

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-17/0444 vom 8. August 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

Ferrometal Oy Karhutie 9 FI-01900 NURMIJÄRVI FINNLAND

Plant 1, Finland

34 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-17/0444 vom 6. Oktober 2017

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z192828.25 8.06.01-183/25

Seite 2 von 34 | 8. August 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z192828.25 8.06.01-183/25

Seite 3 von 34 | 8. August 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Fix Master FIT-Ve 200 oder Fix Master FIT-Wi 200 und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen M8 bis M30 oder eine Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1, C 2, C 3, C 5 und C 7
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 4, C 6 und C 8
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9 bis C 11
Charakteristischer Widerstand für seismische Leitungskategorie C1	Siehe Anhang C 12 und C 13
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C2	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 14 bis C 16

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z192828.25 8.06.01-183/25

Seite 4 von 34 | 8. August 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

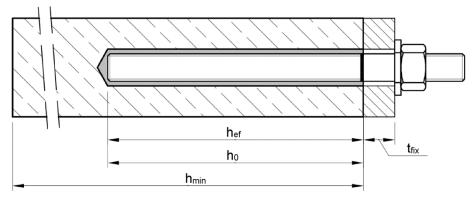
Folgendes System ist anzuwenden: 1

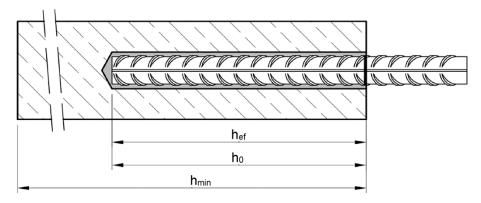
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

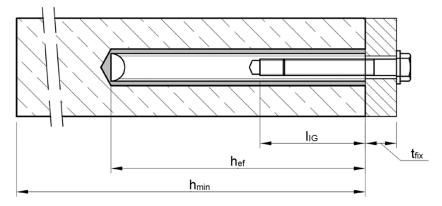
Ausgestellt in Berlin am 8. August 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Z192828.25 8.06.01-183/25


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

 t_{fix} = Dicke des Anbauteils

h₀

Bohrlochtiefe

h_{ef}

Effektive Verankerungstiefe

 I_{IG}

= Einschraublänge

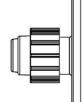
h_{min} =

Mindestbauteildicke

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton

Produktbeschreibung

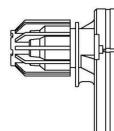
Einbauzustand


Anhang A 1

Kartuschensystem

Koaxial Kartusche:

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml

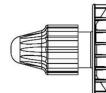


Aufdruck:

Fix Master FIT-Ve 200 oder Fix Master FIT-Wi 200 Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:

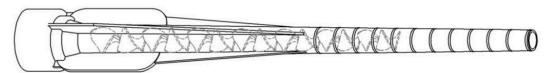
235 ml, 345 ml bis 360 ml und 825 ml

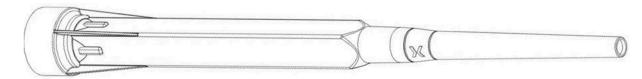


Aufdruck:

Fix Master FIT-Ve 200 oder Fix Master FIT-Wi 200 Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Schlauchfolien Kartusche:


165 ml und 300 ml


Aufdruck:

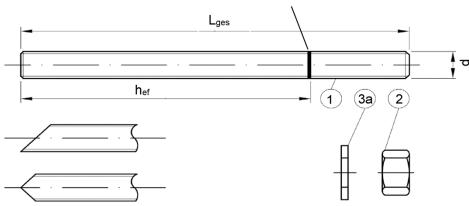
Fix Master FIT-Ve 200 oder Fix Master FIT-Wi 200 Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Statikmischer CRW 14W

Statikmischer PM-19E

Verfüllstutzen VS und Mischerverlängerung VL

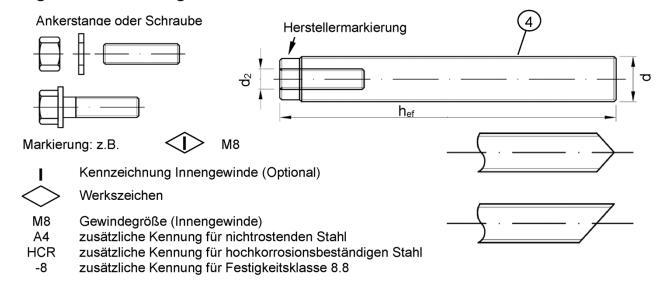
Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton


Produktbeschreibung Injektionssystem

Anhang A 2

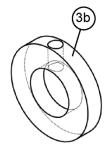
Gewindestange M8 bis M30 mit Unterlegscheibe und Sechskantmutter

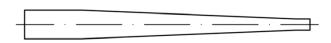
Markierung der Verankerungstiefe



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Dokument sollte aufbewahrt werden.
- Markierung der Setztiefe


Für feuerverzinkte Elemente sind die Anforderungen an die Kombination von Muttern und Gewindestangen gemäß EN ISO 10684:2004+AC:2009 Anhang F zu berücksichtigen.


Innengewindeankerstange IG-M6 bis IG-M20

Verfüllscheibe VFS

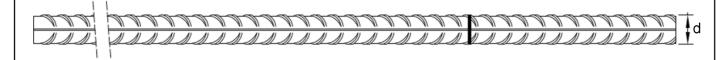
Mischerreduzierung MR

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton

Produktbeschreibung

Gewindestange; Innengewindeankerstange;

