

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0444 of 8 August 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete

Bonded fasteners and bonded expansion fasteners for use in concrete

Ferrometal Oy Karhutie 9 FI-01900 NURMIJÄRVI

FINNLAND

Plant 1, Finland

34 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-17/0444 issued on 6 October 2017

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z192829.25 8.06.01-183/25

European Technical Assessment ETA-17/0444

English translation prepared by DIBt

Page 2 of 34 | 8 August 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z192829.25 8.06.01-183/25

Page 3 of 34 | 8 August 2025

Specific Part

1 Technical description of the product

The "Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Fix Master FIT-Ve 200 or Fix Master FIT-Wi 200 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 14 to C 16

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z192829.25 8.06.01-183/25

European Technical Assessment ETA-17/0444

English translation prepared by DIBt

Page 4 of 34 | 8 August 2025

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

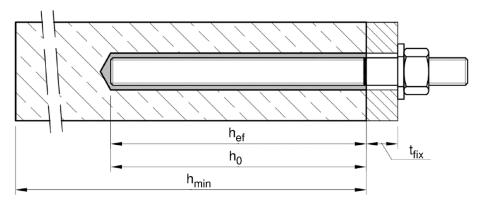
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

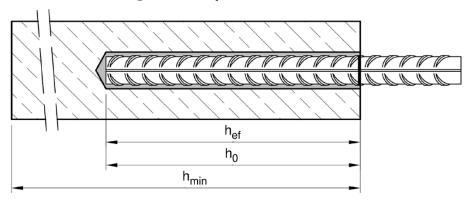
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 August 2025 by Deutsches Institut für Bautechnik

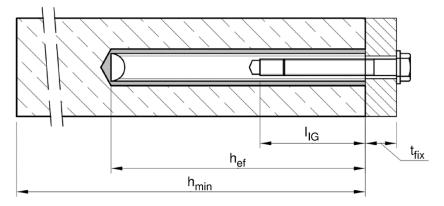
Dipl.-Ing. Beatrix Wittstock Head of Section


beglaubigt: Baderschneider

Z192829.25 8.06.01-183/25



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture h_0 = nominal drill hole diameter

 h_{ef} = effective embedment depth I_{IG} = thread engagement length

 h_{min} = minum thickness of member

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete

Product description

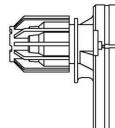
Installed condition

Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

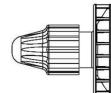

Imprint:

Fix Master FIT-Ve 200 or Fix Master FIT-Wi 200

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

Fix Master FIT-Ve 200 or Fix Master FIT-Wi 200

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil tube Cartridge:

165 ml and 300 ml

Imprint:

Fix Master FIT-Ve 200 or Fix Master FIT-Wi 200

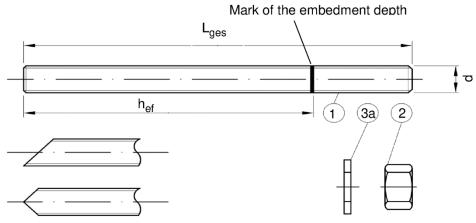
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Static mixer CRW 14W

Static mixer PM-19E

Piston plug VS and mixer extension VL

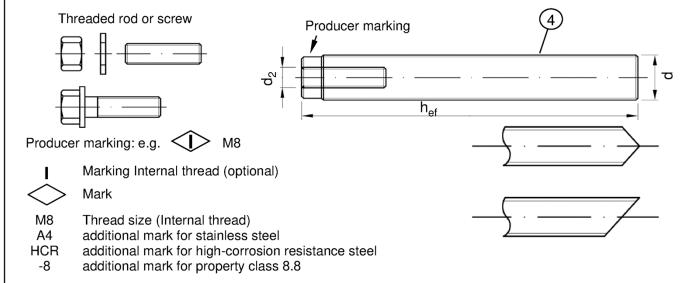
Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete


Product description

Injection system

Annex A 2

Threaded rod M8 up to M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

For hot dip galvanized elements, the requirements with regards to the combination of nuts and rods according to EN ISO 10684:2004+AC:2009 Annex F shall be considered.

