (see Table 3)

8.8 = Strength class 8.8 F = Hot dip galvanized

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description

Marking of anchor channel and channel bolts

Annex A4

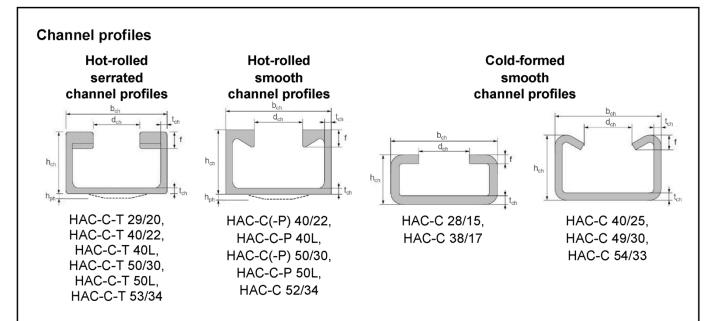


Table 1: Dimensions of channel profile

Anchor channel	b ch	h _{ch} 1)	h _{ph} ¹⁾	tch	d _{ch}	f ²⁾	ly	
Anchor channel		[mm ⁴]						
HAC-C-T (hot-rolled serr	HAC-C-T (hot-rolled serrated) channel profiles							
HAC-C-T 29/20	30,4	20,0	1,6	3,2	14,0	5,35	11.832	
HAC-C-T 40/22 HAC-C-T 40L	38,0	23,0	2,0	3,25	18,0	6,35	21.570	
HAC-C-T 50/30 HAC-C-T 50L	50,0	30,0	2,5	3,4	22,5	7,3	58.546	
HAC-C-T 53/34	53,5	34,0	4,0	4,5	22,5	8,50	100.900	
HAC-C(-P) (hot-rolled) cl	nannel prof	iles						
HAC-C(-P) 40/22 HAC-C-P 40L	40,1	23,0	1,95	2,7	18,0	6,0	21.504	
HAC-C(-P) 50/30 HAC-C-P 50L	49,6	30,0	2,5	3,2	22,5	8,1	57.781	
HAC-C 52/34	52,5	34,0	-	4,0	22,5	11,5	97.606	
HAC-C (cold-formed) cha	annel profil	es						
HAC-C 28/15	28,0	15,5	-	2,3	12,0	2,3	4.277	
HAC-C 38/17	38,0	17,25	-	3,0	18,0	3,0	8.224	
HAC-C 40/25	40,0	25,0	-	2,75	18,0	5,6	20.122	
HAC-C 49/30	50,0	30,0	-	3,25	22,0	7,4	43.105	
HAC-C 54/33	53,5	33,0	-	5,0	21,5	8,0	74.706	

¹⁾ For hot-rolled serrated and smooth anchor channels – local increase of the channel height (height of the punched hole) in the area where the anchor is connected is not taken into account in the calculation of the h_{ch};

²⁾ For hot-rolled serrated channels (HAC-C-T) height of channel lips includes height of the teeth;

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Product Description Channel profiles (HAC-C)	Annex A5

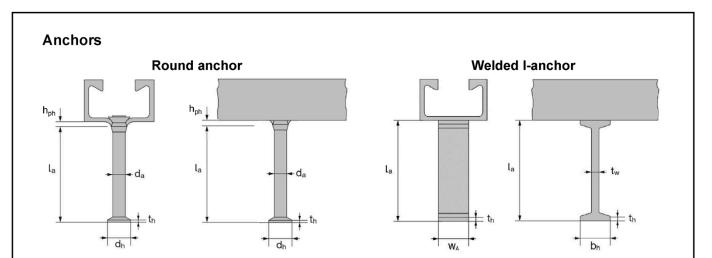
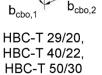


Table 2: Dimensions of anchor (welded I-anchor or round anchor) 1)

	Round anchor			Round anchor				1	Welded I-anchor				
Anchor channel	min la	da	dh	t h	Ah	min la	t _w	b _h	t h	W A	Ah		
		[mr	n]		[mm²]	[mm]				[mm²]			
HAC-C-T (hot-rolle	d serrate	d)											
HAC-C-T 29/20	62,4	9,0	18,0	2,0	190,8			_2	2)				
HAC-C-T 40/22	71,2	10,0	21,5	2,2	284,4			_2	2)				
HAC-C-T 40L	87,2	10,0	21,5	2,2	284,4			_2	2)				
HAC-C-T 50/30	101,5	11,0	26,0	2,5	435,9			_2	2)				
HAC-C-T 50L	141,8	11,0	26,0	2,5	435,9			_2	2)				
HAC-C-T 53/34	119,5	12,0	26,0	2,5	417,8			_2	2)				
HAC-C(-P) (hot-roll	ed smoo	th)											
HAC-C 40/22	58,0	8,0	16,0	2,0	151,0	62,0	5,0	20,0	5,0	20,0	300,0		
HAC-C-P 40/22	70,0	10,0	21,5	2,2	285,0	125,0	6,0	25,0	5,0	20,0	380,0		
HAC-C-P 40L	83,2	10,0	21,5	2,2	285,0	_2)							
HAC-C 50/30	66,0	10,0	20,0	2,2	236,0	69,0	5,0	20,0	5,0	25,0	375,0		
HAC-C-P 50/30	78,0	11,0	26,0	2,5	436,0	125,0	6,0	25,0	5,0	25,0	475,0		
HAC-C-P 50L	118,3	11,0	26,0	2,5	436,0			_2	2)				
HAC-C 52/34	123,5	11,0	24,3	2,5	369,0	125,0	6,0	25,0	5,0	40,0	760,0		
HAC-C (cold-forme	d smoot	h)											
HAC-C 28/15	31,0	6,0	12,0	1,3	85,0	_2)							
HAC-C 38/17	60,8	8,0	16,0	2,0	151,0	_2)							
HAC-C 40/25	56,0	8,0	16,0	2,0	151,0	02)							
HAC-C 49/30	66,0	10,0	20,0	2,2	236,0	236,0 -2)							
HAC-C 54/33	124,5	11,0	24,3	2,5	369,0			_2	2)				

¹⁾ For cold-formed channel profiles (and for HAC-C 52/34) - hph = 0 and length of the anchor calculated similar to a Welded I-anchor; ²⁾ Product not available;

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Product Description Anchors	Annex A6



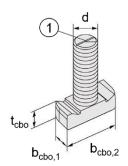
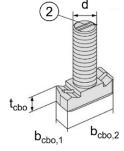
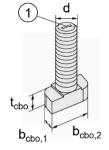

Channel bolts

Table 3: Dimensions of channel bolt


	Stee			Dimensions				
Anchor channel	Channel bolt	el grade	d	b _{cbo,1}	b _{cbo,2}	$t_{\sf cbo}$		
		1)		[r	mm]			
For hot-rolled serrated (HAC-C-T) channels								
HAC-C-T 29/20	HBC-T	8.8,	10	13,5	22,8	8,0		
11/40-0-1 29/20	29/20	A4-70	12	13,5	22,8	8,0		
	нвс-т	8.8,	10	17,1	30,3	9,5		
HAC-C-T 40/22	40/22	A4-70	12	17,1	30,3	9,5		
	10/22	71170	16	17,1	30,3	9,5		
HAC-C-T 50/30	HBC-T	8.8,	16	21,0	42,0	13,8		
HAC-C-T 53/34	50/30	A4-70	20	21,0	42,0	13,8		
For hot-rolled and	d/or cold-fo	ormed sr	nooth	(HAC	-C) cha			
HAC-C(-P) 40/22	HBC-	8.8,	10	14,0	33,0	10,5		
HAC-C-P 40L	40/22	A4-70	12	14,0	33,0	11,5		
HAC-C 40/25	T0/22	714-70	16	17,0	33,0	11,5		
HAC-C-P 40/22 HAC-C-P 40L	HBC- 40/22-N	8.8, A4-70	16	17,0	33,0	11,5		
HAC-C 49/30 HAC-C(-P) 50/30	HBC- 50/30		12	17,0	42,0	14,5		
HAC-C-P 50L					· · · · · · · · · · · · · · · · · · ·	16	17,0	42,0
HAC-C 52/34 HAC-C 54/33			20	21,0	42,0	15,5		
HAC-C-P 50/30 HAC-C-P 50L	HBC-	8.8,	16	21,0	42,0	15,5		
HAC-C 52/34	50/30-N	A4-70	20	21,0	42,0	15,5		
For cold-formed	smooth (H	AC-C) ch	anne	ls				
	⊔вс	8.8,	10	13,0	30,5	6,0		
HAC-C 38/17	HBC- 38/17	0.0, A4-70	12	13,0	30,5	7,0		
		/ (1-70	16	16,0	30,5	7,0		
	HBC	ΩΩ	8	10,1	22,2	5,0		
HAC-C 28/15	HBC- 28/15	8.8, A4-70	10	10,1	22,2	5,0		
		/ \4 -10	12	11,0	22,2	8,0		

 $b_{cbo,2}\\$ $b_{cbo,1}$ HBC-T 29/20,



HBC-40/22; HBC-50/30

HBC-40/22-N, HBC-50/30-N

HBC-28/15, HBC-38/17

Note:

Marking of the bolt's position:

- 1 Single groove;
- (2) Double groove

1) Material properties according to Annex A6

Table 4: Steel grade and corrosion protection

Channel Bolt	Carbon steel 1) 2)	Stainless steel 1) 3)					
Steel grade	8.8	A4-70					
f _{uk} [N/mm ²]	800 / 830	700					
f _{yk} [N/mm ²]	640 / 660	450					
Corrosion protection	G ⁴⁾ ; F ⁵⁾	R					

¹⁾ Material properties according to Annex A8

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Product Description

Channel bolts (HBC)

Annex A7

²⁾ Material properties according to EN ISO 898-1

³⁾ Material properties according to EN ISO 3506-1

⁴⁾ Electroplated

⁵⁾ Hot dip galvanized

Table 5: Materials

	Carbon steel Stainless steel								
Component	Material properties	Coating		Coating			erial erties		
1	2a	2b	2c	3	4				
Channel Profile	1.0038, 1.0044, 1.0045 according to EN 10025-1 1.0976, 1.0979 according to EN 10149-1		nized ≥ 55 µm ³⁾ nized ≥ 70 µm ⁴⁾	1.4301	1.4362, 1.4401 1.4404, 1.4571, 1.4578				
Anchor	1.0038, 1.0213, 1.0214 according to EN 10025-1 1.5523, 1.5535 according to EN 10263-1	acco	ording to 461, Table 3	according to EN 10088-1 ³⁾	according to EN 10088-1 ³⁾				
Channel bolt	Steel grade 8.8 according to EN ISO 898-1	Electroplated according to EN ISO 4042	Hot dip galvanized ≥ 50 µm according to EN ISO 10684	Grade 70 according to EN ISO 3506-1					
Plain washer 1) according to EN ISO 7089 and EN ISO 7093- 1	Hardness class A ≥ 200 HV	Electroplated according to EN ISO 4042	Hot dip galvanized ≥ 50 µm according to EN ISO 10684	1.4401, 1.4404 1.4571, 1.4578 according to EN 10088-1					
Hexagonal nut according to EN ISO 4032 or DIN 934	Property class 8 according to EN ISO 898-2	Electroplated according to EN ISO 4042	Hot dip galvanized ≥ 50 µm according to EN ISO 10684	Property class 50, 70 or 80 according to EN ISO 3506-1					

¹⁾ In scope of delivery only for notched bolts

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Product Description Materials	Annex A8

²⁾ Anchors made of carbon steel according to column 2a may also be used if they are welded and their concrete cover is more than 50 mm and tempering colors are removed;

³⁾ Anchor channels according to the Table 5 column 3 have marking "A2" and according to the column 4 marking "A4";

³⁾ For HAC-C-T 29/20; HAC-C(-P) 40/22, 40L; HAC-C 28/15, 38/17, 40/25, 49/30, 54/33;

⁴⁾ For HAC-C-T 53/34, 50/30, 50L, 40/22, 40L; HAC-C(-P) 50/30, 50L, 53/34.