Verfüllscheibe; Mischerreduzierung


Anhang A 3

Геіl	Benennung	Werkstoff					
- ga - fe	uerverzinkt ≥ 40 µm gei	hl gemäß EN ISO 683-4 mäß EN ISO 4042:2022 mäß EN ISO 1461:2022 mäß EN ISO 17668:2016	oder und E		•	oder	
		Charakter Streckgre		Bruchdehnung			
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N		A ₅ > 8%
1	Gewindestange		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N	V/mm²	A ₅ > 8%
	Commutatings	gemäß EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{vk} = 300 N	V/mm²	A ₅ > 8%
		EN 130 090-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N	V/mm²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N	V/mm²	A ₅ ≥ 8%
			4	für Gewindestang	en der Klas	se 4.6 c	der 4.8
2	Sechskantmutter	gemäß EN ISO 898-2:2022	5	für Gewindestang	en der Klas	se 5.6 c	oder 5.8
			8	für Gewindestang			
3a	Unterlegscheibe	Stahl, galvanisch verz (z.B.: EN ISO 887:20 EN ISO 7094:2000)	06, E	N ISO 7089:2000	, EN ISO 7	093:200	00 oder
3b	Verfüllscheibe	Stahl, galvanisch verz	inkt,				
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Streckgrei	nze	Bruchdehnun
4	Innengewindeankerstange	gemäß	5.8	f _{uk} = 500 N/mm ²	,		A ₅ > 8%
		EN ISO 898-1:2013	f _{yk} = 640 N	V/mm²	A ₅ > 8%		
loc	hkorrosionsbeständiger Stahl (Werkstoff 1.4529 oder 1. Festigkeitsklasse	4565	Charakteristische Zugfestigkeit			Bruchdehnun
1	Gewindestange ¹⁾³⁾		50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N	V/mm²	A ₅ ≥ 8%
	9	gemäß EN ISO 3506-1:2020	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N	V/mm²	A ₅ ≥ 8%
		214 100 0000 1.2020	80	f _{uk} = 800 N/mm ²	f _{yk} = 600 N	V/mm²	A ₅ ≥ 8%
		gemäß	50	für Gewindestang			
2	Sechskantmutter ¹⁾³⁾	EN ISO 3506-1:2020		für Gewindestang			
		A2: Werkstoff 1.4301	80	für Gewindestang			10000 1.0000
3а	Unterlegscheibe	A2: Werkstoff 1.4401 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000)	/ 1.44 29 ode	104 / 1.4571 / 1.436 er 1.4565, EN 1008	62 oder 1.4 88-1:2023	578, EN	10088-1:2023
3b	Verfüllscheibe	Nichtrostender Stahl	44, H				
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakter Streckgre		Bruchdehnun
4	Innengewindeankerstange ¹⁾²⁾	gemäß EN ISO 3506-1:2020	50 70	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N}$ $f_{vk} = 450 \text{ N}$		A ₅ > 8% A ₅ > 8%
2)	 Festigkeitsklasse 70 oder 80 für Gewind für IG-M20 nur Festigkeitsklasse 50 Festigkeitsklasse 80 nur für nichtrosten	l destangen und Muttern bis M	24 unc	I Innengewindeankers	J		15
	Master Injektionssystem Fl	Γ-Ve 200 oder FIT-Wi	200	für Beton		A	nhang A 4

Betonstahl Ø8 bis Ø32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05 φ ≤ h_{rib} ≤ 0,07 φ betragen
 (d: Nenndurchmesser des Stabes; h_{rib}: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA f_{uk} = f_{tk} = $k \cdot f_{yk}$

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
	_

Anhang A 5

Produktbeschreibung Werkstoffe Betonstahl

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung (Statische und quasi-statische Lasten)

	Nutzungsdaue	er 50 Jahre	Nutzungsdauer 100 Jahre						
Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton					
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis 9 Ø8 bis 9 IG-M6 bis	Ø32,	Keine Leistun	g bewertet					
Temperaturbereich:	II: -40°C I	bis +40°C¹) bis +80°C²) bis +120°C³)	Keine Leistun	g bewertet					

Beanspruchung der Verankerung (Seismische Einwirkung):

	Leistungskategorie C1	Leistungskategorie C2
Verankerungsgrund	ungerissener und gerissener Beton	ungerissener und gerissener Beton
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, Ø8 bis Ø32	Keine Leistung bewertet
Temperaturbereich:	I: - 40°C bis +40°C ¹⁾ II: - 40°C bis +80°C ²⁾ III: - 40°C bis +120°C ³⁾	Keine Leistung bewertet

Beanspruchung der Verankerung (Brandeinwirkung):

Verankerungsgrund	ungerissener und gerissener Beton
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, ∅8 bis ∅32, IG-M6 bis IG-M20
Temperaturbereich:	I: -40°C bis +40°C ¹) II: -40°C bis +80°C ²) III: -40°C bis +120°C ³)

^{1) (}max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C)

^{3) (}max. Langzeit-Temperatur +72°C und max. Kurzzeit-Temperatur +120°C

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A2:2021.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A2:2021.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbautemperatur im Beton:

Fix Master FIT-Ve 200: -10°C bis +40°C für die üblichen Temperaturveränderungen nach dem Einbau. Fix Master FIT-Wi 200: -20°C bis +10°C für die üblichen Temperaturveränderungen nach dem Einbau.

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Verwendungszweck Spezifikationen (Forsetzung)	Anhang B 2

Tabelle B1: Montagekennwerte für Gewindestangen											
Gewindestange		M8	M10	M12	M16	M20	M24	M27	M30		
Durchmesser Gewind	lestange	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	ser	d ₀	[mm]	10	12	14	18	24	28	32	35
Effektive Verenkerung	actiofo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effektive Verankerungstiefe		h _{ef,max}		160	200	240	320	400	480	540	600
Durchgangsloch im	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Durchste		eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment		max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Mindestbauteildicke h _{mi}		h _{min}	[mm]	h _{ef} + 30) mm ≥ 1	00 mm			h _{ef} + 2d ₀		
Minimaler Achsabstand s _{min}		[mm]	40	50	60	80	100	120	135	150	
Minimaler Randabstand		c _{min}	[mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montagekennwerte für Betonstahl

Betonstahl				Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Ellektive veralikerungstiele	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Mindestbauteildicke	h _{min}	[mm]	1	- 30 mm 00 mm				h _{ef} + 2	.d₀		
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimaler Randabstand	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ Beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

Innengewindeankerstange	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Innendurchmesser der Hülse	d_2	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse ¹⁾	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d_0	[mm]	12	14	18	24	28	35
Effektive Verenkerungetiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Effektive Verankerungstiefe	h _{ef,max}		200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	max T _{ins}	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	· 2d ₀	
Minimaler Achsabstand	s _{min}	[mm]	50	60	80	100	120	150
Minimaler Randabstand	c _{min}	[mm]	50	60	80	100	120	150

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Verwendungszweck Montagekennwerte	Anhang B 3

Tabelle B4: Parameter für Reinigungs- und Setzzubehör												
					grann and a	Hand Control of the C						
Gewinde- stangen	Betonstahl	Innen- gewinde- hülsen	d ₀ Bohrer - Ø HD, HDB, CD	d _b Bürste		d _{b,min} min. Bürsten - Ø	Verfüll- stutzen	Anwendling von				
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1		
M8	8		10	RBT10	12	10,5						
M10	8 / 10	IG-M6	12	RBT12	14	12,5	Koir	\/orfülletu	itzon notwo	andia		
M12	10 / 12	IG-M8	14	RBT14	16	14,5	Keli	i veriulistu	itzen notwe	Filaly		
	12		16	RBT16	18	16,5						
M16	14	IG-M10	18	RBT18	20	18,5	VS18					
	16		20	RBT20	22	20,5	VS20					
M20		IG-M12	24	RBT24	26	24,5	VS24					
	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} >	all		
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm 250 mm				
M27	25		32	RBT32	34	32,5	VS32					
M30	28	IG-M20	35	RBT35	37	35,5	VS35]				
	32		40	RBT40	41,5	40,5	VS40					