Internal threaded rod IG-M6 to IG-M20

Filling washer VFS

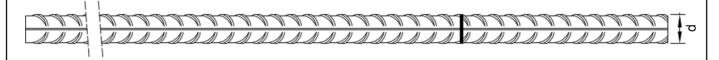
Mixer reduction nozzle MR

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete

Product description

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3


Table A1: Materials						
Par	Designation	Material				
Ste - z - h	el, zinc plated (Steel inc plated ≥ 3 ot-dip galvanised ≥ 4	acc. to EN ISO 683-4:25 µm acc. to EN ISO 40 µm acc. to EN ISO 45 µm acc. to EN ISO	4042 146	2:2022 or 1:2022 and EN ISO 10684:	2004+AC:2009 or	
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
	Till Gadou Tod	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		EN 150 896-1.2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
			4	for anchor rod class 4.6 o	, ,	
2	Hexagon nut	acc. to EN ISO 898-2:2022	5	for anchor rod class 5.6 o	r 5.8	
			8	for anchor rod class 8.8		
За	Washer	(e.g.: EN ISO 887:20	006, E	galvanised or sherardized EN ISO 7089:2000, EN ISO	7093:2000 or EN ISC	7094:2000)
3b_	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized	T	1=.
	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
	i internal inreaded					Tracture
1	anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
1		acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²		
Sta Sta	anchor rod nless steel A2 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023)	A ₅ > 8%
Sta Sta	anchor rod nless steel A2 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1.4565, acc. to EN 10088 Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel	A ₅ > 8%
Sta Sta Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ace steel (Material 1.45 Property class	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1.4565, acc. to EN 10088	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023)	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at
Sta Sta Hig	anchor rod nless steel A2 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ace steel (Material 1.45 Property class acc. to	8.8 .431 .457 529 or	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{1 / 1.4567 or 1.4541, acc. t} \\ \text{1 / 1.4362 or 1.4578, acc. t} \\ \text{1 .4565, acc. to EN 10088} \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength	A ₅ > 8% A ₅ > 8% Elongation at fracture
Sta Sta Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ace steel (Material 1.45 Property class	8.8 .431 .457 529 or	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Sta Sta Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ace steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020	8.8 .431 .457 529 or	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{1 / 1.4567 or 1.4541, acc. t} \\ \text{1 / 1.4362 or 1.4578, acc. t} \\ \text{1 .4565, acc. to EN 10088} \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Sta Sta Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ace steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to	8.8 .431 .457 529 or 70 80 50	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{1 / 1.4567 or 1.4541, acc. t} \\ \text{1 / 1.4362 or 1.4578, acc. t} \\ \text{1 / 1.4365, acc. to EN 10088} \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Sta Sta Hig	anchor rod nless steel A2 (Materials and Materials and Ma	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ace steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020	8.8 .431 .457 529 or 50 70 80 50 70 80	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 \text{ / } 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 \text{ / } 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 \text{ / } 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 80 \\ \end{split}$	$\begin{aligned} &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &-1\text{:}2023) \\ &\text{Characteristic steel} \\ &yield \text{ strength} \\ &f_{yk} = 210 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \end{aligned}$	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Sta Sta Hig	anchor rod nless steel A2 (Materials and Materials and Ma	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 erial 1.4401 / 1.4404 / 1 erial 1.450 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529	8.8 .431 .457 629 or 50 70 80 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2023$ $1:2023$
Sta Sta Hig 1	anchor rod nless steel A2 (Materials and Materials and Ma	EN ISO 898-1:2013 Prial 1.4301 / 1.4307 / 1 Prial 1.4401 / 1.4404 / 1 Ice steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	8.8 .431 .457 529 or 50 70 80 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 \text{ / } 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 \text{ / } 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 \text{ / } 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ 07 \text{ / } 1.4311 \text{ / } 1.4567 \text{ or } 1.4 \\ 04 \text{ / } 1.4571 \text{ / } 1.4362 \text{ or } 1.4 \\ .4565, \text{ acc. to EN } 10088-1 \\ \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2023$ $1:2023$
Sta Hig 1 1 2 3a	anchor rod nless steel A2 (Material Material Ma	EN ISO 898-1:2013 Prial 1.4301 / 1.4307 / 1 Prial 1.4401 / 1.4404 / 1 Ice steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	8.8 .431 .457 529 or 50 70 80 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ 07 / 1.4311 / 1.4567 \text{ or } 1.4 \\ 04 / 1.4571 / 1.4362 \text{ or } 1.4 \\ .4565, \text{ acc. to EN } 10088-1 \\ \text{EN ISO } 7089:2000, \text{ EN ISO} \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2023 1:2023
Stai Stai Hig	anchor rod nless steel A2 (Materials and Materials and Ma	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 erial 1.4401 / 1.4404 / 1 erial 1.4501 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452((e.g.: EN ISO 887:20 Stainless steel A4, H	8.8 .431 .457 529 or 50 70 80 70 80 7 1.43 7 1.44 9 or 1 006, E	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 \text{ / } 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 \text{ / } 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 \text{ / } 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ 07 \text{ / } 1.4311 \text{ / } 1.4567 \text{ or } 1.4 \\ 04 \text{ / } 1.4571 \text{ / } 1.4362 \text{ or } 1.4 \\ .4565, \text{ acc. to EN } 10088-12 \\ \text{EN ISO } 7089:2000, \text{ EN ISO } \\ \text{orrosion resistance steel} \\ \text{Characteristic steel} \end{split}$	$\begin{aligned} &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &-1\text{:}2023) \end{aligned}$ Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2 \\ f_{yk} = 450 \text{ N/mm}^2 \\ f_{yk} = 600 \text{ N/mm}^2 \end{aligned}$ $f_{yk} = 600 \text{ N/mm}^2$ $541, \text{ acc. to EN } 10088\text{-}578, \text{ acc. to EN } 10088\text{-}2023 \\ 0.7093\text{:}2000 \text{ or EN } \text{ISC} \end{aligned}$ Characteristic steel	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2023 1:2023 1:2023

²⁾ for IG-M20 only property class 50
3) Property class 80 only for stainless steel A4 and HCR

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range $0.05d \le h_{rib} \le 0.07d$ (d: Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A2: Materials Reinforcing bar

