

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-18/0133 of 9 January 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti trapeze frame with load introduction component

Products for installation systems for supporting technical building equipment

Hilti AG

Feldkircherstraße 100

9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

L1000511, L1038621, L1008864, L1005049, L106663

L1000405, L1000485, L1000446

18 pages including 14 annexes which form an integral part of this assessment

EAD 280016-00-0602 (Version 2020)

ETA-18/0133 issued on 3 July 2018

Z176641.24

European Technical Assessment ETA-18/0133

English translation prepared by DIBt

Page 2 of 18 | 9 January 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z176641.24 8.06.02-125/21

Page 3 of 18 | 9 January 2025

Specific Part

1 Technical description of the product

Object of this European Technical Assessment is the Hilti trapeze frame. The Hilti trapeze frame with load introduction components consists of three installation channels made of thin-walled steel profiles. A horizontally aligned MQ-41 D channel is positioned between two vertically aligned MQ-41/3 or MQ-41/3 LL channels and force-fitted to the corners of one another by means of an MQW-S/2 connection bracket and four MQN-B channel connectors each. The MQ-41 D channel consists of two profiles, which are connected in the area of the holes in the back of the channels in a shape-fitting and force-fitting way as a kind of riveted connection. The vertical channels are attached on the upper side to MQP-21-72 rail supports and force-fitted to these by two MQN-B channel connectors each. The suspension height is a maximum of 600 mm and corresponds to the length of the vertical MQ-41/3 or MQ-41/3 LL. The span width corresponds to the clear distance between the vertical channels and can be 700 mm, 1000 mm or 1250 mm. The load is applied centrically to the horizontal MQ-41 D channel by means of an M12 threaded rod, which is fastened to the channel by MQZ-L13 drilled plates arranged in pairs and M12 hexagonal nuts.

Annex A describes the dimensions and materials of the Hilti trapeze frame.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performance given in Section 3 can only be assumed if the Hilti trapeze frame is used in compliance with the specifications and under boundary conditions set out in Annex B. The test and assessment methods on which this European Technical Assessment is based lead to an assumption of a working life of the Hilti trapeze frame of at least 50 years in final use under ambient temperatures in dry indoor areas.

The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

In accordance with the European Assessment Document EAD 280016-00-0602, the product is intended to be used for supporting:

- a) Installations for the support of sprinkler kits,
- b) Installations for the support of technical building equipment in general,
- c) installations for the support of pipes for the transport of water not intended for human consumption,
- d) installations for the support of pipes for the transport of gas/fuel intended for the supply of building heating/cooling systems.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance and deformation under fire exposure	see Annex C

Z176641.24 8.06.02-125/21

Page 4 of 18 | 9 January 2025

3.2 Safety and accessibility in use (BWR 4)

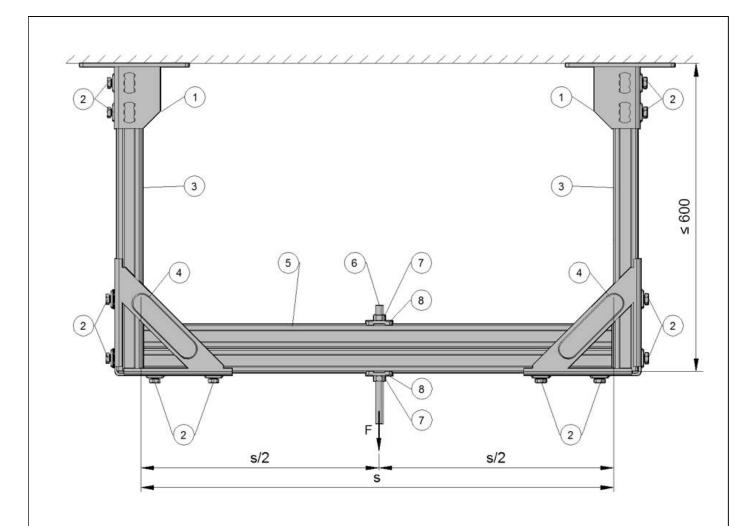
Essential characteristic	Performance
Shape	see Annex A
Dimensions	see Annex A
Material	see Annex A