Reinigungs- und Installationszubehör

Handpumpe

(Volumen 750 ml, h₀ ≤ 10 d_s, d₀ ≤ 20mm)

Druckluftpistole

(min 6 bar)

Bürste RBT

Verfüllstutzen VS

Bürstenverlängerung RBL

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Verwendungszweck Reinigungs-und Setzzubehör	Anhang B 4

+5°C bis +40°C

25 min

20 min

15 min

Tabelle B5: Verarbeitungs- und Aushärtezeiten Fix Master FIT-Ve 200									
Temperatur im Verankerungsgrund Maximale Verarbeitungszeit Minimale Aushärtezeit ¹⁾									
	Т		t _{gel}	t _{cure}					
- 10°C	bis	- 6°C	90 min ²⁾	24 h					
- 5°C	bis	- 1°C	90 min	14 h					
0°C	bis	+ 4 °C	45 min	7 h					
+ 5°C	bis	+ 9°C	25 min	2 h					
+ 10°C	bis	+ 19°C	15 min	80 min					
+ 20 °C	bis	+ 29 °C	6 min	45 min					

4 min

2 min

1,5 min

+ 34 °C

+ 39 °C

bis

bis

+40°C

Kartuschentemperatur

+ 30 °C

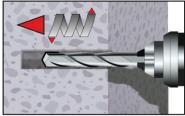
+ 35 °C

Tabelle B6: Verarbeitungs- und Aushärtezeiten Fix Master FIT-Wi 200

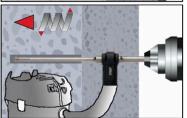
Temperatur im Verankerungsgrund			Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
	Т		t _{gel}	t _{cure}
- 20 °C	bis	- 16°C	75 min	24 h
- 15°C	bis	- 11 °C	55 min	16 h
- 10°C	bis	- 6°C	35 min	10 h
- 5°C	bis	- 1°C	20 min	5 h
0°C	bis	+ 4 °C	10 min	2,5 h
+ 5°C	bis	+ 9°C	6 min	80 min
	+ 10 °C		6 min	60 min
Kartı	uschentemp	eratur	-20°C bis	+10°C

¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B 5


¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

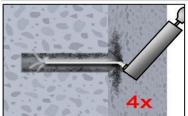
²⁾ Kartuschentemperatur <u>muss</u> mindestens +15°C betragen


Setzanweisung

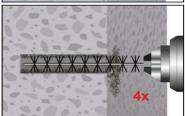
Bohrloch erstellen

Hammerbohren (HD) / Druckluftbohren (CD)

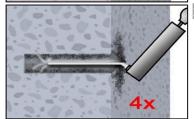
Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).


b. Hammerbohren mit Hohlbohrer (HDB)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Handpumpen-Reinigung (MAC)


für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm nur ungerissenem Beton) mit Bohrmethode HD, HDB und CD

Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

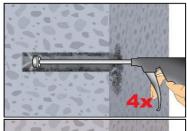
Bohrloch mindestens 4x mit Bürste RBT gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.

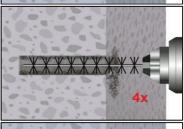
Abschließend Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton

Verwendungszweck

Setzanweisung

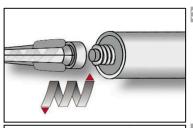

Anhang B 6


Setzanweisung (Fortsetzung)

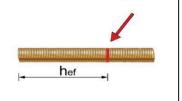
Druckluft-Reinigung (CAC):


Alle Durchmesser mit Bohrmethode HD, HDB und CD

2a. Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.



Bohrloch mindestens 4x mit Bürste RBT gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.


Abschließend Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

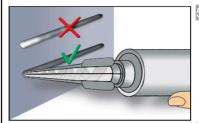
Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

Statikmischer CRW 14W / PM-19E aufschrauben und Kartusche in geeignetes Auspressgerät einlegen. Bei Schlauchfolienkartuschen den Schlauchfolienclip vor der Verwendung abschneiden.

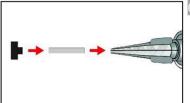
Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 5) und bei neuen Kartuschen, neuen Statikmischer verwenden.

Verankerungstiefe auf dem Ankerstab markieren. Der Bewehrungsstab muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

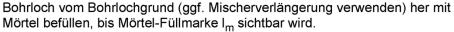
Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton


Verwendungszweck

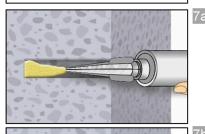
Setzanweisung (Fortsetzung)


Anhang B 7

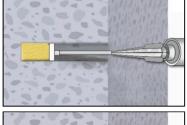
Setzanweisung (Fortsetzung)

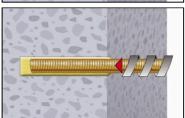

Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe, bei Schlauchfolienkartuschen min. 6 Hübe)

Verfüllstutzen VS und Mischerverlängerung VL sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:


- In horizontaler und vertikaler Richtung nach unten: Bohrer-Ø $d_0 \ge 18$ mm und Setztiefe $h_{ef} > 250$ mm
- In vertikaler Richtung nach oben: Bohrer-Ø d₀ ≥ 18 mm
 Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.


Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.


Injizieren mit Verfüllstutzen VS:

Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch mit Mörtel befüllen, bis Mörtel-Füllmarke I_m sichtbar wird. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt.

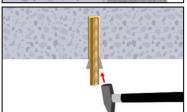
Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

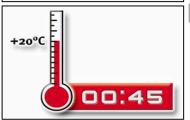
Ankerstange mit leichter Drehbewegung bis zur Markierung einführen.

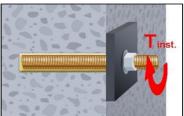
Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)


Anhang B 8


Setzanweisung (Fortsetzung)


Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 7 wiederholen.

Bei Anwendungen in vertikaler Richtung nach oben ist der Ankerstange zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 5) muss eingehalten werden. Die Installation der Anschlussbewehrung und der Schalung, darf nach Erreichen der anfänglichen Aushärtezeit $t_{cure,ini}$ fortgesetzt werden. Die volle Belastung darf erst nach Erreichen der vollen Aushärtezeit t_{cure} erfolgen.

Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Tabelle B1, B2 oder B3) beachten. Bei statischer Vorgabe (z.B. Erdbeben), Ringspalt im Anbauteil mit Mörtel (Anhang A 3) verfüllen. Dazu Unterlegscheibe durch Verfüllscheibe VFS ersetzen und Mischerreduzierung MR verwenden.