Part	Designation	Material
Reba	ar	
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Product description Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life 50 years		Working life 100 years	
Base material	uncracked concrete	cracked concrete	uncracked concrete	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø IG-M6 to I	Ø 32 ,	No performand	ce assessed
Temperature Range	II: - 40°C t	0 +40°C¹) 0 +80°C²) 0 +120°C³)	No performanc	e assessed

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2
Base material	Cracked and und	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, Ø8 to Ø32	No performance assessed
Temperature Range	I: -40°C to +40°C ¹⁾ II: -40°C to +80°C ²⁾ III: -40°C to +120°C ³⁾	No performance assessed

Fasteners subject to (fire exposure):

Base material	Cracked and uncracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, ∅8 to ∅32, IG-M6 to IG-M20
Temperature Range:	I: -40°C to +40°C ¹⁾ II: -40°C to +80°C ²⁾ III: -40°C to +120°C ³⁾

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Intended Use Specifications	Annex B 1

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

^{3) (}max. long-term temperature +72°C and max. short-term temperature +120°C)

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A2:2021.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055,
 Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:

Fix Master FIT-Ve 200: -10°C up to +40°C for the standard variation of temperature after installation. Fix Master FIT-Wi 200: -20°C up to +10°C for the standard variation of temperature after installation.

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Intended Use Specifications (Continued)	Annex B 2

Table B1:	Installation parameters for threaded rod	

Threaded rod	Threaded rod					M12	M16	M20	M24	M27	M30
Diameter of element	of element d = c			8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d_0	[mm]	10	12	14	18 24 28			32	35
Effective embedmer	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	
Effective embedmer	пі аеріп	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Prepositioned ins	tallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
the fixture	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness	Minimum thickness of member			-	f + 30 m : 100 mr			ľ	n _{ef} + 2do)	
Minimum spacing			[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ance	c _{min}	[mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for reinforcing bar

Reinforcing bar	Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment death	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm								
Minimum spacing	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod			IG-M6	IG-M8	IG-M10 IG-M12 IG-M16 IG-M20			
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	24	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	١ .	30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	c _{min}	[mm]	50	60	80	100	120	150
1) With matric through according to	EN 1000 1 0.0	2005 . 40	2.0000	•	•	•	•	•

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete

Intended Use

Installation parameters

Annex B 3

Table B4	: Para	meter cle	aning and	instal	latio	n tools				
					nanana)	and the state of t				
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _b Brush		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio	
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1
M8	8		10	RBT10	12	10,5				
M10	8 / 10	IG-M6	12	RBT12	14	12,5		No plua	required	
M12	10 / 12	IG-M8	14	RBT14	16	14,5		No plug	required	
	12		16	RBT16	18	16,5				
M16	14	IG-M10	18	RBT18	20	18,5	VS18			
	16		20	RBT20	22	20,5	VS20			
M20		IG-M12	24	RBT24	26	24,5	VS24	h . >	h. \	
	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} > 250 mm	all
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 11111	
M27	25		32	RBT32	34	32,5	VS32			
M30	28	IG-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

Brush RBT

Piston Plug VS

Brush extension RBL

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Intended Use Cleaning and installation tools	Annex B 4

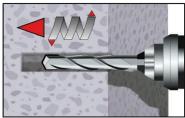
Table B5:	Worki	ng time and o	euring time Fix Master FIT-Ve	200		
Tempera	ture in bas	se material	Minimum curing time ¹⁾			
	Т		t _{gel}	t _{cure}		
- 10°C	to	- 6°C	90 min ²⁾	24 h		
- 5°C	to	- 1 °C	90 min	14 h		
0°C	to	+ 4 °C	45 min	7 h		
+ 5°C	to	+ 9°C	25 min	2 h		
+ 10°C	to	+ 19°C	15 min	80 min		
+ 20 °C	to	+ 29 °C	6 min	45 min		
+ 30 °C	to	+ 34 °C	4 min	25 min		
+ 35 °C	to	+ 39 °C	2 min	20 min		
	+40°C		1,5 min	15 min		
Cartr	idge tempe	erature	+5°C to +40°C			

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

Table B6: Working time and curing time Fix Master FIT-Wi 200

Tempera	ture in bas	e material	Maximum working time	Minimum curing time 1)
	Т		t _{gel}	t _{cure}
- 20 °C	to	- 16°C	75 min	24 h
- 15°C	to	- 11 °C	55 min	16 h
- 10°C	to	- 6°C	35 min	10 h
- 5°C	to	- 1 °C	20 min	5 h
0°C	to	+ 4°C	10 min	2,5 h
+ 5°C	to	+ 9°C	6 min	80 min
	+ 10 °C		6 min	60 min
Cart	ridge tempe	rature	-20°C to) +10°C

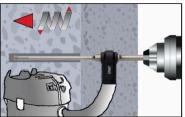
¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Intended Use Working time and curing time	Annex B 5

²⁾ Cartridge temperature must be at least +15°C

Installation instructions

Drilling of the bore hole


Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.

Drill bit diameter according to Table B1, B2 or B3.

Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).

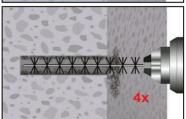
1b. Hollow drill bit system (HDB)

Drill a hole to the required embedment depth.