Specifications of intended use

Working life:

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of anchor channel of at least:

- 50 years
 - (anchor channels and channel bolts made of Carbon steel according to Annex A8, columns 2a-2c)
- 100 years (anchor channels and channel bolts made of Stainless steel A4 according to Annex A8, column 4)

Anchor channels and channel bolts subject to:

- Static and quasi-static tension and shear perpendicular to the longitudinal axis of the channel
- Static and quasi-static shear in the direction of longitudinal axis
 (anchor channels HAC-C-P 40/22 and HAC-P 40L with notching channel bolts HBC 40/22-N; anchor
 channels HAC-C-P 50/30 and HAC-C-P 50L with notching channel bolts HBC 50/30-N and serrated
 anchor channels HAC-C-T with serrated channel bolts HBC-T)
- Fatigue cyclic tension loads

 (anchor channels and channel bolts according to Annex C17)
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel (seismic performance category C1) (anchor channels with channel bolts according to Annex C19);
- Fire exposure only for concrete class C20/25 to C50/60 for tension and shear perpendicular to the longitudinal axis of the channel (anchor channels and channel bolts according to Annexes C23-C25)

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibers according to EN 206.
- Strength classes C12/15 to C90/105 according to EN 206.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A8, Table 5, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A8, Table 5, column 2c and 3).
- According to EN 1993-1-4 relating to corrosion resistance class CRC II
 (anchor channels and channel bolts made of stainless-steel number 1.4301, washers and nuts made of stainless-steel number 1.4401, 1.4404, 1.4571, 1.4362 and 1.4578 according to Annex A8, Table 5, column 3).
- According to EN 1993-1-4 relating to corrosion resistance class CRC III
 (anchor channels and channel bolts, washers and nuts made of stainless-steel number 1.4401, 1.4404,
 1.4571, 1.4362 and 1.4578 according to Annex A8, Table 5, column 4).

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Intended Use Specifications	Annex B1

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of
 the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading and fire exposure the anchor channels are designed in accordance with EN 1992-4 and EOTA TR 047.
- For fatigue loading the anchor channels are designed in accordance with TR 050.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 6 and 7 as well as Annex B4, Table 8 are generated including end-spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the installation instructions given in Annexes B7-B11.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B8, B9 and B10) rectangular to the channel axis.
- Hexagonal nut must be fastened by a calibrated torque wrench. The required installation torques given in Annex B5 must be applied and must not be exceeded.

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Intended Use Specifications	Annex B2

Table 6: Installation parameters for HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel				HAC-C-T 29/20		HAC-C-T 40/22		HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Minimum effective embedment depth	h _{ef,min}		82			9	4	110	108	148	155
Minimum spacing	Smin		100	100	50	80	100	80	80	80	80
Maximum spacing	Smax		200		250		250		250		
End spacing	х	[mm]	25 ²⁾		25 ²⁾		30 ²⁾		35		
Minimum channel length	I _{min}		150	150	100	130	150	130	140	140	170
Minimum edge distance	Cmin		75	50	75	75	50	75	75	75	75
Minimum thickness of concrete member	h _{min}		100	125	125	100	125 h _{ef} + t _h	125 + C _{nom} 1)	120	162	178

¹⁾ c_{nom} according to EN 1992-1-1

Table 7: Installation parameters for HAC-C(-P) (hot-rolled) anchor channels

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Minimum effective embedment depth	h _{ef,min}		79	91	106	94	106	148	155
Minimum spacing	Smin		100	50	50	100	50 ³⁾	50	100
Maximum spacing	Smax					250			
End spacing	х] [mm]			2	5 ²⁾			35 ⁴⁾
Minimum channel length	I _{min}		150	100	100	150	100	100	170 ⁵⁾
Minimum edge distance	C _{min}			50			75		75
Minimum thickness of concrete member	h _{min}		100	100	120 h	105 _{ef} + t _h + c _{no}	120 m ¹⁾	162	165

¹⁾ c_{nom} according to EN 1992-1-1

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Intended Use
Installation parameters for anchor channels (HAC-C) and channel bolts (HBC)

Annex B3

²⁾ the end spacing may be increased from 25 mm to 35 mm

²⁾ the end spacing may be increased from 25 mm to 35 mm

³⁾ s_{min} = 100 mm when used in combination with notching bolts

 $^{^{4)}}$ x = 25 mm for welded I-anchors

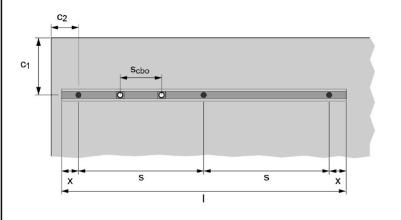

⁵⁾ I_{min} = 150 mm for welded I-anchors

Table 8: Installation parameters for HAC-C (cold-formed) anchor channels

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Minimum effective embedment depth	h _{ef,min}		45	76	79	94	155
Minimum spacing	Smin		50		10	00	
Maximum spacing	imum spacing s _{max}		200 250				
End spacing	x	[mm]			25 ²⁾		
Minimum channel length	I _{min}]]	100		15	50	
Minimum edge distance	C _{min}		40	50	50	75	100
Minimum thickness of concrete member	h _{min}		70	100	100 h _{ef} + t _h + c _{nom} 1	120	180

¹⁾ c_{nom} according to EN 1992-1-1 2) the end spacing may be increased from 25 mm to 35 mm

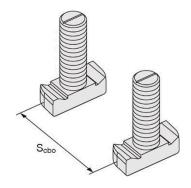


Table 9: Minimum spacing for channel bolts

Channel bolt	M8	M10	M12	M16	M20	
Minimum spacing between channel bolts	s _{cbo,min} [mn	40	50	60	80	100

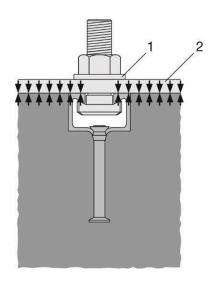
 s_{cbo} = center to center spacing between channel bolts ($s_{cbo,min}$ = 5d)

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Intended Use Installation parameters for anchor channels (HAC-C) and channel bolts (HBC)	Annex B4

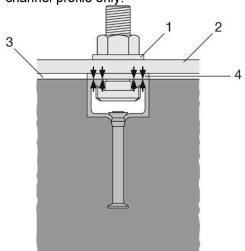
Table 10: Required installation torque T_{inst}

		Ins	tallation torque T _{inst} [N	m] ¹⁾
Channel bo	olt	General T _{inst,g} [Nm]	Steel - ste	
	Ghamier Boile		T _{inst,s}	
		8.8, A4-70	8.8	A4-70
Bolts for hot-rolled ser	rated (HAC-C-T) anchor channels ²⁾		
HBC-T 29/20	M10	40	40	40
HBC-1 29/20	M12	60	60	60
	M10	40	40	40
HBC-T 40/22	M12	60	60	60
	M16	100	100	100
HBC-T 50/30	M16	100	100	100
1160-1 30/30	M20	120	120	120
Bolts for hot-rolled and	or cold-formed	d smooth (HAC-C) an	chor channels ²⁾	
	M10	15	_3)	22
HBC 40/22	M12	25	45	50
	M16	30	100	90
HBC 40/22-N	M16	30	160	_3)
	M12	25	45	50
HBC 50/30	M16	60	100	130
	M20	75	360	250
HBC 50/30-N	M16	60	185	_3)
ПВС 30/30-N	M20	75	320	_3)
Bolts for cold-formed s	mooth (HAC-C)	anchor channels 2)		
	M8	7	20	15
HBC 28/15	M10	10	40	30
	M12	13	60	50
	M10	15	_3)	22
HBC 38/17	M12	25	45	50
	M16	40	100	90

¹⁾ T_{inst} must not be exceeded

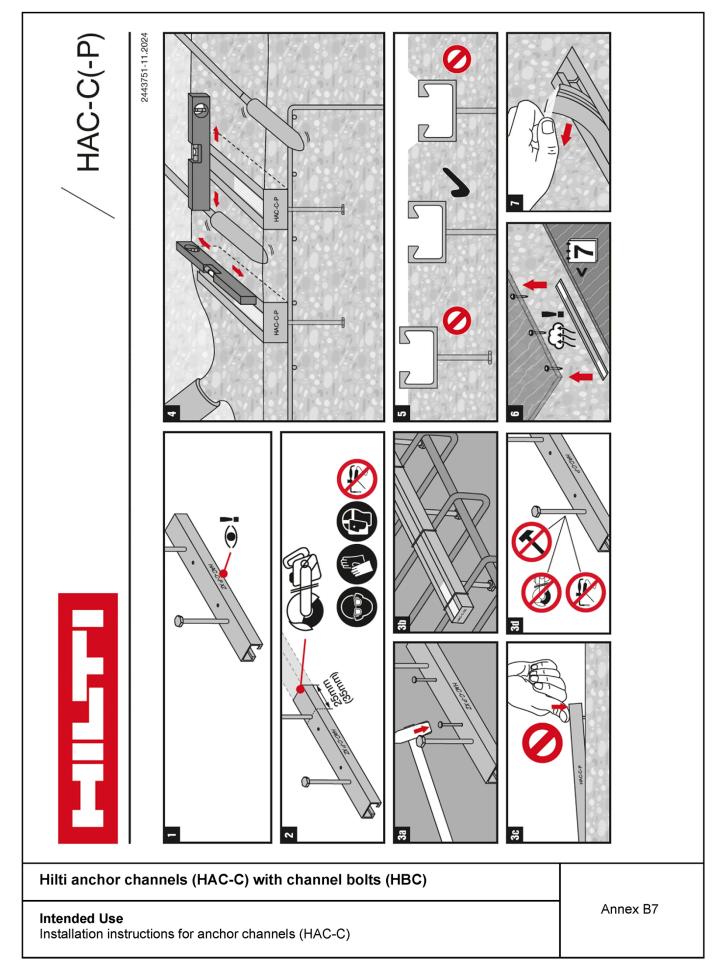

Anchor channels (HAC-C) with channel bolts (HBC)	
Intended Use Installation parameters for channel bolts (HBC)	Annex B5