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton

Verwendungszweck Setzanweisung (Fortsetzung) Anhang B 9

8.06.01-183/25

Т	abelle C1:	Charakteristische Werte Stahlquertragfähigkeit vo			0	•	eit un	d				
Ge	windestange				M8	M10	M12	M16	M20	M24	M27	M30
Sp	annungsquersc	hnitt	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Ch	arakteristische	z Zugtragfähigkeit, Stahlversager	1 ¹⁾									
Sta	ahl, Festigkeitsk	lasse 4.6 und 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sta	ahl, Festigkeitsk	lasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Sta	ahl, Festigkeitsk	lasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Nic	chtrostender Sta	ahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Ch	arakteristisch	zugtragfähigkeit, Teilsicherheit	sbeiwe	rt ²⁾								
Sta	ahl, Festigkeitsk	lasse 4.6 und 5.6	$\gamma_{Ms,N}$	[-]				2,0				
Sta	ahl, Festigkeitsk	lasse 4.8, 5.8 und 8.8	γ _{Ms,N}	[-]				1,5				
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	γ _{Ms,N}	[-]	2,86							
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	γ _{Ms,N}	[-]	1,87							
Nic	chtrostender Sta	ahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]	1,6							
Ch	arakteristische	e Quertragfähigkeit, Stahlversage	n 1)									
_ ر	Stahl, Festigke	itsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Ohne Hebelarm	Stahl, Festigke	itsklasse 5.6 und 5.8	$ V^{0}_{Rk,s} $	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
epe	Stahl, Festigke		$ V^0_{Rk,s} $	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ĭ e	Nichtrostender	Stahl A2, A4 und HCR, Klasse 50	$ V^{0}_{Rk,s} $	[kN]	9	15	21	39	61	88	115	140
) L	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	$ V^{0}_{Rk,s} $	[kN]	13	20	30	55	86	124	_3)	_3)
	Nichtrostender	Stahl A4 und HCR, Klasse 80	$ V^{0}_{Rk,s} $	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigke	itsklasse 4.6 und 4.8	M⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Stahl, Festigke	itsklasse 5.6 und 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigke	itsklasse 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
		Stahl A2, A4 und HCR, Klasse 50	M⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Mit	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
		Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
		e Quertragfähigkeit, Teilsicherhei	itsbeiw	ert ²⁾								
Stahl, Festigkeitsklasse 4.6 und 5.6				[-]				1,67				
Stahl, Festigkeitsklasse 4.8, 5.8 und 8.8			γ _{Ms,V}	[-]	1,25							
Nichtrostender Stahl A2, A4 und HCR, Klasse 50			γ _{Ms,V}	[-]	2,38							
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]	1,56							
Nic	chtrostender Sta	hl A4 und HCR, Klasse 80	γ _{Ms,V}	[-]				1,33	}			

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

³⁾ Dübelvariante nicht in ETA enthalten

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasistatischer Belastung

Dübel				Alle Dübelarten und -größen
Betonausbruch	1			
ungerissener Be	ton	k _{ucr,N}	[-]	11,0
gerissener Betor	า	k _{cr,N}	[-]	7,7
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}
Spalten				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Randabstand	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3	7		2,4 h _{ef}
Achsabstand		S _{cr.sp}	[mm]	2 c _{cr.sp}

Fix Master Inic	aktioneeveton	6 EIT VA 200	odor EIT Wi	200 für Boton
Fix Master Inje	ekuonssysten	II FII - VE 200	oder FII-VVI	200 iui beloii

Leistungen

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 2

III: 120°C/72°C II: 40°C/24°C II: 80°C/50°C wassergefülltes Bohrloch III: 120°C/72°C	7,5 5,5 7,5 5,5 4,0 4,0 2,5 2,0	12 9,0 6,5 8,5 6,5 5,0	<u> </u>		ehe Ta abelle C 12 9,0 6,5	11 8,5	10 7,5	9,0	
Teilsicherheitsbeiwert Kombiniertes Versagen durch Herausziehen und Betonausbruch Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25	10 7,5 5,5 7,5 5,5 4,0 4,0 2,5	12 9,0 6,5 8,5 6,5 5,0	12 9,0 6,5 8,5 6,5	12 9,0 6,5 8,5	12 9,0	11 8,5	10	9,0	
Kombiniertes Versagen durch Herausziehen und Betonausbruch Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25	10 7,5 5,5 7,5 5,5 4,0 4,0 2,5	9,0 6,5 8,5 6,5 5,0	12 9,0 6,5 8,5 6,5	12 9,0 6,5 8,5	12 9,0	11 8,5		9,0	
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25	10 7,5 5,5 7,5 5,5 4,0 4,0 2,5	9,0 6,5 8,5 6,5 5,0	9,0 6,5 8,5 6,5	9,0 6,5 8,5	9,0	8,5		9,0	
I: 40°C/24°C II: 80°C/50°C Beton TRk,ucr [N/mm²]	10 7,5 5,5 7,5 5,5 4,0 4,0 2,5	9,0 6,5 8,5 6,5 5,0	9,0 6,5 8,5 6,5	9,0 6,5 8,5	9,0	8,5		9,0	
III: 120°C/72°C Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C III: 80°C/50°C	5,5 7,5 5,5 4,0 4,0 2,5	6,5 8,5 6,5 5,0	6,5 8,5 6,5	6,5 8,5	-		7,5		
III: 120°C/72°C Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C III: 80°C/50°C	7,5 5,5 4,0 4,0 2,5	8,5 6,5 5,0	8,5 6,5	8,5	6,5	6.5		6,5	
III: 120°C/72°C Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C III: 80°C/50°C	5,5 4,0 4,0 2,5	6,5 5,0	6,5			6,5	5,5	5,0	
III: 120°C/72°C Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C Reduktionsfaktor \(\psi^0_{sus}\) im gerissenen und ungerissenen Beton C20/25	4,0 4,0 2,5	5,0	· ·	6,5	Keine Leistung bewert				
III: 120°C/72°C Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25 II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C Reduktionsfaktor \(\psi^0_{sus}\) im gerissenen und ungerissenen Beton C20/25	4,0 2,5	· ·	5,0						
I: 40°C/24°C II: 80°C/50°C Beton TRk,cr [N/mm²] TRk,cr TRk,c	2,5	5.0		5,0					
II: 80°C/50°C trockener und feuchter Beton τ _{Rk,cr} [N/mm²] Trockener und feuchter Beton τ _{Rk,cr} [N/mm²] Trockener und feuchter Beton τ _{Rk,cr} [N/mm²] Trockener und feuchter Trockener und feuchter Trockener und feuchter Beton τ _{Rk,cr} [N/mm²] Trockener und feuchter Trockener und feuchter Beton τ _{Rk,cr} [N/mm²] Trockener und feuchter Trockener und feuchter und feuchter Trockener und feuchter Trockener und feuchter Trockener und feuchter und feuchter Trockener und feuchter Trockener und feuchter und feuc	2,5	5.0			l				
III: 120°C/72°C		0,0	5,5	5,5	5,5	5,5	6,5	6,5	
III: 120°C/72°C	2,0	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
III: 120°C/72°C		2,5	3,0	3,0	3,0	3,0	3,5	3,5	
III: 120°C/72°C	4,0	4,0	5,5	5,5			'		
III: 120°C/72°C	2,5	3,0	4,0	4,0	Keine	e Leistu	ıng bev	verte	
	2,0	2,5	3,0	3,0					
I: 40°C/24°C Trockener und feuchter Beton, sowie Wassergefülltes Bohrloch Wassergefülltes Bohrloch	5				l				
trockener und feuchter v v v li: 80°C/50°C Beton, sowie wassergefülltes Bohrloch ψ ⁰ sus [-]				0,	73				
	0,65								
	0,57								
Erhöhungsfaktor für Beton Ψ _C [-]	(f _{ck} / 20) ^{0,11}								
Charakteristische Verbundtragfähigkeit in τ _{Rk,ucr} =	(000(05)								
Abhängigkeit von der Betonfestigkeitsklasse $\tau_{Rk,cr} =$					Rk,cr(C20/25)				
Betonausbruch									
Relevante Parameter			S	iehe Ta	abelle C	2			
Spalten Relevante Parameter			e e	iehe Ta	abelle C	2			
Montagebeiwert				iciic ie	abelle C				
für trockenen und feuchten Beton	1,0				1,2				
für wassergefülltes Bohrloch γinst [-]		1	,4		Keine	<u>Leistu</u>	ıng bev	verte	
Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für	r Beto	on							