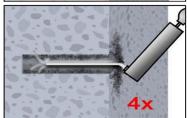
Drill bit diameter according to Table B1, B2 or B3.

Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).


Attention! Standing water in the bore hole must be removed before cleaning

Manual Air Cleaning (MAC)

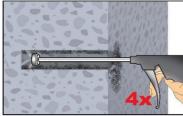

for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm uncracked concrete only) with drilling method HD, HDB and CD

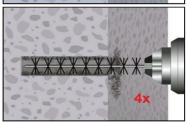
Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

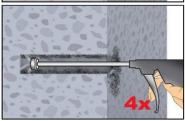
2c.

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

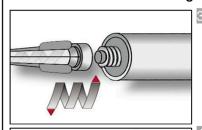

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete Intended Use Installation instructions Annex B 6


Installation instructions (continuation)

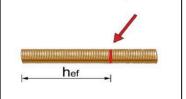
Compressed Air Cleaning (CAC):


All diameter with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

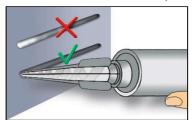
Screw on static-mixing nozzle CRW 14W/PM-19E and load the cartridge into an appropriate dispensing tool. With foil tube cartridges cut off the foil tube clip before use.

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

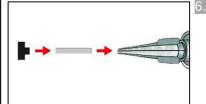
Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

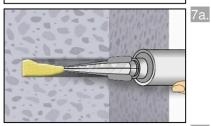
Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concret
--


Intended Use

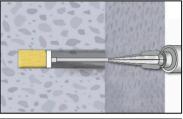
Installation instructions (continuation)


Annex B 7

Installation instructions (continuation)



Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes, for foil tube cartridges at least 6 full storkes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Vertical upwards direction: Drill bit-Ø $d_0 \ge 18$ mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Injecting mortar without piston plug VS:

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets. Observe the temperature related working time t_{work} (Annex B 5).

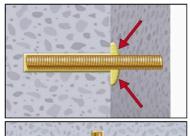
Injecting mortar with piston plug VS:

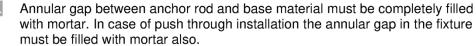
Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time twork (Annex B 5). .

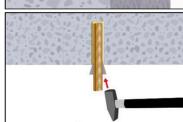
8.

Insert the anchor rod while turning slightly up to the embedment mark.

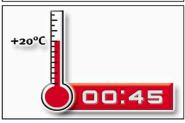

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete


Intended Use
Installation instructions (continuation)

Annex B 8



Installation instructions (continuation)



Otherwise, the installation must be repeated starting from step 7 before the maximum working time t_{work} has expired.

 For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed.
 Do not move or load the fastener during curing time.

 Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete

Intended Use

Installation instructions (continuation)

Annex B 9

T	Table C1: Characteristic values resistance of thread			ension	resist	ance	and s	teel s	hear		
Th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu	re ¹⁾	•							•	
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]	2,0							
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]	1,5							
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]	2,86							
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87							
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6							
Characteristic shear resistance, Steel failure 1) Steel, Property class 4.6 and 4.8 V ⁰ _{Rk,s} [kN] 9 (8) 14 (13) 20 38 59 85 110											
Steel, Property class 4.6 and 4.8			[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s		30 (26)	60 (53)	105	266	519	896	1333	1797
th lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
<u>¥</u>	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	25			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	88			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	33			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic v	alues of te	nsion load	Is under static and quasi-static action
Fastener				All Anchor types and sizes
Concrete cone fa	ailure			
Uncracked concre	ete	k _{ucr,N}	[-]	11,0
Cracked concrete	Cracked concrete		[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	•	s _{cr,sp}	[mm]	2 c _{cr,sp}

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Thread	ded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa													
Charac	cteristic tension res	istance	N _{Rk,s}	[kN]			$A_s \cdot f_l$	_{ık} (or s	ee Tab	le C1)			
	factor		γ _{Ms,N}	[-]	see Table C1								
	ined pull-out and		-l 000	/05									
Charac	cteristic bond resist	ance in uncracked	d concrete 620	725	10	10	10	10	10	4.4	10		
ge	I: 40°C/24°C II: 80°C/50°C	Dry, wet			10	12	12	12	12	11	10	9,0	
e ran	III: 120°C/72°C	concrete			7,5 5,5	9,0	9,0	9,0	9,0	8,5 6,5	7,5 5,5	6,5 5,0	
rature	I: 40°C/24°C		τ _{Rk,ucr}	[N/mm ²]	7,5	6,5 8,5	6,5 8,5	8,5	0,5	0,5	3,3	5,0	
Temperature range	II: 80°C/50°C	flooded bore			5,5	6,5	6,5	6,5	N	No Performance			
Ψ	III: 120°C/72°C	hole			4,0	5,0	5,0	5,0	Assessed				
Charac	cteristic bond resist	ance in cracked c	oncrete C20/2	 5	1,0	0,0	0,0	0,0					
	I: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
ange	II: 80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range	III: 120°C/72°C			[N1/m=m=2]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
perati	I: 40°C/24°C		^τ Rk,cr	[N/mm²]	4,0	4,0	5,5	5,5	No Performance Assessed				
Temp	II: 80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0				е	
	III: 120°C/72°C				2,0	2,5	3,0	3,0					
Reduk	tion factor ψ ⁰ sus ir	n cracked and unc	racked concret	e C20/25									
nre	I: 40°C/24°C	Dry, wet		[-]	0,73								
Temperature range	II: 80°C/50°C	concrete and flooded bore	Ψ ⁰ sus		0,65								
Tem	III: 120°C/72°C	hole			0,57								
ncreas	sing factors for con	crete	Ψ _c	[-]				(f _{ok} / 2	20) 0,11				
	cteristic bond resist			τ _{Rk,ucr} =			Ψς	• τ _{Rk,ue}		25)			
	concrete strength			τ _{Rk,cr} =				• τ _{Rk,c}					
	ete cone failure												
Releva Splitti i	ant parameter							see Ta	ıble C2				
	ant parameter							see Ta	ble C2				
	lation factor					ı							
for dry	and wet concrete		٠, .	[[]	1,0				1,2	l- Df			
for floo	oded bore hole		^γ inst	[-]		1,	,4		No Performance Assessed				
Fiv M	Master Injection :	svetom FIT-Vo	200 or FIT-W	i 200 for o	oncre	ıte.							
Perfo	ormances acteristic values of						eaded	rod)	-	Anne	x C 3	3	