²⁾ According to the Table 3

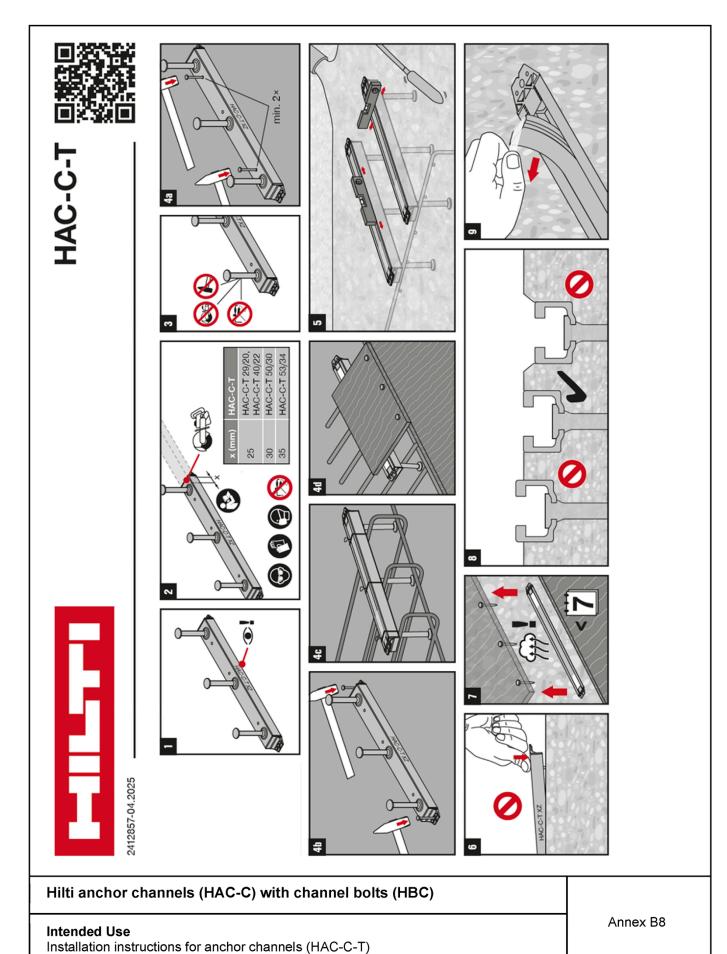

³⁾ Product not available

<u>General:</u> The fixture is in contact with the channel profile and the concrete surface

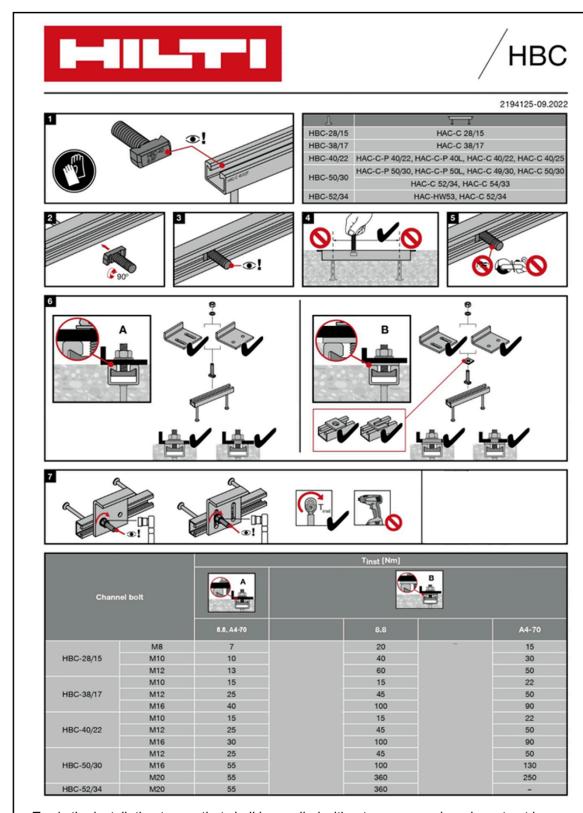
<u>Steel-steel contact:</u> The fixture is fastened to the anchor channel by suitable steel part (e.g. washer). Fixture is in contact with the channel profile only.

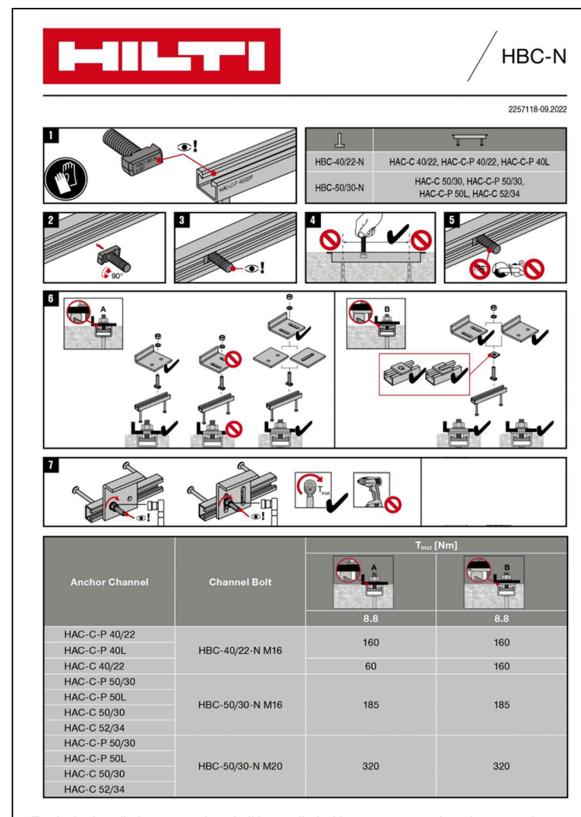

Key

- 1 washer
- 2 fixture
- 3 gap
- 4 suitable steel part


Anchor channels (HAC-C) with channel bolts (HBC)

Intended UsePosition of the fixture





T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Intended Use

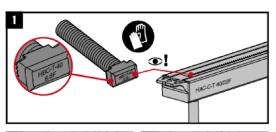
Installation instructions for channel bolts (HBC)

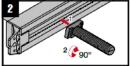
T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

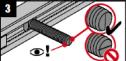
Hilti anchor channels (HAC-C) with channel bolts (HBC)

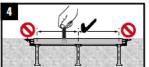
Intended Use

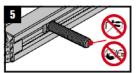
Installation instructions for notching channel bolts (HBC-N)

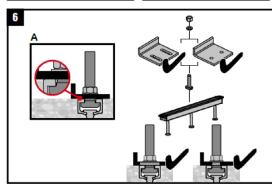


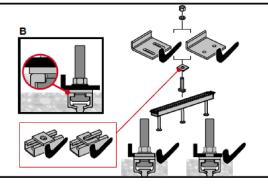

HBC-T

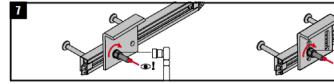



2412973-05.2025




T-bolt	Channel
HBC-T-29/20	HAC-C-T 29/20
HBC-T-40/22	HAC-C-T 40/22
HBC-T-50/30	HAC-C-T 50/30
	HAC-C-T 53/34





		^
Channel I	oolt	T _{inst} [Nm] =
		8.8 / A4-70
HBC-T-29/20	M10	40
HBC-1-29/20	M12	60
	M10	40
HBC-T-40/22	M12	60
	M16	100
HDC T 50/00	M16	100
HBC-T-50/30	M20	120

T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Intended Use

Installation instructions for serrated channel bolts (HBC-T)

Table 11: Characteristic resistances under tension load – steel failure of HAC-C-T (serrated hot-rolled) anchor channels

	<u> </u>								
Anchor channel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Steel failure: Ancho	or								
Characteristic	Carbon steel	N	[LAI]	25.0	41	,0		7.0	70 F
resistance	Stainless steel	N _{Rk,s,a}	[kN]	35,0	45	5,0	5/	7,0	73,5
Partial factor		γ _{Ms} 1)	[-]	1,8					
Steel failure: Conne	ction between an	chor and	d chan	nel					
Characteristic Carbon steel	Carbon steel	NI-	[LV]	33,0	40,0 42,0		55,0		72.5
resistance	Stainless steel	N _{Rk,s,c}	[kN]	35,0			60	0,0	73,5
Partial factor		γ _{Ms,ca} 1)	[-]	1,8					
Steel failure: Local	flexure of channel								
Characteristic spacin of channel bolts for N		Sı,N	[mm]	61 76 100 10				107	
Characteristic	Carbon steel	N10	[LN1]	25.0	45	45,0		64,0	
resistance	Stainless steel	N ⁰ Rk,s,I	[kN]	35,0	42	2,0		1,0	85,0
Partial factor γ _{Ms,I} 1) [-]			[-]			1	,8		

¹⁾ In absence of other national regulations.