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 280016-00-0602, the following legal bases apply for assessment and verification of constancy of performance:

Intended use	System	Legal base, decision of EU-Commission			
a) For the support of fire-fighting systems.	1	96/577/EC, amended 2002/592/EC			
b) For the support of technical building equipment in general.	2+	97/161/EC			
c) For supporting pipes for the transport of water not intended for human consumption.	4				
d) For supporting pipes for the transport of gas/fuel intended for the supply of building heating/cooling systems.	3	1999/472/EC, amended 2001/596/EC			

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


The technical details necessary for the implementation of the system for the assessment and verification of constancy of performance are laid down in the control plan (confidential part of this European Technical Assessment) deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 January 2025 by Deutsches Institut für Bautechnik

Dr.-Ing. Ronald Schwuchow beglaubigt:
Head of Section Ascher

Z176641.24 8.06.02-125/21

Legen	Annex	
1	Rail support MQP-21-72	A4
2	Channel connector MQN-B	A3
3	Channel MQ-41/3 or MQ-41/3 LL	A2
4	Angle bracket MQW-S/2	A4
5	Channel MQ-41 D	A2
6	Threaded rod M12	A4
7	Hexagonal nut M12	A4
8	Drilled plate MQZ-L13	A3

Dimensions in [mm]

Figure A1: Trapeze frame with clear span s = 700 mm, 1000 mm, 1250 mm and centric connection for load introduction

Hilti trapeze frame	
Description of the product (kit) Dimensions and materials	Annex A1

Table A2: Dimensions and materials of the channels MQ-41/3, MQ-41/3 LL und MQ-41 D

Table A2: Dimensions and materials of the channels MQ-41/3, MQ-41/3 LL und MQ-41 D Illustration¹) Item Designation Length Materials						
illustration	number	Designation	Length [m]	Materials		
100	369596	MQ-41/3 3M	3	S250GD+Z275-M-A-C in accordance with		
41.3 63x13.5	369597	MQ-41/3 6M	6	EN 10346		
50	2048102	MQ-41/3 3M LL	3	S250GD+Z275-M-A-C in accordance with		
41.3 28x14 22.3 7.5	2048103	MQ-41/3 6M LL	6	EN 10346		
82.6 2 40x13.5	369603	MQ-41 D 3m	3	\$250GD+Z275-M-A-C		
Two profiles of MQ-41 D channel are connected in the area of the holes in the back of the channels in a shape-fitting and force-fitting way as a kind of riveted connection.	369604	MQ-41 D 6m	6	in accordance with EN 10346		

¹⁾ Dimensions in mm

Hilti trapeze frame	
Description of the product (kit) Dimensions and materials of the components of the kit	Annex A2

Table A3.1: Dimensions and material of the drilled plates

Illustration	Dimensions [mm]	Designation	ltem number	Material
	\$\frac{7}{50.5}\$	MQZ-L13	2199456	S235JR in accordance with EN 10025-2, zinc coated

Table A3.2: Materials of the components of the channel connector²⁾

Illustration	Item number	Designation	Materials
Screw M10 WAF17 Spring Nut (between plate and nut)	2184853	MQN-B	Plate: DD11 in accordance with EN 10111 ³⁾ , zinc coated Nut: S355MC in accordance with EN 10149-2, zinc coated Screw: strength class 8.8 in accordance with EN ISO 898-1, zinc coated Spring element: X10CrNi18-8 in accordance with EN 10270-3

²⁾ Components of the channel connector see ETA-18/0078

Hilti trapeze frame	
Description of the product (kit) Dimensions and materials of the components of the kit	Annex A3

 $^{^{3)}}$ with 235 N/mm 2 \leq R_{eL} \leq 340 N/mm 2 , Method of deoxidation: fully killed

Table A4.1: Dimensions and material of the threaded rods

Illustration	Designation	Item	М	L	Material
		number	thread	[mm]	
	AM12x3000 4.8	216421	M12	3000	Strength class 4.8
	AM12x2000 4.8	216420	M12	2000	in accordance with DIN 976-1,
M	AM12x1000 4.8	339797	M12	1000	zinc coated