Table C4: Characteristic	values	of sh	ear lo	ads ur	nder s	tatic a	nd qu	asi-st	atic acti	on
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm									'	
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]		0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)						
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1							
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm	'									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} • f _{uk}	(or see	Table C	21)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300							300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Internal threaded anchor rods Steel failure ¹⁾				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Characteristic tension resistance,	5.8	Nous	[kN]	10	17	29	42	76	123	
Steel, strength class			 						196	
	8.8	· ·	[kN]							
Partial factor, strength class 5.8 an		γMs,N	[-]		1,5					
Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 2)		N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms.N}	[-]			1,87			2,86	
Combined pull-out and concrete	cone failu									
Characteristic bond resistance in u			C20/25							
1: 40°C/24°C	, wet			12	12	12	12	11	9,0	
3 II: 80°C/50°C 3	r, wei icrete		[9,0	9,0	9,0	9,0	8,5	6,5	
E		TDI	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
ਹੁੰ ਹੁ <u>I: 40°C/24°C</u> floo	ded bore	RK,ucr	['\''''	8,5	8,5	8,5				
□ II: 80°C/50°C hol				6,5	6,5	6,5	No Perf	ormance A	ssessec	
III: 120°C/72°C				5,0	5,0	5,0				
Characteristic bond resistance in c	racked con	crete C2	20/25						0.5	
Ψ <u>I: 40°C/24°C</u> Dry	, wet		-	5,0	5,5	5,5	5,5	5,5	6,5	
□ II. 80°C/50°C	concrete			3,5	4,0	4,0	4,0	4,0	4,5	
世		τ _{Rk.cr}	[N/mm ²]	2,5 4,0	3,0 5,5	3,0 5,5	3,0	3,0	3,5	
E 1: 40 C/24 C floo	oded bore	1,0.		3,0	4,0	4,0	No Porf	ormance A		
III: 120°C/72°C hol	е			2,5	3,0	3,0	Norem	Jilliance A	13363360	
Reduktion factor ψ^0_{sus} in cracked	and uncra	cked con	crete C2							
	v, wet					0,	73			
E 90 II. 80°C/50°C COI	ncrete and oded bore	Ψ ⁰ sus	[-]			0,	65			
E III: 120°C/72°C hol		$N_{Rk,s}$ [k $\gamma_{Ms,N}$ [k γ_{M				0,	57			
ncreasing factors for concrete		Ψc	[-]				20) ^{0,11}			
Characteristic bond resistance dep	ending on	τ	Rk,ucr =				cr(C20/25)			
he concrete strength class			τ _{Rk,cr} =			Ψc • τ _{Rk,0}	cr(C20/25)			
Concrete cone failure										
Relevant parameter						see Ta	able C2			
Splitting failure										
Relevant parameter						see Ta	able C2			
nstallation factor		1								
or dry and wet concrete		γ _{inst}	[-]		1,4	1	,2	ormance A		
or flooded bore hole			ne approp		14		i ivo Peri	ormance A	こくといいひつ	

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 5

²⁾ For IG-M20 strength class 50 is valid

Internal threaded anchor rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Steel failure without lever arm ¹)											
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61			
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98			
Partial factor, strength class 5.8 a	and 8.8	γMs,V	[-]				1,25					
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40			
Partial factor		γ _{Ms,V}	[-]			1,56			2,38			
Ductility factor		k ₇	[-]	1,0								
Steel failure with lever arm1)												
Characteristic bending moment, Steel, strength class	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325			
	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519			
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25					
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456			
Partial factor		γ _{Ms,V}	[-]	1,56 2,38								
Concrete pry-out failure												
Factor		k ₈	[-]	2,0								
Installation factor		γ _{inst}	[-]	1,0								
Concrete edge failure												
Effective length of fastener	Effective length of fastener				min(h _{ef} ; 12 · d _{nom})							
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30			
Installation factor		γ _{inst}	[-]				1,0					