Table 12: Characteristic resistances under tension load – steel failure of HAC-C(-P) (smooth hot-rolled) anchor channels

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a}	[kN]	20,0	40,0	40,0	31,0	57,0	57,0	55,0
Partial factor	γ _{Ms} 1)	[-]				1,8			
Steel failure: Connection between and	chor and	chan	nel						
Characteristic resistance	N _{Rk,s,c}	[kN]	20,0	39,6	39,6	31,0	50,6	50,6	55
Partial factor	γ _{Ms,ca} 1)	[-]				1,8			
Steel failure: Local flexure of channel									
Characteristic spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	79	79	79	98	98	98	105
Characteristic resistance	N ⁰ Rk,s,I	[kN]	47,9	47,9	47,9	50,5	50,5	50,5	65,0
Partial factor	γMs,I 1)	[-]				1,8			

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under tension load – steel failure	Annex C1

Table 13: Characteristic resistances under tension load – steel failure of HAC-C (cold-formed) anchor channels

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Failure of anchor							
Characteristic resistance	N _{Rk,s,a}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial safety factor	γMs ¹⁾	[-]			1,8		
Steel failure: Failure of connection	on between a	nchor a	and chanr	nel			
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial safety factor	γMs,ca ¹⁾	[-]			1,8		•
Steel failure: Local failure by flex							
Characteristic spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	56	76	80	100	107
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9,0	18,0	20,0	31,0	55,0
Partial safety factor	γMs,I ¹⁾	[-]			1,8	1	•

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under tension load – steel failure	Annex C2

Table 14: Characteristic flexural resistance of HAC-C-T (serrated hot-rolled) channels under tension load

Anchor channel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40 L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Steel failure: Failure	by flexure of ch	annel							
Characteristic flexural resistance	Carbon steel	M _{Rk,s,flex}	M _{Rk,s,flex} [Nm]	977	15	57	3256		4870
of channel	Stainless steel		נוזווון	1100	17	54	33	66	4626
Partial factor	γ _{Ms,flex} 1) [-] 1,15								

¹⁾ In absence of other national regulations.

Table 15: Characteristic flexural resistance of HAC-C(-P) (hot-rolled) channels under tension load

Anchor channel				HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Failure	by flexure of ch	annel								
Characteristic flexural resistance	Carbon steel	Ma. s	[NIm]	1013	1704	1704	2084	3448	3448	3435
of channel	Stainless steel	M _{Rk,s,flex} [Nm		1013	1704	1704	2004	3440	3440	3433
Partial factor γ _{Ms,flex}		γMs,flex ¹⁾	[-]	1,15						

¹⁾ In absence of other national regulations.

Table 16: Characteristic flexural resistance of HAC-C (cold-formed) channels under tension load

		- (, , , , , , , , , , , , , , , , , , , ,					
Anchor channel				HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Failure	by flexure of ch	annel						
Characteristic flexural resistance	Carbon steel			316	538	979	1669	2929
of channel	Stainless steel	M _{Rk,s,flex} [Nm]		310	527	979	1702	2832
Partial factor γ _{Ms,flex} 1)			[-]			1,15		

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under tension load – steel failure	Annex C3

Table 17: Characteristic resistances under tension load - concrete failure of **HAC-C-T** (serrated hot-rolled) anchor channels

Anchor channel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34			
Type of anchor ²⁾				R	R	R	R	R	R			
Concrete failure: Pull-c	out											
Characteristic resistance in cracked concrete C12	cracked concrete C12/15		[kN]	17,2	25	5,6	39	9,2	37,6			
Characteristic resistance in uncracked concrete C		─ N _{Rk,p}	[KIN]	24,0	35	5,8	54	1,9	52,6			
	C16/20					1,	33					
	C20/25					1,	67					
	C25/30					2,	08					
	C30/37					2,	50					
Factor for	C35/45		[-]	2,92								
$I_{Rk,p} = N_{Rk,p(C12/15)} \cdot \Psi_c$	C40/50	Ψ0		3,33								
	C45/55					3,	75					
	C50/60					4,	17					
	C55/67					4,	58					
	≥C60/75					5,	00					
Partial factor	·	γ _{Mp} = γ _{Mc} 1)	[-]			1	,5					
Concrete failure: Conc	rete cone											
Due de cat fa atau le	Cracked concrete	k cr,N	[-]	7,9	8,1	8,3	8,2	8,6	8,7			
Product factor k₁	Uncracked concrete	k _{ucr,N}	[-]	11,3	11,5	11,8	11,8	12,3	12,4			
Partial factor γ _{Mc}			[-]	1,5								
Concrete failure: Splitt	ing	•										
Characteristic edge dista	ance	C _{cr,sp}	[mm]	246	282	330	324	444	465			
Characteristic spacing		S _{cr,sp}	[mm]	 					930			
Partial factor		$\gamma_{Msp} = \gamma_{Mc}^{1)}$	[-]		1	1	,5	1				

Hilti anchor channels (HAC-C) with channel bolts (HBC)	Annov C4
Performance Characteristic resistances of anchor channels (HAC-C) under tension load – concrete failure	Annex C4

¹⁾ In absence of other national regulations 2) Type of anchor according Annexes A3 and A6

Table 18: Characteristic resistances under tension load - concrete failure of HAC-C(-P) (hot-rolled) anchor channels

Anchor cha				HAC-C 40/22		HAC-C-P	40/22	HAC-C-P 40L		HAC-C 50/30		HAC-C-P 50/30		HAC-C-P 50L		HAC-C	52/34
Type of and				I	R	I	R	ı	R	- 1	R	I	R	- 1	R	ı	R
	ailure: Pull-	out															
	resistance in cracked concrete C12/15			27,0	13,6	34,2	25,6	_1)	25,6	33,8	21,2	42,8	39,2	_1)	39,2	68,4	33,2
Characteristresistance in uncracked concrete C1	n	N _{Rk,p}	p [kN]	37,8	19,0	47,9	35,8	_1)	35,8	47,3	29,7	59,9	54,9	_1)	54,9	95,8	46,5
	C16/20										33						
	C20/25										67						
	C25/30				2,08												
Factor for	C30/37										50						
VRk,p(C12/15)	C35/45	ψο	[-]		2,92 3,33												
	C40/50 C45/55				3,75												
	C50/60				4,17												
	C55/67			4,17													
	>C60/75										00						
Partial facto		$\gamma_{Mp} = \gamma_{Mc}^{2)}$	[-]								,5						
Concrete fa	ailure: Cond																
Product	Cracked concrete	k _{cr,N}	[-]	7	,9	8	,0	8	,2	8	,1	8	,2	8	,6	8	,7
factor k₁	Uncracked concrete	k ucr,N	[-]	11	,2	11	1,5	11	,7	11	,6	11	,7	12	2,3	12	2,4
Partial facto	r	γ _{Mc} ²⁾	[-]							1	,5						
Concrete fa	ailure: Split	ting															
Characteristic edge distance c _{cr,sp} [mm]			[mm]	23	37	2	73	3	18	28	32	3	18	4	44	40	65
Characteris	tic spacing	Scr,sp	[mm]	47	74	54	46	63	36	56	64	63	36	88	38	9:	30
Partial facto	r	$\gamma_{Mp} = \gamma_{Mc}^{2)}$	[-]							1	,5						

¹⁾ Product not available

Hilti anchor channels (HAC-C) with channel bolts (HBC)	A 05
Performance Characteristic resistances of anchor channels (HAC-C) under tension load – concrete failure	Annex C5

 ²⁾ In absence of other national regulations
 3) Type of anchor according Annexes A3 and A6

Table 19: Characteristic resistances under tension load – concrete failure of HAC-C (cold-formed) anchor channels

Anchor channel				HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33			
Type of anchor ²⁾				R	R	R	R	R			
Concrete failure: Pull-c	out										
Characteristic resistance in cracked concrete C12		NI-	[LA]]	7,6	13,6	13,6	21,2	33,2			
Characteristic resistance in uncracked concrete C12/15		─ N _{Rk,p}	[kN]	10,7	19,0	19,0	29,7	46,5			
	C16/20				•	1,33					
	C20/25		[-]			1,67					
	C25/30			2,08							
Factor for N _{Rk,p} = N _{Rk,p(C12/15)} ·Ψ _c	C30/37			2,50							
	C35/45					2,92					
	C40/50	Ψο		3,33							
	C45/55					3,75					
	C50/60			4,17							
	C55/67			4,58							
	≥C60/75					5,00					
Partial factor		$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]	1,5							
Concrete failure: Conc	rete cone										
Product factor k₁	cracked concrete	k cr,N	[-]	7,2	7,8	7,9	8,1	8,7			
Product factor k ₁	uncracked concrete	k ucr,N	[-]	10,3	11,2	11,2	11,6	12,4			
Partial factor		γMc ¹⁾	[-]			1,5]					
Concrete failure: Splitt	ing										
Characteristic edge dista	C _{cr,sp}	[mm]	135	228	237	282	465				
Characteristic spacing		Scr,sp	[mm]	270	456	474	564	930			
Partial factor		$\gamma_{Msp} = \gamma_{Mc}^{1)}$	[-]			1,5					

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under tension load – concrete failure	Annex C6

¹⁾ In absence of other national regulations;²⁾ Type of anchor according Annexes A3 and A6

Table 20: Displacements of HAC-C-T (hot-rolled serrated) anchor channels under tension load

Anchor channe	I			HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Tension load	Carbon steel	N	[kN]	14,8	20,1	20,1	34,6	34,6	50,8
l elision load	Stainless steel		נאואן	17,3	21,0	21,0	37,3	37,3	50,2
Short-term	Carbon steel	2	[mm]	0,9	1,5	1,5	1,2	1,2	1,8
displacement 1)	Stainless steel	δ_{N0}	[mm]	0,9	1,5	1,5	1,7	1,7	1,6
Long-term	Carbon steel	9	[mm]	1,8	3,0	3,0	2,4	2,4	3,6
displacement 1)	Stainless steel	δ _{N∞}	[mm]	1,8	3,0	3,0	3,4	3,4	3,2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 21: Displacements of HAC-C(-P) (hot-rolled) anchor channels under tension load

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Tension load	N	[kN]	13,9	15,3	15,3	14,3	25,8	25,8	25,8
Short-term displacement 1)	δ_{N0}	[mm]	2,3	1,1	1,1	2,2	1,4	1,4	1,4
Long-term displacement 1)	δ _{N∞}	[mm]	4,6	2,2	2,2	4,4	2,8	2,8	2,8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table 22: Displacements of HAC-C (cold-formed) anchor channels under tension load

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Tension load	Ν	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ_{N0}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ _{N∞}	[mm]	1,2	2,6	2,8	2,8	3,2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance
Displacements under tension load