statischer Belas	tung									
Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ _{Rk,s}	[kN]		0),6 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ Rk,s	[kN]		0),5 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]				siehe T	abelle C	;1		
Duktilitätsfaktor	k ₇	[-]					1,0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	,2 · W _{el}	• f _{uk} (od	er siehe	Tabelle	: C1)	
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γMs,V	[-]				siehe T	abelle C	;1		
Betonausbruch auf der lastabgewandt	en Seite									
Faktor	k ₈	[-]				:	2,0			
Montagebeiwert	γinst	[-]					1,0			
Betonkantenbruch										
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 30							300mm
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagebeiwert	γ _{inst}	[-]					1,0			

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 4

Innengewindeankerstange				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Stahlversagen ¹⁾											
Charakteristische Zugtragfähigk	ceit, Stahl, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Festigkeitsklasse	8.8	T-RK,S	[[(,1)]	16	27	46	67	121	196		
Teilsicherheitsbeiwert 5.8 und 8	.8	γ _{Ms,N}	[-]			1	,5				
Charakteristische Zugtragfähigk Nichtrostender Stahl A4 und HC	ostender Stahl A4 und HCR, Klasse 70 ²⁾ INRk,s [KIN] 14 26 41 59					110	124				
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			1,87			2,86		
Kombiniertes Versagen durch	n Herausziehen	und Be	tonausb	ruch							
Charakteristische Verbundtragfä	ähigkeit im ungei	rissener	Beton C								
l: 40°C/24°C	trockener und			12	12	12	12	11	9,0		
= II' 80°C/50°C	feuchter Beton			9,0	9,0	9,0	9,0	8,5	6,5		
E		τ _{Rk ucr}	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0		
E 6 1: 40°C/24°C	wassergefülltes	1111,401		8,5	8,5	8,5		-1-4			
☐ II: 80°C/50°C III: 120°C/72°C	Bohrloch		-	6,5	6,5	6,5	Keine L	eistung b	ewertet		
Charakteristische Verbundtragfä	ähiakoit im aorise	conon P	oton C20	5,0	5,0	5,0					
I: 40°C/24°C	anigkeit iin gens			5,0	5,5	5,5	5,5	5,5	6,5		
± _ II: 80°C/50°C	trockener und			3,5	4,0	4,0	4,0	4,0	4,5		
를 를 III: 120°C/72°C f	feuchter Beton			2,5	3,0	3,0	3,0	3,0	3,5		
Ti. 40°C/24°C		^τ Rk,cr	r [N/mm²]	4,0	5,5	5,5	0,0	0,0	0,0		
a) = II⋅ 80°C/50°C '	wassergefülltes			3,0	4,0	4,0	Keine Leistung bewer				
III: 120°C/72°C	Bohrloch			2,5 3,0 3,0							
Reduktionsfaktor ψ ⁰ sus im geris	senen und unge	rissener	Beton C	20/25							
	trockener und feuchter Beton,			0,73							
<u> </u>	sowie wassergefülltes	Ψ ⁰ sus	[-]	0,65							
	Bohrloch					0,					
Erhöhungsfaktor für Beton		Ψс	[-]				20) ^{0,11}				
Charakteristische Verbundtragfä	ähigkeit in	τ	Rk,ucr =			Ψ c • τ _{Rk,u}	_{cr} (C20/25))			
Abhängigkeit von der Betonfesti	igkeitsklasse		τ _{Rk,cr} =			Ψ c • τ _{Rk,c}	_{cr} (C20/25)				
Betonausbruch											
Relevante Parameter						siene la	belle C2				
Spalten Relevante Parameter						sioho To	belle C2				
Montagebeiwert						Sierie 12	ibelle CZ				
ür trockenen und feuchten Beto	n e					1	,2				
ür wassergefülltes Bohrloch	/II	γinst	[-]		1,4	'		eistung b	ewertet		

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 5

statischer B	eiastui	ig				I	ı			
Innengewindeankerstange			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Stahlversagen ohne Hebelarm ¹⁾										
Charakteristische 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61		
Quertragfähigkeit, ————————————————————————————————————	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98		
Teilsicherheitsbeiwert 5.8 und 8.8	Y _{Ms,V}	[-]				1,25		•		
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und HCR, Festigkeitsklasse 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			1,56			2,38		
Duktilitätsfaktor	k ₇	[-]				1,0				
Stahlversagen mit Hebelarm ¹⁾										
Charakteristisches 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519		
Teilsicherheitsbeiwert 5.8 und 8.8	γ _{Ms,V}	[-]				1,25				
Charakteristisches Biegemoment, nicht-rostender Stahl A4 und HCR, Festigkeitsklasse 70²)	M ⁰ Rk,s	[Nm]	11	26	52	92	233	456		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			2,38					
Betonausbruch auf der lastabgev	vandten S	Seite								
Faktor	k ₈	[-]	2,0							
Montagebeiwert	γinst	[-]				1,0				
Betonkantenbruch										
Effektive Dübellänge	I _f	[mm]		min	(h _{ef} ; 12 • d	nom)		min(h _{ef} ; 300mi		
Außendurchmesser des Dübels	d _{nom}	[mm]	10	12	16	20	24	30		
Montagebeiwert		[-]		-	•	1,0	•	•		