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 6

²⁾ For IG-M20 strength class 50 is valid

Reinfo	rcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel fa	ailure													
Charac	teristic tension resi	stance	N _{Rk,s}	[kN]				ŀ	۹ _s • f _{uk}	1)				
Cross s	ection area		A _s	[mm ²]	50	79	113	154	201	314	491	616	804	
Partial t	factor		γ _{Ms,N}	[-]					1,42)					
Combi	ned pull-out and o	oncrete fail	ure											
Charac	teristic bond resista	ance in uncra	icked concr	ete C20/25										
Φ	I: 40°C/24°C	Dry, wet			10	12	12	12	12	12	11	10	8,5	
Temperature range	II: 80°C/50°C	concrete			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
perati ange	III: 120°C/72°C	001101010	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
ra ra	I: 40°C/24°C	flooded	- nk,uci	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,5	8,5	8,5	8,5	8,5	No Performance				
Тег	II: 80°C/50°C	bore hole			5,5	6,5	6,5	6,5	6,5	Assessed			Ū	
	III: 120°C/72°C		<u> </u>	000/05	4,0	5,0	5,0	5,0	5,0					
Charac	teristic bond resista	ance in crack	ed concrete	E C20/25	4.0	- C						0.5	0.5	
ē	I: 40°C/24°C II: 80°C/50°C	Dry, wet			4,0 2,5	5,0 3,5	5,5 4,0	5,5 4,0	5,5 4,0	5,5 4,0	5,5 4,0	6,5 4,5	6,5 4,5	
Temperature range	III: 120°C/72°C	concrete			2,5	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
nperati range	I: 40°C/24°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	5,5				,	
ri s	II: 80°C/50°C	flooded	2		2,5	3,0	4,0	4,0	4,0	No Performance				
<u> </u>	III: 120°C/72°C	bore hole		2.0	2.5	3.0	3.0	3,0	Assessed					
Redukt	ion factor ψ ⁰ sus in	cracked and	uncracked	concrete C	20/25	_,_	_,_	_,_	_,_					
	I: 40°C/24°C	Dry, wet			0,73									
atul		concrete												
Temperature range	II: 80°C/50°C	and flooded	Ψ ⁰ sus	[-]	0,65									
Ten	III: 120°C/72°C	bore hole							0,57					
Increas	ing factors for cond	rete	Ψς	[-]				(f _C	_k / 20) ⁽	0,11				
	teristic bond resista			τ _{Rk,ucr} =	Ψ _c • τ _{Rk,ucr} (C20/25)									
depend	ing on the concrete	e strength		τ _{Rk,cr} =					Rk,cr(C					
	te cone failure			,					,					
	nt parameter							see	Table	C2				
Splittin	<u> </u>													
_	nt parameter							see	Table	C2				
	tion factor				l									
	and wet concrete				1,0				1.	.2				
	ded bore hole		γ _{inst}	[-]	1,0 1,2			No Performance Assessed						

²⁾ in absence of national regulation

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Reinforcing bar)	Annex C 7

Table C8: Characterist	ic values	of shea	r load	ds un	der s	tatic a	and q	uasi-s	static	actio	n
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											•
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm	·										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Concrete pry-out failure	·										
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure			•								
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mn						mm)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0	•			

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 8

²⁾ in absence of national regulation

Table C9:	Displacem	ents under tensio	n load	1)						
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	e C20/25 und	ler static and quasi-sta	atic actio	on						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete C	20/25 under	static and quasi-station	caction							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05			0,1	05		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170					
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾

Threaded rod	M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete	C20/25 under	static and quasi-stati	c action							
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances	

Annex C 9

erformances

Displacements under static and quasi-static action (threaded rods)

Table C11: D	isplaceme	nts under tens	sion load	1)				
Internal threaded a	nchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete	e C20/25 unde	r static and quasi	-static acti	on				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C	20/25 under s	tatic and quasi-st	atic action	•				
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,090			0,070		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹

Internal threade	d anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked and c	racked concrete (C20/25 under s	tatic and q	uasi-static a	action			
All temperature	δvo-factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	δv∞-factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete
Performances

Displacements under static and quasi-static action

(Internal threaded anchor rod)

Annex C 10

Table C13: Di	Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinf	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Uncracked concre	ete C20/25 u	ınder static and	quasi-s	tatic act	ion								
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052		
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075		
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126		
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126		
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181		
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1								
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,0	0,090				0,070					
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	105	0,105								
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170								
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245					
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170					
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245					

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

 $\tau\text{:}$ action bond stress for tension

Table C14: Displacement under shear load¹⁾ (rebar)

Anchor size reinfo	Anchor size reinforcing bar				Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{ν∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	ler static and qu	asi-stat	ic action	1						
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances	Annex C 11
Displacements under static and quasi-static action	
(Reinforcing bar)	