Annex C7

Table 23: Characteristic resistances under shear load – steel failure of HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
Steel failure: An	chor									
Characteristic	Carbon steel	\/	[kN]	27.0	52	2,0	80,0		120.0	
resistance	Stainless steel	$V_{Rk,s,a,y}$	[KIN]	37,0	49),5	10	0,0	120,0	
Characteristic	Carbon steel	24,7		,7	27	· 1	44.4			
resistance	Stainless steel	V _{Rk,s,a,x}	[kN]	22,9	28	3,3	37	44,1		
Partial factor	Carbon steel	1)	r, 1			1	E			
Partial factor	Stainless steel	γMs ¹⁾	[-]	1,5						
Steel failure: Co	nnection betweer	anchor	and ch	annel						
Characteristic	Carbon steel	1/	FL-N17	FI-NIT	[kN] 27.0	52	2,0	80,0		120,0
resistance	Stainless steel	V _{Rk,s,c,y}	[kN]	37,0	49,5		100,0		120,0	
Characteristic	Carbon steel	1/	[LNI]	19,8	24	24,0		33,0		
resistance	Stainless steel	$V_{Rk,s,c,x}$	[kN]	21,0	25,2		36	5,0	44,1	
Partial factor		γ _{Ms} 1)	[-]			1	,8			
	cal flexure of char the longitudinal				ad					
Characteristic spacing of channel bolts for V _{Rk,s,l}		S _{I,V}	[mm]	61,0	76,0		100,0		107,0	
Characteristic	Carbon steel	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ri. Nia	27.0	52	2,0	80,0		120,0	
resistance	Stainless steel	V^0 Rk,s,l,y	[kN]	37,0	49),5	100,0			
Partial factor		γMs,I ¹⁾	[-]			1	,8			

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under shear load – steel failure	Annex C8

Table 24: Characteristic resistances under shear load – steel failure of HAC-C(-P) (hot-rolled) anchor channels

Anchor channel				HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Anchor									
Characteristic resistance	$V_{Rk,s,a,y}$	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Characteristic resistance	$V_{Rk,s,a,x}$	[kN]	_2)	24,0	24,0	_2)	34,2	34,2	33,1
Partial factor	γ _{Ms} 1)	[-]	1,5						
Steel failure: Connection between anchor and channel									
Characteristic resistance	$V_{Rk,s,c,y}$	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Characteristic resistance	$V_{Rk,s,c,x}$	[kN]	_2)	23,8	23,8	_2)	30,4	30,4	28,1
Partial factor	γMs,ca ¹⁾	[-]				1,8			
Steel failure: Local flexure of char perpendicular to the longitudinal				ad					
Characteristic spacing of channel bolts for V _{Rk,s,l}	S _{I,V}	[mm]	80	80	80	99	99	99	105
Characteristic resistance	V^0 Rk,s,l,y	[kN]	55,0	55,0	55,0	91,7	91,7	91,7	71,5
Partial factor	γMs,I ¹⁾	[-]				1,8			

¹⁾ In absence of other national regulations

Table 25: Characteristic resistances under shear load – steel failure of HAC-C (cold-formed) anchor channels

Anchor channel		5. C	O L	ر ور ا	ပ္	ပ္မ			
7o.io. Gilainio.			HAC 28/1	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33		
Steel failure: Anchor						•			
Characteristic resistance	$V_{Rk,s,a,y}$	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γ _{Ms} 1)	[-]	1,5						
Steel failure: Connection between	anchor	and ch	annel						
Characteristic resistance	$V_{Rk,s,c,y}$	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γMs,ca ¹⁾	[-]			1,8				
Steel failure: Local flexure of char perpendicular to the longitudinal	nnel lips								
Characteristic spacing of channel bolts for V _{Rk,s,I}	Sı,v	[mm]	56	76	80	100	107		
Characteristic resistance	V^0 Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γ _{Ms,I} 1)	[-]			1,8				

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under shear load – steel failure	Annex C9

²⁾ No performance assessed

Table 26: Characteristic resistances under shear load in direction of longitudinal axis of the channel – steel failure of HAC-C-T (hot-rolled serrated) anchor channels

Anchor chann	nel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
Steel failure: 0	Steel failure: Connection between channel lips and channel bolt										
	НВС-Т	Carbon steel			20,0	_ 1)					
	29/20 M10	Stainless steel						- ·/			
	НВС-Т	Carbon steel			24.0			_ 1)			
	29/20 M12	Stainless steel			24,0				- '/		
l I	HBC-T 40/22 M10	Carbon steel		[LAI]	_ 1)	20	2.0	_ 1)			
		Stainless steel				28,0		_ '/			
Characteristic HBC-T	НВС-Т	Carbon steel			_ 1)	28,0		_ 1)			
resistance	40/22 M12	Stainless steel	$V_{Rk,s,l,x}$	[kN]	- '/						
	НВС-Т	Carbon steel]		_ 1)			_ 1)			
	40/22 M16	Stainless steel			- '/	40	J,U	- '/			
	НВС-Т	Carbon steel]			_ 1)		50),0	50,0	
50/30 M1		Stainless steel]		- ·/		71	,4	51,0		
	НВС-Т	Carbon steel]		_ 1)		55	5,0	55,0		
	50/30 M20	Stainless steel]		- '/			71	,4	51,0	
Installation factor		Carbon steel	γinst	[-]	1,2	1	,2	1	,4	1,4	
		Stainless steel			1,0	1	,2	1,4		1,0	

¹⁾ No performance assessed

Table 27: Characteristic resistances under shear load in direction of longitudinal axis of the channel – steel failure HAC-C(-P) (hot-rolled) anchor channels

Steer failure 1170-0(1) (not-roned) anonor channels										
Anchor channel				HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Connection between channel lips and channel bolt										
	HBC-40/22-N M16 8.8F		[kN]	_ 2)	12,5	12,5		_ 1)		
Characteristic resistance	HBC-50/30-N M16 8.8F	$V_{Rk,s,l,x}$			_ 2)		_ 2)	8,3	8,3	8,3
	HBC-50/30-N M20 8.8F							8,3	8,3	8,3
Installation factor		γinst	[-]	_ 2)	1	,4	_ 2)		1,0	

¹⁾ Product not available

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under shear load – steel failure	Annex C10

²⁾ No performance assessed

Table 28: Characteristic resistances under shear load – concrete failure of HAC-C-T (hot-rolled serrated) anchor channels

Anchor cl	hannel	HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34		
Concrete	failure: Pry out								
Product fa	ctor	k 8	[-]	2,0					
Partial fac	tor	γMc ¹⁾	[-]	1,5					
Concrete	failure: Concrete edge								
Product	Cracked concrete	k cr,V	[-]	7,5					
factor k ₁₂	Uncracked concrete	k _{ucr,V}	[-]	10,5					
Partial fac	tor	γMc ¹⁾	[-]	1,5					

¹⁾ In absence of other national regulations

Table 29: Characteristic resistances under shear load – concrete failure of HAC-C(-P) (hot-rolled) anchor channels

Anchor channel					HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Concrete	failure: Pry out									
Product fa	actor	k ₈	[-]	2,0						
Partial fac	tor	γ _{Mc} ¹⁾	[-]				1,5			
Concrete	failure: Concrete edge									
Product	Cracked concrete	k _{cr,V}	[-]				7,5			
factor k ₁₂	Uncracked concrete	k ucr,∨	[-]	10,5						
Partial fac	tor	γ _{Mc} ¹⁾	[-]	1,5						

¹⁾ In absence of other national regulations

Table 30: Characteristic resistances under shear load – concrete failure of HAC-C (cold-formed) anchor channels

Anchor channel					HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33	
Concrete failure: Pry out									
Product fa	actor	k 8	[-]	1,0	1,0 2,0				
Partial fac	tor	γ _{Mc} 1)	[-]			1,5			
Concrete	failure: Concrete edge								
Product	Cracked concrete	k _{cr,V}	[-]	6,9	6,9		7,5		
factor k ₁₂	Uncracked concrete	k _{ucr,V}	[-]	9,6	9,6 10,5				
Partial fac	tor	γ _{Mc} 1)	[-]	1,5					

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels (HAC-C) under shear load – steel failure	Annex C11

Table 31: Displacements under shear load of HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel			HAC-C-T	29/20	HAC-C-T 40/22; HAC-C-T 40L		40L	HAC-C-T 50/30; HAC-C-T 50L		HAC-C-T 53/34	
Bolt diameter			M10	M12	M10	M12	M16	M16	M20	M16	M20
Carbon steel											
Perpendicular shear load	V_y	[kN]	23	3,3		32,8		51	,9	69	0,0
Short-term displacement 1)	$\delta_{\text{V0,y}}$	[mm]	1	,6		2,1		2	,0	2	,8,
Long-term displacement 1)	δ _{∨∞,y}	[mm]	2	,4		3,2 3,0		3,0		4	,2
Longitudinal shear load	V _x	[kN]	13,2	15,7	14,5	19,1	25,1	35,4	49,6	33,1	40,6
Short-term displacement 1)	$\delta_{\text{V0,X}}$	[mm]	1,1	0,7	0,9	1,0	1,2	1,4	1,5	1,4	1,5
Long-term displacement 1)	δ∨∞,χ	[mm]	1,7	1,1	1,4	1,5	1,8	2,1	2,3	2,1	2,3
Stainless steel											
Perpendicular shear load	Vy	[kN]	25	5,0		34,7		61	,8	66	6,8
Short-term displacement 1)	$\delta_{V0,y}$	[mm]	1	,7		2,5		2	,5	2	,5
Long-term displacement 1)	δ _{∨∞,y}	[mm]	2	,6	3,8		3	,8	3	,8	
Longitudinal shear load	V _x	[kN]	14,5	17,1	16,9	20,4	26,5	42,1	53,8	38	3,4
Short-term displacement 1)	$\delta_{\text{V0,x}}$	[mm]	1,1	2,4	0,7	2,1	0,9	1,4	1,6	1	,3
Long-term displacement 1)	δγ∞,χ	[mm]	1,6	3,6	1,1	3,2	1,4	2,1	2,4	2	,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 32: Displacements under shear load of HAC-C(-P) (hot-rolled) anchor channels

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Perpendicular shear load	Vy	[kN]	10,3	29,0	29,0	16,0	39,7	28,4	28,4
Short-term displacement 1)	$\delta_{\text{V0,y}}$	[mm]	2,1	2,0	2,0	2,6	2,7	3,7	3,7
Long-term displacement 1)	δ∨∞,у	[mm]	3,1	3,5	3,5	3,9	4,0	5,5	5,5
Longitudinal shear load	V _x	[kN]	2)	5,2	5,2	2)	3,3	3,3	7,9
Short-term displacement 1)	$\delta_{\text{V0,x}}$	[mm]	2)	0,1	0,1	2)	0,1	0,1	1,4
Long-term displacement 1)	δ∨∞,χ	[mm]	2)	0,2	0,2	2)	0,2	0,2	2,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete;

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Displacements under shear load	Annex C12

²⁾ No performance assessed

Table 33: Displacements under shear load perpendicular to longitudinal axis of HAC-C (cold-formed) anchor channels