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 6

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

	ıstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32				
Stahl	ver s agen																
Chara	kteristische Zugtra	gfähigkeit	$N_{Rk,s}$	[kN]				A	۹ _s • f _{uk}	1)							
Stahls	pannungsquerschi	nitt	A _s	[mm²]	50	79	113	154	201	314	4 91	616	804				
Teilsi	cherheitsbeiwert		γMs,N	[-]					1,42)								
Komb	iniertes Versager	n durch Herauszi	ehen und	Betonau	sbruc	h											
Chara	kteristische Verbur	ndtragfähigkeit im	ungerisse	enen Beto	n C20/	25											
	I: 40°C/24°C	trockener und			10	12	12	12	12	12	11	10	8,5				
Temperatur- bereich	II: 80°C/50°C	feuchter Beton			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0				
mperati bereich	III: 120°C/72°C		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5				
m ber	I: 40°C/24°C	wassergefülltes	KK,UCI	[[]	7,5	8,5	8,5	8,5	8,5								
-	II: 80°C/50°C	Bohrloch			5,5	6,5	6,5	6,5	6,5	Keine Leistung bewe							
<u> </u>	III: 120°C/72°C		<u> </u>		4,0	5,0	5,0	5,0	5,0								
Chara	kteristische Verbur	ndtragfahigkeit im	gerissene T	en Beton (
,1	I: 40°C/24°C	trockener und			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5				
in it	II: 80°C/50°C	feuchter Beton			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5				
npe Sere	III: 120°C/72°C		τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5				
	I: 40°C/24°C II: 80°C/50°C	wassergefülltes	,	-	4,0	4,0	5,5	5,5	5,5	Kaina	. I oloti	na ha					
Ĕ	III: 120°C/72°C	Bohrloch								2,5	3,0 2,5	4,0 3,0	4,0 3,0	4,0 3,0	Keine	Leisit	ing bev
Redul	rtionsfaktor ψ ⁰ sus ii	l m derissenen und	underiss	enen Reto		,	0,0	0,0	0,0								
- Cau		I	Ingenios		11 020/												
atur Sh	I: 40°C/24°C	trockener und feuchter Beton,			0,73												
Temperatur -bereich	II: 80°C/50°C	sowie	Ψ^0 sus	[-]	0,65												
Ten b	III: 120°C/72°C	wassergefülltes Bohrloch							0,57								
Erhöh	ungsfaktor für Beto	on	Ψς	[-]				(f _c	k / 20)	0,11							
	kteristische Verbur	ndtragfähigkeit in		τ _{Rk,ucr} =					Rk,ucr(C								
	ngigkeit von der festigkeitsklasse			τ _{Rk,cr} =					Rk,cr(C								
	ausbruch			rat,or					1 (1(,0)								
	ante Parameter							siehe	e Tabel	le C2							
Spalt																	
	ante Parameter							siehe	Tabel	le C2							
	agebeiwert																
für tro	ckenen und feuchte	en Beton	۸,	[]	1,0				1	,2							
	ssergefülltes Bohrl		γinst	[-]			1,4			Keine							

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 7

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C8: Charakteri statischer			er Que	ertrag	tähigk	ceit ur	iter st	atisch	ner un	d qua	Sİ-
Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s}	[kN]				0,5	0 · A _s ·	f _{uk} ²⁾			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,52)				
Duktilitätsfaktor	k ₇	[-]					1,0				
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾								
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾				
Betonausbruch auf der lastabge	wandten Se	eite									
Faktor	k ₈	[-]					2,0				
Montagebeiwert	γinst	[-]					1,0				
Betonkantenbruch											
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)								mm)
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Montagebeiwert	γinst	[-]					1,0				

 $^{^{1)}\} f_{uk}$ ist den Spezifikationen des Betonstahls zu entnehmen $^{2)}$ Sofern andere nationalen Regelungen fehlen

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 8

Tabelle C9: V	erschiebu	ung unter Zugbea	nspru	chung	1)						
Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30	
Ungerissener Beto	n C20/25 ur	iter statischer und qu	uasi-sta	tischer	Belastu	ng					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperaturbereich III: 120°C/72°C	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Gerissener Beton (C20/25 unte	r statischer und quas	si-statis	cher Be	lastung	J					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90	0,070						
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	105	0,105						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	70			
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C10: Verschiebung unter Querbeanspruchung¹⁾

Gewindestange			М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton	C20/25 unte	er statischer und qu	ıasi-sta	tischer	Belastu	ng				
Alle	δ _{v0} -Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton C	20/25 unter s	statischer und quas	i-statis	cher Be	lastung	l				
Alle	δ _{v0} -Faktor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 9

Innengewindeanke	rstange		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Ungerissener Beto	n C20/25 unter	statischer und qua	asi-statiso	her Belas	tung			
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Gerissener Beton (C20/25 unter st	atischer, quasi-sta	tischer Be	elastung				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,090			0,070		
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,105			0,105		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,219			0,170		
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,255			0,245		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,219			0,170		
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,255			0,245		

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C12: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindeankerstange)

Innengewindeanker	stange		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Gerissener und ung	erissener Be	ton C20/25 ur	nter statisc	her und qu	asi-statisc	her Belastı	ıng	
Alle	δ _{v0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
Temperaturbereiche	δ _{V∞} -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen	Anhang C 10
Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	

Betonstahl Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32													
	000/05							220	<i>D</i> 20	2 20	2 02		
Ungerissener Bet	on C20/25 t	inter statische	r una q	uası-sta	atischer	Belasti	ung						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052		
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126		
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126		
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Gerissener Beton	C20/25 unt	er statischer u	ınd qua	si-statis	scher B	elastunç	9						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90				0,070					
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	05				0,105					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219	0,170								
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255				0,245					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219	0,170								
III: 120°C/72°C $\delta_{N\infty}$ -Faktor [mm/(N/mm²)] 0,255 0,245													

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C14:Verschiebung unter Querbeanspruchung¹⁾

1											
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton	er und q	uasi-sta	atischer	Belasti	ung						
Alle	δ _{vo} -Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Gerissener Beton C	20/25 unter s	statischer ı	und qua	si-statis	scher B	elastun	g				
Alle	δ _{vo} -Faktor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
Temperaturbereiche	δ _{V∞} -Faktor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · **V**; $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · **V**;