I		acteristic v ormance c			sion loa	ads un	der s	eismi	c acti	on					
Thread	led rod					M8	M10	M12	M16	M20	M24	M27	M30		
Steel fa															
	teristic tension resi	stance	N _{Rk,s,e}	q,C1	[kN]					N _{Rk,s}					
Partial			γ _{Ms,N}		[-]				see Ta	ble C1					
	ned pull-out and o			acked	concrete	C20/25	220/25								
- Critarias	I: 40°C/24°C					2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5		
ange	II: 80°C/50°C	Dry, wet				1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1		
ture ra	But II: 80°C/50°C Dry, wet concrete III: 120°C/72°C II: 40°C/24°C II: 80°C/50°C flooded bore hole			N4	[N/mm²	1,3	1,6	2,0	2,0	2,0 2,1 2,4		2,4	2,4		
				C1	[14/11111	2,5	2,5	3,7	3,7						
Temp	III: 120°C/72°C					1,6	1,9	2,7	2,7	No Performan Assessed			e		
						1,3	1,6	2,0	2,0						
	sing factors for cond	Ψc		[-]				1	,0						
on the	cteristic bond resista concrete strength c ation factor	g	τ	Rk,eq,C1 ⁻	=		Ψ _c •	^τ Rk,eq,	C1(C20)/25)					
	and wet concrete					1,0				1,2					
	ded bore hole		γ _{inst}		[-]	1,2	1	,4		No Performance Assessed					
Thread	(perf led rod	ormance c	ategory	C1)	M8	M10	M12	M16	M20	M24	M2	7	M30		
Steel fa	ailure without leve	er arm													
Charac (Seism	teristic shear resist	ance V _F	Rk,s,eq,C1	[kN]		0,70 • V ⁰ _{Rk,s}									
Partial	factor	γι	Ms,V	[-]				see Table C1							
Factor	for annular gap			1		0,5 (1,0)1)									
4) .			gap	[-]					. , ,						
	ue in brackets valid f lex A 3 is recommen	or filled annular			ener and	clearance	e hole in		. , ,	e of spe	ecial fill	ing was	her		

Tabl		acteristic ormance (n Ioa	ds un	der s	eismi	ic act	ion			
Reinfo	rcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel f	ailure												
Characteristic tension resistance $N_{Rk,s,eq,C1}$ [kN]								1,0	• A _s •	$f_{uk}^{1)}$			
Cross	Cross section area			[mm²]	50	79	113	154	201	314	491	616	804
Partial	factor	γ _{Ms,N}	[-]	1,42)									
Combi	ned pull-out and o	oncrete failu											
Charac	teristic bond resista	ance in uncra	cked and cra	acked con	crete C	20/25							
Φ	I: 40°C/24°C	Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
Temperature range	II: 80°C/50°C	concrete			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
perat ange	III: 120°C/72°C	Concrete	τ=.	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
Ta Te	I: 40°C/24°C	flooded	^τ Rk, eq,C1	[14/11111-]	2,5	2,5	3,7	3,7	3,7		lo Dorf	ormono	_
e.	II: 80°C/50°C	bore hole			1,6	1,9	2,7	2,7	2,7	No Performance Assessed			e
	III: 120°C/72°C	bore noie			1,3	1,6	2,0	2,0	2,0				
Increas	sing factors for cond	crete	Ψc	[-]					1,0				
Charac	teristic bond resista	ance											
depend	ding on the concrete	strength	$ \tau_{Rl}$	k,eq,C1 =			Ų	ν _с • τ _{Βk}	cea C1	C20/25	i)		
class	· ·	'"	۱,04,0۱					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Installa	ation factor												
for dry	and wet concrete			1,2									
for floo	ded bore hole		γ _{inst}	[-]			1,4			No Performance Assessed			
			1								/ 1330	,550u	

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]	$0.35 \cdot A_s \cdot f_{uk}^{2}$								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,52)								
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)3)								

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances	Annex C 13
Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Reinforcing bar)	

²⁾ in absence of national regulation

²⁾ in absence of national regulation

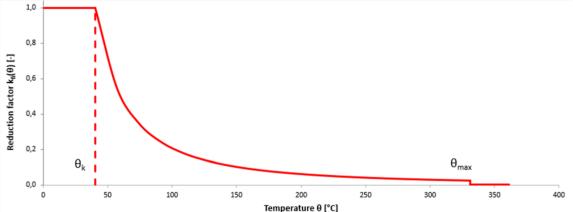

³⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C19: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

Threaded rod						M10	M12	M16	M20	M24	M27	M30
Steel failure												
Characteristic tension resistance; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50		[kN]	e iiiiie	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
				60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
				90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
and higher			[min]	120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

Temperature θ [°C]														
Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]				$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$								
Steel failure without lever	Steel failure without lever arm													
Characteristic shear resistance; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50			Fire	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2		
	V _{Rk,s,fi}	[kN]	OVPOCUE	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1		
				90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7		
and higher				120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9		
Steel failure with lever arn	n													
Characteristic bending			Fire	30	1,1	2,2	4,7	12,0	23,4	40,4	59,9	81,0		
moment; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50 and higher	M0	[Nm		60	0,9	1,8	3,5	9,0	17,5	30,3	44,9	60,7		
	M ⁰ _{Rk,s,fi}]	e time [min]	90	0,7	1,3	2,5	6,3	12,3	21,3	31,6	42,7		
				120	0,5	1,0	1,8	4,7	9,1	15,7	23,3	31,5		