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Perpendicular shear load	V_y	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	$\delta_{\text{V0,y}}$	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ∨∞,у	[mm]	0,9	2,0	2,1	2,1	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 34: Characteristic resistances under combined tension and shear load of HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel	HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34			
Steel failure: Local flexure of channel lips and flexure of channel									
Product factor	k 13	[-]	Valu	es accord	ling to EN	1992-4, S	Section 7.4	.3.1	
Steel failure: Anchor and connection between anchor and channel									
Product factor	k 14	[-] Values according to EN 1992-4, Section 7.4.3.1							

Table 35: Characteristic resistances under combined tension and shear load of HAC-C(-P) (hot-rolled) anchor channels

Anchor channel				HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Local flexure of cha	annel li	ps and f	flexure c	of chann	el				
Product factor	k 13	[-]	Va	lues acc	ording to	EN 199	2-4, Sec	tion 7.4.3	3.1
Steel failure: Anchor and connection between anchor and channel									
Product factor	k ₁₄ [-] Values according to EN 1992-4, Section 7.4.3.1								

Table 36: Characteristic resistances under combined tension and shear load of HAC-C (cold-formed) anchor channels

Anchor channel	HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33				
Steel failure: Local flexure of cha	annel li	ps and f	lexure of c	hannel					
Product factor	k 13	[-]	Value	s according	to EN 1992-	4, Section 7	'.4.3.1		
Steel failure: Anchor and connection between anchor and channel									
Product factor	k ₁₄	[-]	Values according to EN 1992-4, Section 7.4.3.1						

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Displacements under shear load	Annex C13
Characteristic resistance under combined tension and shear load	

Table 37: Characteristic resistances under tension load – steel failure of channel bolts (HBC)

Channel bolt						M10	M12	M16	M20		
Steel failure					•	•					
			Bolts for hot-rolle	Bolts for hot-rolled serrated (HAC-C-T) anchor channels							
			LIDO T 00/00	8.8	- ³⁾ 46,4		67,4	_ 3)			
			HBC-T 29/20	A4-70 1)	_ 3)	40,6	59,0	-	3)		
			UDC T 40/22	8.8	_ 3)	46,4	67,4	125,6	_ 3)		
			HBC-T 40/22	A4-70 1)	_ 3)	40,6	59,0	109,9	_ 3)		
			UDC T 50/20	8.8		_ 3)		125,6	203,4		
			ПВС-1 50/30	HBC-T 50/30 A4-70 1)		_ 3)		109,9	171,5		
			Bolts for hot-rolle	ed and/or co	old-forme	d smooth	(HAC-C) a	nchor cha	nnels		
			HBC-40/22	8.8	_ 3)	_ 3)	67,4	125,6	_ 3)		
Characteristic				NBC-40/22	A4-70 1)	_ 3)	20,5	59,0	91,0	_ 3)	
resistance	N _{Rk,s} 1)	[kN]	HBC-40/22-N	8.8		_ 3)			_ 3)		
(tension load)		HBC-40/22-N	A4-70 1)			_ 3)					
			HBC-50/30	8.8	- ³⁾ 6		67,4	125,6	147,1		
			HBC-50/30	A4-70 ¹⁾ - ³⁾ 59,0		59,0	109,9	121,2			
			HBC-50/30-N	8.8	_ 3)			125,6	186,6		
			HBC-50/30-N	A4-70 1)			_ 3)				
			Bolts for cold-for	med smoot	ned smooth (HAC-C) anchor channels						
			HBC-28/15	8.8	22,4	35,4	44,3	-	3)		
			ПВС-20/13	A4-70 1)	25,6	38,9	51,3	-	3)		
			HBC-38/17	8.8	_ 3)	35,4	35,4	55,8	_ 3)		
			1100-30/17	A4-70 ¹⁾	_ 3)	20,5	47,2	53,0	_ 3)		
			HBC-T 29/20 HBC-T 40/22 HBC-T 50/30	8.8		1,50 and 1,51 ⁴⁾					
Partial factor	γ _{Ms} ²⁾	[-]	HBC-1 50/30 HBC-40/22(-N) HBC-50/30(-N) HBC-28/15 HBC-38/17	A4-70 ¹⁾			1,87				

¹⁾ Materials according to Table 5, Annex A8

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance
Characteristic resistances of channel bolts under tension load

Annex C14

²⁾ In absence of other national regulations

³⁾ Product not available

⁴⁾ Partial factor 1,51 for the bolt HBC-T 50/30 M20 and 1,5 for the other bolts

Table 38: Characteristic resistances under shear load - steel failure of channel bolts (HBC)

Channel bolt						M10	M12	M16	M20		
Steel failure							•				
			Bolts for hot-rolled serrated (HAC-C-T) anchor channels								
			LIDO T 00/00	8.8	_ 3)	23,2	33,7	-	3)		
			HBC-T 29/20	A4-70 1)	_ 3)	24,4	35,4	-	3)		
			HBC-T 40/22	8.8	_ 3)	23,2	33,7	62,8	_ 3)		
			HBC-1 40/22	A4-70 1)	_ 3)	24,4	35,4	65,9	_ 3)		
			HBC-T 50/30	8.8		_ 3)		62,8	101,7		
			HBC-1 50/30	A4-70 1)		_ 3)		65,9	102,9		
			Bolts for hot-rolle	Bolts for hot-rolled and/or col			HAC-C) a	nchor cha	ınnels		
			HBC-40/22	8.8	_ 3)	23,2	33,7	62,8	_ 3)		
Characteristic			ПВС-40/22	A4-70 1)	_ 3)	24,4	35,4	65,9	_ 3)		
resistance	V _{Rk,s} 1)	[kN]	HBC-40/22-N	8.8	_ 3)			62,8	_ 3)		
shear load)		ПВС-40/22-IN	A4-70 1)	_ 3)							
			HBC-50/30	8.8	-	3)	33,7	62,8	101,7		
				A4-70 1)	_ 3)		35,4	65,9	102,9		
			HBC-50/30-N	8.8	_ 3)		62,8	101,7			
			ПВС-30/30-N	A4-70			_ 3)				
			Bolts for cold-form	olts for cold-formed smooth (HAC-C) anchor channels							
			HBC-28/15	8.8	14,6	23,2	33,7	-	3)		
			ПВС-20/13	A4-70	15,4	24,4	35,4	-	3)		
			HBC-38/17	8.8	_ 3)	23,2	33,7	62,8	_ 3)		
			ПВС-30/17	A4-70 1)	_ 3)	24,4	35,4	65,9	_ 3)		
			HBC-T 29/20 HBC-T 40/22	8.8	1,25 and 1,26 ⁴⁾			26 ⁴⁾			
Partial factor γ_{Ms}^{2} [-]			HBC-T 50/30 HBC-40/22(-N) HBC-50/30(-N) HBC-28/15 HBC-38/17	A4-70			1,56				

¹⁾ Materials according to Table 5, Annex A8
2) In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of channel bolts under shear load	Annex C15

³⁾ Product not available

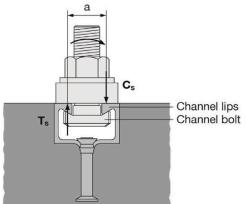

⁴⁾ Partial factor 1,26 for the bolt HBC-T 50/30 M20 and 1,25 for the other bolts

Table 39: Characteristic resistances under shear load with lever arm – steel failure of channel bolts (HBC)

Channel bolt						M10	M12	M16	M20
Steel failure									
			UDC T 20/20	8.8	_ 3)	- ³⁾ 59,8 104,8		_ 3)	
			HBC-T 29/20	A4-70 ²⁾	_ 3)	52,3	91,7	-	3)
			HBC-T 40/22	8.8	_ 3)	59,8	104,8	266,4	_ 3)
Characteristic			1180-1 40/22	A4-70 ²⁾	_ 3)	52,3	91,7	233,1	_ 3)
flexural	M ⁰ Rk,s ⁵⁾	_{Rk,s} 5) [Nm]	'''''' HBC-T 50/30	8.8		_ 3)		266,4	538,7
resistance				A4-70 ²⁾		_ 3)		233,1	454,4
			HBC-50/30(-N) HBC-40/22(-N)	8.8	30,0	59,8	104,8	266,4	538,7
			HBC-38/17 HBC-28/15	A4-70 ²⁾	26,2	52,3	91,7	233,1	454,4
	HBC-T 29/20 HBC-T 40/22 HBC-T 50/30	8.8	1,25 and 1,26 ⁴⁾						
Partial factor	γMs ¹⁾	[-]	HBC-40/22(-N) HBC-50/30(-N) HBC-28/15 HBC-38/17	A4-70 ²⁾	1,56				
			HBC-T 29/20	29/20	_ 3)	19,0	20,0	-	3)
			HBC-T 40/22	40/22	_ 3)	23,0	24,0	26,0	_ 3)
Internal lever	nternal lever		HBC-T 50/30	50/30 53/34		_ 3)		32,0	34,0
arm a [a	a [mm]	HBC-40/22(-N)	40/22	_ 3)	24,3	25,7	27,3	_ 3)
		HBC-50/30(-N)	50/30	- ³⁾ 29,9		29,9	31,7	33,9	
			HBC-28/15	28/15	17,3	18,7	20,0	_	3)
			HBC-38/17	38/17	_ 3)	23,0	24,3	26,3	_ 3)

¹⁾ In absence of other national regulations;

⁵⁾ The characteristic flexure resistance according to Table 39 is limited as follows:

 $M^0_{Rk,s} \le 0,5 \cdot N_{Rk,s,l} \cdot a$ (N_{Rk,s,l} according to Table 11, 12 and 13) and

 $M^{0}_{Rk,s} \le 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 37)

a = internal lever arm according Table 39

T_s = tension force acting on the channel lips

C_s = compression force acting on the channel lips

Hilti anchor channels (F	IAC-C) with channel I	bolts (HBC)
--------------------------	-----------------------	-------------

Performance

Characteristic resistances of channel bolts under shear load with lever arm

Annex C16

²⁾ Materials according to Table 5, Annex A8;

³⁾ Product not available;

⁴⁾ Partial factor 1,26 for the bolt HBC-T 50/30 M20 and 1,25 for the other bolts

Table 40: Combination of anchor channels and channel bolts under fatigue tension load (Design method I or II for assessment method A1, A2 and B according to EOTA TR050)