V: einwirkende Querlast

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 11

8.06.01-183/25 Z193947.25

Ge	windestange					M8	M 10	M12	M16	M20	M24	M27	M30
	hlversagen		1.1			ı			1.0				
	arakteristische Zugtra	agfähigkeit	I	k,s,eq,C1	[kN]					N _{Rk,s}			
	sicherheitsbeiwert	n durch Haraus		/ _{Ms,N} [-] siehe Tabelle C1									
	arakteristische Verbu						ton C20)/25					
	I: 40°C/24°C	managramg.com	gonood	morr arra		2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
eich	II: 80°C/50°C	rockener und feuch	ter			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
ber	III: 120°C/72°C	Beton				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
Temperaturbereich	I: 40°C/24°C		τ	Rk,eq,C1	[N/mm²]	2,5	2,5	3,7	3,7	2,0	۷,۱	2,7	۷,٦
npei		vassergefülltes				⊢ ·	 '			Koine	Loioti	ına ha	worto
Ter		Bohrloch				1,6	1,9	2,7	2,7	Keine	Leisii	ung bev	werte
	III: 120°C/72°C				f 1	1,3	1,6	2,0	2,0	^			
	öhungsfaktor für Bet arakteristische Verbu		Ψ _c		[-]					,0			
	nängigkeit von der Be			τ	Rk,eq,C1=			$\Psi_{\mathbf{C}}$.	^τ Rk, eq	_{,C1} (C2	0/25)		
		stornootigitoitoitiae	se										
Мо	ntagebeiwert	-	se		1								
Mo für		ten Beton	γins		[-]	1,0	1	,4		1,2		ung bev	werte
Mo für für	ntagebeiwert trockenen und feucht wassergefülltes Bohr abelle C16: Cha Ein	ten Beton rloch	γ _{ins}	te der	[-] Quertra orie C1)	gfähi	gkeit	,4 unter	seis	1,2 Keine	e Leistu		
Mo für für	ntagebeiwert trockenen und feucht wassergefülltes Bohr abelle C16: Cha Ein windestange	ten Beton rloch arakteristisch wirkung (Leis	γ _{ins}	te der	[-] Quertra orie C1)	gfähi		,4		1,2 Keine	e Leistu	ung bev	werte
Mo für für T Ge Sta	ntagebeiwert trockenen und feucht wassergefülltes Bohr abelle C16: Cha Ein windestange hlversagen ohne H	ten Beton rloch arakteristisch wirkung (Leis ebelarm	γ _{ins} le Wer stungs	rte der skatego	[-] Quertra orie C1)	gfähi	gkeit	,4 unter M16	seis	1,2 Keine miscl	e Leistu		
Mo für für T Ge Sta	ntagebeiwert trockenen und feucht wassergefülltes Bohr abelle C16: Cha Ein windestange	ten Beton rloch arakteristisch wirkung (Leis ebelarm	γ _{ins} e Wer stungs	te der skatego	[-] Quertra orie C1)	gfähi	gkeit M12	,4 unter M16	M20	1,2 Keine miscl	e Leistu		
Mo für für T Ge Sta Ch	ntagebeiwert trockenen und feucht wassergefülltes Bohr abelle C16: Cha Ein windestange hlversagen ohne He arakteristische Quert	ten Beton rloch arakteristisch wirkung (Leis ebelarm	γ _{ins} e Wer stungs	rte der skatego	[-] Quertra orie C1)	gfähi	gkeit M12	,4 unter M16 0,70 siehe T	M20	1,2 Keine miscl	e Leistu		

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) (Gewindestange)	Anhang C 12

Betonstahl Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 28 Ø 28 Ø 20 Ø 25 Ø 28 Ø 28 Ø 28 Ø 20 Ø 20 Ø 25 Ø 28 Ø 28 Ø 28 Ø 20 Ø 25 Ø 28 Ø 28 Ø 28 Ø 28 Ø 20 Ø 25 Ø 28 Ø 20 Ø 20 Ø 25 Ø 28 Ø 20 Ø 20 Ø 20 Ø 25 Ø 28 Ø 20	belle C17: Charakteristi Einwirkung (•	_	fähigl	keit u	inter	seisn	nisch	er			
	nstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Charakteristische Zugtragfähigkeit $N_{Rk,s,eq,C1}$ [kN] 1,0 · A _s · f _{uk} ¹⁾	lversagen												
,9,9,4,0.	akteristische Zugtragfähigkeit	[kN]				1,0	· A _s ·	f _{uk} 1)					
1	Ispannungsquerschnitt		1	50	79	113	154	201	314	491	616	804	
Teilsicherheitsbeiwert $\gamma_{Ms,N}$ [-] 1,4 ²⁾	icherheitsbeiwert	γ _{Ms,N}	[-]					1,4 ²⁾					
Kombiniertes Versagen durch Herausziehen und Betonausbruch	biniertes Versagen durch Hera	sziehen und	Betonaus	bruch									
Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25	akteristische Verbundtragfähigke	im gerissene	n und ung	erissen	en Bet	on C20)/25						
	I: 40°C/24°C			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
H: 80°C/50°C trockener und feuchter Beton 1,6 2,2 2,7 2,7 2,7 2,8 3,1 3	III: 80°C/50°C			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
\(\frac{\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\tinity}\text{\tin\tinit\}\text{\text{\texicl{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\tint{\text{\texi}\tininter{\text{\texi}\text{\text{\text{\text{\text{\text{\t	III: 120°C/72°C	TD1: 04	[N/mm²]						2,0	2,1	2,4	2,4	
1: 40°C/24°C wassergefülltes TRk,eq,C1 [N/mm²] 2,5 2,5 3,7 3,7 3,7 3,7 4,0 4,0 3,7 3,7 4,0 4,0 3,7 3,7 4,0 4,0 4,0 3,7 3,7 4,0 4,0 4,0 3,7 4,0	I: 40°C/24°C		[[N/11111-]										
II: 80°C/50°C Bohrloch 1,6 1,9 2,7 2,7 Keine Leistung bewe	· III. 80°C/50°C Wassergerund	`		1,6	1,9	2,7	2,7	2,7	Keine	: Leistu	ıng bev	wertet	
III: 120°C/72°C	III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0					
Erhöhungsfaktor für Beton Ψ_{c} [-] 1,0	hungsfaktor für Beton	Ψc	[-]					1,0					
	Charakteristische Verbundtragfähigkeit in Abhängigkeit von der τ _{Rk,eq,C1} =					Ψ _C • τ _{Rk, eq,C1} (C20/25)							
Montagebeiwert	tagebeiwert												
für trockenen und feuchten Beton 7 inst 1,0 1,2	ockenen und feuchten Beton		[]	1,0 1,2									
für wassergefülltes Bohrloch Yinst [-] 1,4 Keine Leistung bewe	assergefülltes Bohrloch	inst	[-]			1,4			Keine	Leistu	ıng bev	wertet	

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C18: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	$V_{Rk,s,eq,C1}$	[kN]				0,3	5 · A _s ·	f _{uk} 1)				
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]					1,52)					
Faktor für Ringspalt	$lpha_{\sf gap}$	[-]				C),5 (1,0)	3)				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) (Betonstahl)	Anhang C 13

²⁾ Sofern andere nationalen Regelungen fehlen

²⁾ Sofern andere nationalen Regelungen fehlen

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen dem Betonstahl und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