¹⁾ $\tau_{Rk,cr,(C20/25)}$ characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

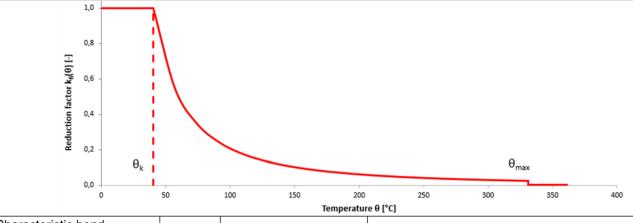

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod)	Annex C 14

Table C20: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

					1					
Internal threaded anchor rods					IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure										
Characteristic tension resistance; Steel, Stainless Steel A4 and HCR, strength class 5.8 and 8.8 resp. 70			Fire -	30	0,3	1,1	1,7	3,0	5,7	8,8
	N _{Rk,s,fi}	[kN]	exposure time [min]	60	0,2	0,9	1,4	2,3	4,2	6,6
				90	0,2	0,7	1,0	1,6	3,0	4,7
				120	0,1	0,5	0,8	1,2	2,2	3,4
		·					0=0/00			

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

				remperata	c 0 [c]							
Characteristic bond resistance for a given temperature (<i>θ</i>)	$\tau_{Rk,fi}(\theta)$	[N/mm²]				$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$						
Steel failure without lever arm												
Characteristic shear resistance; Steel, Stainless Steel A4 and HCR, strength			Fire	30	0,3	1,1	1,7	3,0	5,7	8,8		
	V _{Rk,s,fi}	[kN]	Fire exposure time [min]	60	0,2	0,9	1,4	2,3	4,2	6,6		
				90	0,2	0,7	1,0	1,6	3,0	4,7		
class 5.8 and 8.8 resp. 70				120	0,1	0,5	0,8	1,2	2,2	3,4		
Steel failure with lever arm		•										
Characteristic handing			Fire	30	0,2	1,1	2,2	4,7	12,0	23,4		
Characteristic bending moment; Steel, Stainless Steel A4 and HCR, strength class 5.8 and 8.8 resp. 70	N40	[N]mal	ovnocuro	60	0,2	0,9	1,8	3,5	9,0	17,5		
	M ⁰ Rk,s,fi	[Nm]	time [min]	90	0,1	0,7	1,3	2,5	6,3	12,3		
				120	0.1	0.5	1.0	1.0	17	0.1		

120

0,1

0,5

1,0

1,8

4,7

9,1

τ_{Rk,cr,(C20/25)} characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod)	Annex C 15

Table C21: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB) Reinforcing bar Ø8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32 Steel failure 30 0,5 1,2 2,3 4,0 6,3 9,0 9,8 12,3 16,1 3,1 Fire 60 0,5 1,0 1,7 2,3 3,0 4,7 6,8 7,4 9,2 12,1 Characteristic tension exposure $N_{Rk,s,fi} \\$ [kN] resistance; BSt 500 time 90 0,4 8,0 1,5 2,0 2,6 4,1 5,9 6,4 0,8 10,5 [min] 120 0,3 0,6 1,1 1,5 2,0 3,1 4,5 4,9 6,2 0,8 Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ θ < 21°C 1,0 Temperature reduction $k_{fi,p}(\theta)$ $0.81 \cdot e^{-0.016 \cdot \theta} \le 1.0$ [-] $21^{\circ}C \le \theta \le 243^{\circ}C$ factor θ > 243°C 0,0

					· · · · · · · · · · · · · · · · · · ·	
1,0]					
k#(0) [-] - 0,0 -						
Reduction factor k _n (θ) [-]						
Peduction 20,2		_				
0,0	θ_{k}				$\theta_{\sf max}$	
0,0 +	50	100	150	200	250	300
			Temperature θ [°C]			

iemperature o [c]														
Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]					$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$							
Steel failure without lev	Steel failure without lever arm													
			Fire	30	0,5	1,2	2,3	3,1	4,0	6,3	9,0	9,8	12,3	16,1
Characteristic shear resistance; BSt 500	V	 [kN]	avnosura	60	0,5	1,0	1,7	2,3	3,0	4,7	6,8	7,4	9,2	12,1
	* KK,S,fI	נאואן		90	0,4	0,8	1,5	2,0	2,6	4,1	5,9	6,4	8,0	10,5
				120	0,3	0,6	1,1	1,5	2,0	3,1	4,5	4,9	6,2	8,0
Steel failure with lever	arm													
			Fire	30	0,6	1,8	4,1	6,5	9,7	18,8	32,6	36,8	51,7	77,2
Characteristic bending moment; BSt 500	M0	[Nm]		60	0,5	1,5	3,1	4,8	7,2	14,1	24,4	27,6	38,8	57,9
	M ⁰ _{Rk,s,fi}			90	0,4	1,2	2,6	4,2	6,3	12,3	21,2	23,9	33,6	50,2
				120	0,3	0,9	2,0	3,2	4,8	9,4	16,3	18,4	25,9	38,6

¹⁾ $\tau_{Rk,cr,(C20/25)}$ characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

Fix Master Injection system FIT-Ve 200 or FIT-Wi 200 for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (reinforcing bar)	Annex C 16