Anch	or channel			Cha	nnel bolt									
Channel profile	Anchor type ¹⁾	Corrosion protection	Channel bolt	Diameter	Steel grade	Corrosion protection								
HAC-C-T 29/20			HBC-T 29/20	M10										
HAC-C-1 29/20			HBC-1 29/20	M12										
HAC-C-T 40/22			UDC T 40/22	M12										
HAC-C-T 40L			HBC-T 40/22	M16										
HAC-C-T 50/30 HAC-C-T 50L			HBC-T 50/30	M16										
HAC-C-T 53/34	R	F		1100 1 00/00		1120 1 00/00	1100 1 00/00	1100 1 00/00	1120 1 00/00	1120 1 00/00	1100 1 00/00	1120 1 00/00	M20	8.8
HAC-C-P 40/22			HBC-40/22	M12		Г								
HAC-C-P 40L			ПВС- 4 0/22	M16										
HAC-C-P 50/30			HBC 50/20	M16										
HAC-C-P 50L			HBC-50/30	M20										
UAC C 52/24			HBC-50/30	M16										
HAC-C 52/34			ПВС-50/30	M20										

¹⁾ R – Round anchor according Annexes A3 and A6

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue tension load according to assessment method A1, A2 and B	Annex C17

Table 41: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR050) for HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel					HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Steel failure									
			≤ 10 ⁴	15,4	20	20,4		20,3	
			≤ 10 ⁵	8,4	10	,8	8,5		18,2
Characteristic resistance under			≤ 10 ⁶	4,4	4,	,9	4	,5	9,0
fatigue tension load after n load cycles without static preload	$\Delta N_{Rk,s,0,n}$	[kN]	≤ 2 · 10 ⁶	3,9	4,	,1	4	,2	7,5
$(N_{Ed} = 0)$			≤ 5 · 10 ⁶	3,4	3,	4	4	,0	6,1
,			≤ 10 ⁸	3,0	2,	,8	3	,9	4,6
			> 10 ⁸	3,0	2,	,8	3	,9	4,5

Table 42: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR050) for HAC-C(-P) (hot-rolled) anchor channels

Anchor channel					HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure								
			≤ 10 ⁴	16,4		20,9		24,3
			≤ 10 ⁵	7,	,7	9,0		12,5
Characteristic resistance under			≤ 10 ⁶	3,2		4	,2	7,1
fatigue tension load after n load cycles without static preload	$\Delta N_{Rk,s,0,n}$,s,0,n [kN]	≤ 2 · 10 ⁶	2,	,6	3	,7	6,4
(N _{Ed} = 0)			≤ 5 · 10 ⁶	2,	,2	3	,4	5,9
,			≤ 10 ⁸	2,0		3,3		5,7
			> 108	1,	,8	3	,2	5,5

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue tension load according to assessment method A1, A2 and B	Annex C18

Table 43: Reduction factor $\eta_{c,fat}$ under fatigue tension load – concrete failure with n load cycles without static preload (N_{Ed} = 0) for HAC-C-T (hot-rolled serrated) anchor channels (Design method I or II for assessment method A1, A2 and B according to EOTA TR050)

Anchor channel Pull-out failure; Concrete cone fai	ilure			HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
			≤ 10 ⁴			0,7	'36		
Reduction factor for			≤ 10 ⁵	0,665					
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$			≤ 10 ⁶		0,600				
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$ with $N_{Rk,p}$ according to Annex C4	ηc,fat	[-]	≤ 2·10 ⁶	0,582					
and N _{Rk,c} calculated according to			≤ 5·10 ⁶	0,559					
EN 1992-4 and EOTA TR 047			≤ 6·10 ⁷	0,500					
			> 6·10 ^{7 1)}		·	0,5	00		

¹⁾ for $\Delta N_{Rk,p;0;\infty}$, $\Delta N_{Rk,c;0;\infty}$

Table 44: Reduction factor $\eta_{c,fat}$ under fatigue tension load – concrete failure with n load cycles without static preload (N_{Ed} = 0) for HAC-C (hot-rolled) anchor channels (Design method I or II for assessment method A1, A2 and B according to EOTA TR050)

HAC-C-P 40L HAC-C-P 50L HAC-C-P 50/30 HAC-C-P **Anchor channel** Pull-out failure; Concrete cone failure ≤ 10⁴ 0,736 ≤ 10⁵ Reduction factor for 0,665 $\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$ ≤ 10⁶ 0,600 $\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$ ≤ 2·10⁶ 0,582 [-] $\eta_{c,fat}$ with N_{Rk,p} according to Annex C5 ≤ 5·10⁶ 0,559 and N_{Rk,c} calculated according to EN 1992-4 and EOTA TR 047 ≤ 6·10⁷ 0,500 $> 6.10^{7}$ 0,500

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load according to assessment method A1, A2 and B	Annex C19

 $[\]overline{^{1)}}$ for $\Delta N_{Rk,p;0;\infty}$, $\Delta N_{Rk,c;0;\infty}$

Table 45: Characteristic resistances under fatigue tension load – steel failure with n $\rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II for assessment method B according to EOTA TR050) for HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34
Steel failure									
Characteristic fatigue limit resistance (n → ∞) for any steel failure without static preload (N _{Ed} = 0)	ΔN _{Rk,s;0;∞}	[kN]	n→∞	3,0	2,	,8	3,9		4,5
Concrete cone and pull-out failure	9								
Reduction factor for fatigue limit resistance (n $\rightarrow \infty$) for concrete cone/pullout failure without static preload (N _{Ed} = 0)	ηc,fat	[-]	n→∞	0,5					

Table 46: Characteristic resistances under fatigue tension load – steel failure with n $\rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II for assessment method B according to EOTA TR050) for HAC-C (hot-rolled) anchor channels

Anchor channel				HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure	Steel failure							
Characteristic fatigue limit resistance (n → ∞) for any steel failure without static preload (N _{Ed} = 0)	$\Delta N_{Rk,s;0;\infty}$ [kN] $n \rightarrow \infty$		n→∞	1,	,8	3,2		5,5
Concrete cone and pull-out failure	9							
Reduction factor for fatigue limit resistance (n $\rightarrow \infty$) for concrete cone/pullout failure without static preload (N _{Ed} = 0)	ηc,fat	[-]	n→∞	0,5				

For the reduction of the characteristic resistances given in Tables 41, 42, 45 and 46 in the transition zone from the static resistance to the fatigue limit resistance the partial factors are calculated as follows:

$$\gamma_{M,\text{fat},n} = \gamma_{M,\text{fat}} + (\gamma_M - \gamma_{M,\text{fat}}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$$

In absence of other national regulations, the following partial factors γ_M and $\gamma_{M,fat}$ are recommended for design method I according to EOTA TR 050:

 γ_M according to Annex C1

$$\gamma_{M,fat} = 1.35$$

In absence of other national regulations, the following safety factor $\gamma_{M,fat}$ is recommended for design method II (Table 34) according to EOTA TR 050:

$$\gamma_{M,fat} = 1,35$$

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load according to assessment method A1, A2 and B	Annex C20

Table 47: Combination of anchor channels and channel bolts under seismic load (seismic performance category C1)

Anchor channel		Channel bolt							
Channel profile	Channel bolt	Diameter	Steel grade	Corrosion protection					
HAC C T 20/20	UDC T 20/20	M10							
HAC-C-T 29/20	HBC-T 29/20	M12							
HAC-C-T 40/22	LIDO T 40/00	M12	8.8	F 1)					
HAC-C-T 40L	HBC-T 40/22	M16	R ²⁾						
HAC-C-T 50/30	I	M16							
HAC-C-T 50L HAC-C-T 53/34	HBC-T 50/30	M20							

¹⁾ Hot dip galvanized;

Table 48: Characteristic resistances under seismic tension load – steel failure of HAC-C-T (serrated hot-rolled) anchor channels

Sectional of Time-9-1 (Serial of Hotel of Chambers										
Anchor channel		HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34			
Steel failure: Ancho	r									
Characteristic	Carbon steel	Npkaass	[FNI]	25.0	41,0			7.0	70.5	
resistance	Stainless steel	N _{Rk,s,a,eq}	[kN]	35,0	45	5,0	57,0		73,5	
Partial factor		γMs,eq 1)	[-]			1	1,8			
Steel failure: Conne	ction between a	nchor and	d chan	nel						
Characteristic	Carbon steel	N _{Rk,s,c,eq}	N=-	[LAN]	33,0	40	0,0	55	5,0	73,5
resistance	Stainless steel		[kN]	35,0	42,0		60	60,0		
Partial factor		γMs,ca,eq ¹⁾	[-]		1,8					
Steel failure: Local	flexure of channe									
	Characteristic spacing of channel bolts for N _{Rk,s,l}			61	7	76 100		00	107	
Characteristic	Characteristic Carbon steel		[LAI]	35.0	45	5,0	64,0		05.0	
resistance	Stainless steel	N ⁰ Rk,s,l,eq	[kN]	35,0	42	2,0	64	+,0	85,0	
Partial factor		γMs,I,eq ¹⁾	[-]			1,8				

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels and channel bolts under seismic load (Seismic performance category C1)	Annex C21

²⁾ Stainless steel

Table 49: Characteristic flexural resistance of HAC-C-T (hot-rolled serrated) channels under seismic tension load

Anchor channel		HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40 L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34			
Steel failure: Failu	re by flexure of c	hannel								
Characteristic flexural resistance	Carbon steel		[Mm]	977	977 1557		32	56	4870	
of channel	04-1-1				175	54	33	66	4626	
Partial factor		γMs,flex 1)	[-]	1,15						

¹⁾ In absence of other national regulations.