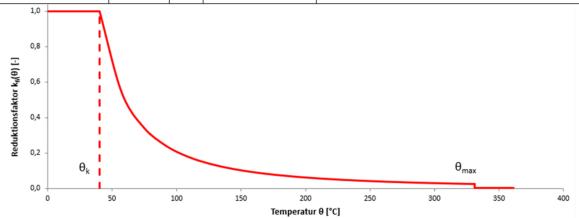


Tabelle C19: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Gewindestange					М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen												
Charakteristische Zugtrag-			Brand-	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
fähigkeit; Stahl,	N	[kN]	einwirk- zeit	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse	N _{Rk,s,fi}			90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
5.8 bzw. 50 und höher			[min]	120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9

Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ

			θ < 21°C	1,0
Temperaturabhängiger Reduktionsfaktor	$k_{fi,p}(\theta)$	[-]	21°C ≤ θ ≤ 331°C	$589,7 \cdot \theta^{-1,726} \le 1,0$
Treading of the factor of the			θ > 331°C	0,0

				•								
Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]			$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{-1}$							
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit; Stahl, Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 5.8 bzw. 50 und höher			Brand-	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
	$V_{Rk,s,fi}$	[kN]	einwirk- zeit [min]	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
				90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
				120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9
Stahlversagen mit Hebelari	m											
Charakteristisches			Brand-	30	1,1	2,2	4,7	12,0	23,4	40,4	59,9	81,0
Biegemoment; Stahl, Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse	N40	[NIm]	oipwirk	60	0,9	1,8	3,5	9,0	17,5	30,3	44,9	60,7
	M ⁰ _{Rk,s,fi}	[Nm]	zeit [min]	90	0,7	1,3	2,5	6,3	12,3	21,3	31,6	42,7
5.8 bzw. 50 und höher				120	0,5	1.0	1,8	4,7	9.1	15,7	23,3	31.5

τ_{Rk,cr,(C20/25)} charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

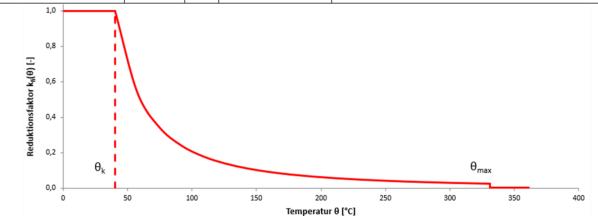

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Gewindestange)	Anhang C 14

Tabelle C20: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Innengewindeankerstange						IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen										
Charakteristische Zugtrag-			Brand-	30	0,3	1,1	1,7	3,0	5,7	8,8
fähigkeit; Stahl, Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 5.8	N _{Rk,s,fi}	[kN]	einwirk- zeit [min]	60	0,2	0,9	1,4	2,3	4,2	6,6
				90	0,2	0,7	1,0	1,6	3,0	4,7
und 8.8 bzw. 70				120	0,1	0,5	0,8	1,2	2,2	3,4

Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ

,												
Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]			$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$							
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit; Stahl, Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 5.8 und 8.8 bzw. 70			Brand-	30	0,3	1,1	1,7	3,0	5,7	8,8		
	$V_{Rk,s,fi}$	[kN]	einwirk- zeit [min]	60	0,2	0,9	1,4	2,3	4,2	6,6		
				90	0,2	0,7	1,0	1,6	3,0	4,7		
				120	0,1	0,5	0,8	1,2	2,2	3,4		
Stahlversagen mit Hebelarr	n											
Charakteristisches			Brand-	30	0,2	1,1	2,2	4,7	12,0	23,4		
Biegemoment; Stahl, Nichtrostender Stahl , A4 und HCR, Festigkeitsklasse 5.8 und 8.8 bzw. 70	N40	[NIm]	einwirk-	60	0,2	0,9	1,8	3,5	9,0	17,5		
	M ⁰ _{Rk,s,fi}	[Nm]	zeit	90	0,1	0,7	1,3	2,5	6,3	12,3		
			[min]	120	0,1	0,5	1,0	1,8	4,7	9,1		

τ_{Rk,cr,(C20/25)} charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Innengewindeankerstange)	Anhang C 15

Tabelle C21: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB) Betonstahl Ø 8 |Ø 10 |Ø 12 |Ø 14 |Ø 16 |Ø 20 |Ø 24 |Ø 25 |Ø 28 |Ø 32 Stahlversagen 30 0,5 1,2 2,3 3,1 4,0 6,3 9,0 9,8 12,3 16,1 Brand-60 0,5 1,0 1,7 2,3 3,0 4,7 7,4 9,2 12,1 6,8 Charakteristische Zugtrageinwirk- $|N_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}|$ [kN] fähigkeit; BSt 500 zeit 1,5 2,6 90 0,4 8,0 6,4 10,5 2,0 4,1 5,9 8,0 [min] 120 0,3 0,6 2,0 4,5 8,0 1,1 1,5 3,1 Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur 0

			θ < 21°C	1,0
Temperaturabhängiger Reduktionsfaktor $k_{fi,p}(\theta)$		[-]	21°C ≤ θ ≤ 243°C	$0.81 \cdot e^{-0.016 \cdot \theta} \le 1.0$
reductional			θ > 243°C	0,0
1,0	1			
0,8 -				
Ξ				

(9) [-] 0,8 ,0						
Reduktionsfaktor k _n (θ) [-]						
Reduktio					$ heta_{\sf max}$	
0,0	θ _k	100	150	200	250	300
	20	230	Temperatur θ [°C]	230	230	200

	Temperatur # [*C]													
Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$		[N/mm²]			$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$								
Stahlversagen ohne Hebelarm														
Charakteristische Quertrag- fähigkeit; BSt 500			Drond	30	0,5	1,2	2,3	3,1	4,0	6,3	9,0	9,8	12,3	16,1
	$V_{Rk,s,fi}$	[kN]	Brand- einwirk- zeit [min]	60	0,5	1,0	1,7	2,3	3,0	4,7	6,8	7,4	9,2	12,1
				90	0,4	0,8	1,5	2,0	2,6	4,1	5,9	6,4	8,0	10,5
				120	0,3	0,6	1,1	1,5	2,0	3,1	4,5	4,9	6,2	8,0
Stahlversagen mit Hebelar	m													
			Brand-	30	0,6	1,8	4,1	6,5	9,7	18,8	32,6	36,8	51,7	77,2
Charakteristisches	N40	[NIm]	واستريناه	60	0,5	1,5	3,1	4,8	7,2	14,1	24,4	27,6	38,8	57,9
Biegemoment; BSt 500	M ⁰ Rk,s,fi	[NM]		90	0,4	1,2	2,6	4,2	6,3	12,3	21,2	23,9	33,6	50,2
			[min]	120	0,3	0,9	2,0	3,2	4,8	9,4	16,3	18,4	25,9	38,6

¹⁾ TRK,cr,(C20/25) charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

Fix Master Injektionssystem FIT-Ve 200 oder FIT-Wi 200 für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Betonstahl)	Anhang C 16