Table 50: Characteristic resistances under seismic shear load – steel failure of HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel		HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34			
Steel failure: Ancho	or									
Characteristic	Carbon steel	\/	[LNI]	27.0	52,0		80),0	120.0	
resistance	Stainless steel	V _{Rk,s,a,y,eq}	[kN]	37,0	49,5		10	0,0	120,0	
Characteristic	Carbon steel	\/	[LAI]	22.0	24	1,7	35	5,2	44.4	
resistance	Stainless steel	V _{Rk,s,a,x,eq}	[kN]	22,9	28,3		37	7 ,1	44,1	
Partial factor	Carbon steel		eq ¹⁾ [-] 1,				4.5			
Stainless steel		γMs,eq ′′					1,5			
Steel failure: Conne	ection between ar	nchor and	channe	el						
Characteristic	Carbon steel	V _{Rk,s,c,y,eq}	c,y,eq [kN]	[kN] 37,0	52	2,0	80),0	120,0	
resistance	Stainless steel				49	9,5	10	0,0	120,0	
Characteristic	Carbon steel	\/	[LNI]	19,8	24	1,0	31	, 4	44,1	
resistance	Stainless steel	V _{Rk,s,c,x,eq}	[kN]	21,0	25	5,2	36	3,0	44,1	
Partial factor		γMs,eq ¹⁾	[-]			•	1,8			
Steel failure: Local perpendicular to the				r load						
Characteristic spacin of channel bolts for V		S I,V,eq	[mm]	61,0	76	3,0	10	0,0	107,0	
Characteristic	Carbon steel	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	riznia.	27.0	52	2,0	80	0,0	120,0	
resistance	Stainless steel	V ⁰ Rk,s,l,y,eq	[kN]	37,0	49	9,5	10	0,0		
Partial factor	rtial factor γ _{Ms,l,eq} 1) [-] 1,8									

¹⁾ In absence of other national regulations;

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under seismic load (Seismic performance category C1)	Annex C22

Table 51: Characteristic resistances under seismic shear load in direction of the longitudinal axis of the channel – steel failure of HAC-C-T (hot-rolled serrated) anchor channels

Anchor chann	Anchor channel						HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34	
Steel failure: Connection between channel lips and channel bolt											
		20,0			_ 1)						
	29/20 M10	Stainless steel			20,0		- "/				
	нвс-т	Carbon steel			24,0			1)			
2	29/20 M12	Stainless steel			24,0		_ 1) _ 1) _ 1) _ 28,0				
	HBC-T	Carbon steel			_ 1)		1)		1)		
	40/22 M10	Stainless steel			- /	_	, ,				
Characteristic	нвс-т	Carbon steel	\/	וואוז	_ 1)	2	28.0		_ 1)		
resistance	40/22 M12	Stainless steel	V _{Rk,s,l,x,eq}	[kN]	- ,		6,0	- '/			
	нвс-т	Carbon steel			_ 1)	1	10.0				
	40/22 M16	Stainless steel			•	4	0,0		- '/		
	нвс-т	Carbon steel				_ 1)		50	,0	50,0	
	50/30 M16	Stainless steel				_ '/		71	,4	51,0	
	НВС-Т	Carbon steel				_ 1)		52	2,3	55,0	
				,		71	,4	51,0			
Installation fact	or	Carbon steel			1,2	1	,2	1,	4	1,4	
Installation fact	.01	Stainless steel	γinst,eq	[-]	1,0	1	,2	1,	4	1,0	

¹⁾ No performance assessed

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels and channel bolts under seismic load (Seismic performance category C1)	Annex C23

Table 52: Characteristic resistances under seismic tension and seismic shear load – steel failure of channel bolts (HBC)

Channel bolt					M10	M12	M16	M20	
Steel failure									
			HBC-T 29/20	8.8	46,4	67,4	_ 3)		
			ПВС-1 29/20	A4-70 1)	40,6	59,0	_ 3	3)	
Characteristic resistance	NI 1)	[LNI]	HBC-T 40/22	8.8	- ⁴⁾	67,4	125,6	_ 3)	
(tension load)	N _{Rk,s,eq} 1)	[kN]	NBC-1 40/22	A4-70 1)	_ 4)	59,0	109,9	_ 3)	
(10.110.11.110.11)			HBC-T 50/30	8.8	-	3)	125,6	203,4	
			HBC-1 50/30	A4-70 ¹⁾	-	3)	109,9 and 1,51 ⁵⁾	171,5	
Partial factor	γMs,eq ²⁾	[-]	HBC-T 50/30 HBC-T 40/22	8.8	1,50 and 1,51 ⁵⁾				
			HBC-T 29/20	A4-70 1)	1,87				
			HBC-T 29/20	8.8	23,2	33,7	_ 3)		
			HBC-1 29/20	A4-70 1)	24,4 35,4		_ 3)		
Characteristic	_1\	[LVI]	HBC-T 40/22	8.8	_ 5)	33,7	62,8	_ 3)	
resistance (shear load)	$V_{Rk,s,eq}^{1)}$	[kN]	NBC-1 40/22	A4-70 1)	_ 5)	35,4	65,9	_ 3)	
(0.100)			HBC-T 50/30	8.8	-	3)	62,8	101,7	
			HBC-1 50/30	A4-70 ¹⁾	-	3)	33,7 62,8 35,4 65,9	102,9	
Partial factor γ _{Ms,eo}		[-]	HBC-T 50/30 HBC-T 40/22	8.8		1,25 and 1,26 ⁵⁾			
			HBC-T 29/20	A4-70		1,	56		

¹⁾ Materials according to Table 5, Annex A8

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance
Characteristic resistances of channel bolts under seismic load
(Seismic performance category C1)

Annex C24

²⁾ In absence of other national regulations

³⁾ Product not available

⁴⁾ Performance not assessed

⁵⁾ Partial factors 1,51 and 1,26 for the bolt HBC-T 50/30 M20; 1,5 and 1,25 for the other bolts

Table 53: Characteristic resistance under fire exposure steel failure for HAC-C(-T) (serrated hot-rolled) anchor channels

Channel bolt					M10	M12	M16	M20
Steel failure: Anch	or, connection bet	ween anch	nor and cha	nnel, lo	cal flexur	e of chan	nel lip	
Carbon steel, Stair	nless steel A2							
		R30			1,2	1,2		
	HAC-C-T 29/20	R60			0,9	0,9	_ 2)	_ 2)
		R90			0,6	0,6	/	/
		R120			0,5	0,5		
		R30			1,2	1,2	6,2	
Characteristic	HAC-C-T	R60			0,9	0,9	4,6	_ 2)
	40/22	R90			0,6	0,6	2,9	/
Characteristic resistance under		R120	N _{Rk,s,fi}	[LAI]	0,5	0,5	2,1	
fire exposure		R30	$V_{Rk,s,y,fi}$	[kN]			6,4	10,7
inc exposure	HAC-C-T	R60	V KK,S,Y,II		_ 2)	_ 2)	4,8	8,0
	50/30	R90			/	/	3,2	5,2
		R120					2,3	3,8
	HAC-C-T 53/34	R30					6,5	9,0
		R60			_ 2)	_ 2)	5,0	6,7
		R90			- -/	/	3,4	4,5
		R120					2,7	3,4
Stainless steel A4								
	HAC-C-T A4 29/20	R30			9,9	11,1		
		R60			6,1	7,2	_ 2)	_ 2)
		R90			2,2	3,4	/	/
		R120			0,3	1,4		
		R30			9,9	11,1	20,0	
	HAC-C-T A4	R60			6,1	7,2	17,7	_ 2)
Ob a was at a wind in	40/22	R90	N.I		2,2	3,4	8,2	/
Characteristic resistance under		R120	N _{Rk,s,fi}	[kN]	0,3	1,4	3,5	
fire exposure		R30	$V_{Rk,s,y,fi}$	[KIN]			20,0	20,0
life exposure	HAC-C-T A4	R60	V 1715,5,y,11		_ 2)	_ 2)	17,7	17,7
	50/30	R90			- /		8,2	8,2
		R120					3,5	3,5
	HAC-C-T A4 53/34	R30					20,0	20,0
		R60			_ 2)	_ 2)	17,7	17,7
		R90			/	/	8,2	8,2
		R120					3,5	3,5
Partial safety factor			γMs,fi ¹⁾	[-]		1	,0	

¹⁾ In absence of other national regulations2) Product not available

Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels and channel bolts under fire exposure	Annex C25

Table 54: Characteristic resistance under fire exposure – steel failure for HAC-C(-P) (hot-rolled) anchor channels

Channel bolt			M10	M12	M16	M20			
Steel failure: Anchor, connection between anchor and channel, local flexure of channel lip									
Carbon steel and Stainless steel (A4)									
Characteristic resistance under fire exposure	11AC C(D) 40/00	R60					3,5		
	HAC-C(-P) 40/22 HAC-C-P 40L HAC-C(-P) 50/30 HAC-C-P 50L	R90	N _{Rk,s,fi} = V _{Rk,s,y,fi}		_ 3)	_3)	2,2	_ 2)	
		R120		[LNI]			1,5		
		R60		[kN]		3,8	3,	9	
		R90			_ 2)	2,5	2,	9	
	HAC-C 52/34	R120				1,9	2,	4	
Partial safety factor			γMs,fi ¹⁾	[-]	1,0				

¹⁾ In absence of other national regulations

Table 55: Characteristic resistance under fire exposure – steel failure for HAC-C (cold-formed) anchor channels

Channel bolt			M10	M12	M16	M20			
Steel failure of and	hor, connection be	tween an	chor and ch	annel,	local flex	ure of ch	annel lip		
Carbon steel and Stainless steel (A4)									
		R60			0,	,8			
	HAC-C 28/15	R90			0,	6	_ 2)	- 2)	
		R120	NRk,s,fi = VRk,s,y,fi		0,	,5			
	HAC-C 38/17 HAC-C 40/25 HAC-C 49/30	R60				- ³⁾ 1,3	1,9		
		R90			_ 3)		1,3	_2	
Characteristic resistance under		R120		[LVI]			1,0		
fire exposure		R60		[kN]	1,7	3,5			
me expessive		R90			1,2	- ³⁾ 1,3 1,0	_ 2)		
		R120			0,9	1	,5		
		R60				3,8	3,	9	
		R90			_ 2)	2,5	2,	9	
		R120				1,9	2,	4	
Partial safety factor			γMs,fi ¹⁾	[-]	1,0				

¹⁾ In absence of other national regulations

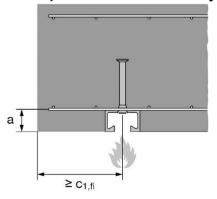
Hilti anchor channels (HAC-C) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels and channel bolts under fire exposure	Annex C26

²⁾ Product not available

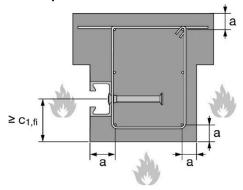
³⁾ Performance not assessed

²⁾ Product not available

³⁾ Performance not assessed


Table 56: Minimum axis distance of reinforcement – for HAC-C-T (hot-rolled serrated) anchor channels

Anchor channel				HAC-C-T 29/20	HAC-C-T 40/22	HAC-C-T 40L	HAC-C-T 50/30	HAC-C-T 50L	HAC-C-T 53/34		
Minimum axis distance	R30				35			50			
	R60		[mama]		35		50				
	R90	а	[mm]		45			50			
	R120				55			55			


Table 57: Minimum axis distance of reinforcement – for HAC-C (cold-formed) and HAC-C(-P) (hot-rolled) anchor channels

Anchor channel				HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C(-P) 40/22	HAC-C-P 40L	HAC-C 49/30	HAC-C(-P) 50/30	HAC-C-P 50L	HAC-C 54/33	HAC-C 52/34
	R60					35					50		
Minimum axis distance	R90	а	[mm]	45				50					
	R120			55				55 55					

Fire exposure from one side only

Fire exposure from more than one side

Hilti anchor channels (HAC-C) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Annex C27