Table A4.2: Dimensions and material of the hexagonal nuts

Illustration	Designation	Item number	M thread	W [mm]	H [mm]	Material
H	M12 hexagonal nut	216467	M12	19	10	Strength class 8 in accordance with ISO 4032, zinc coated

Table A4.3: Dimensions and material of the rail supports

Illustration	Designation	Item number	Material
24x14 105 105 135 185	MQP-21-72	369651	S235JR in accordance with EN 10025-2, zinc coated

Table A4.4: Dimensions and material of the angle bracket

Illustration	Designation	Item number	Material
198 100 913.5	MQW-S/2	369665	S235JR in accordance with EN 10025-2, zinc coated

Hilti trapeze frame	
Description of the product (kit) Dimensions and materials of the components of the kit	Annex A4

- The Hilti trapeze frame is used to transfer building services component loads such as ducts and equipment for sprinklers, water, heating, cooling, ventilation, electrical and other systems. Hilti trapeze frame is performing this loadbearing function at elevated temperatures under the conditions described in Section 2 of this European Technical Assessment.
- Information on resistance and deformation at elevated temperatures applies to static and centric actions on the trapeze frame according to Annex A1. The suspension height of 600 mm corresponds to the length of the vertical MQ-41/3 or MQ-41/3 LL channel. The span width corresponds to the clear distance between the suspended vertical channels.
- The resistance and deformation at elevated temperatures are referring to the boundary conditions of the standard temperature / time curve (STTC) in accordance with EN 1363-1.
- MQZ-L13 drilled plates are always used in pairs in conjunction with zinc coated threaded rods in accordance
 with DIN 976-1 as per Table A4.1; zinc coated hexagonal nuts in accordance with ISO 4032 as per
 Table A4.2; and Hilti MQ-41 D installation channels as per Table A2. The hexagonal nuts are to be tightened
 with a torque of 30 Nm. The threaded rod must protrude by at least 5 mm over the hexagonal nut on the
 opposite of the load-bearing side (see Figure B1).
- All MQN-B channel connectors must be tightened with a torque of 40 Nm. The longitudinal axes of the MQN-B nut and the channel are perpendicular to each other after assembly with centric position of the screw between the parallel flanges of the channel.
- The channels are cut to length centrally between the longholes or the roundholes at the marking. The cut channel lies within a range of 2 mm from both sides of the marking.
- The fastening of the base connector to the base material is made with appropriate anchors. The anchoring used with the base material must have a fireproof certificate.
- Prior to installation, it must be ensured that the component to be supported by the trapeze frame, the anchoring of the trapeze frame to the base material and the base material itself are suitable to withstand the resistance values of the trapeze frame and that they have a fireproof certificate.
- Installation must be carried out by trained personnel and under the supervision of the site manager. The general assembly instructions of the manufacturer apply.

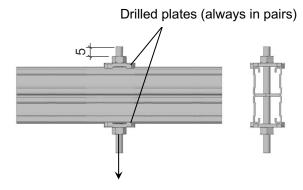


Figure B1: Direction of force and arrangement of the drilled plates

Hilti trapeze frame	
Requirements for performance assessment	Annex B1

Table B2: Section properties of installation channels MQ-41/3, MQ-41/3 LL und MQ-41 D

Describtion	Symbol	MQ-41/3	MQ-41/3 LL	MQ-41 D	Unit
		Y Z 39.8	Z 86 86 86 86 86 86 86 86 86 86 86 86 86	Z Y 15 20,65	
Classification cross section in accordance with EN 1993-1-1	-	3	3	3	-
Cross section areas	A A _{tot}	375.88 375.88	379.93 379.93	545.97 545.97	mm² mm²
Shear areas	A _y A _z	48.69 195.47	54.43 194.59	66.37 197.58	mm² mm²
Centroid position	У _{С.0} Z _{С.0}	19.15 20.57	19.15 20.76	0.00	mm mm
Moments of inertia	I _y	76963.50 107949.00	78224.80 108011.00	323585.00 154070.00	mm ⁴
Inclination of principal axes	α	90.00	90.00	0.00 477656.00	mm ⁴
Polar moments of inertia	I _p	778900.00	780561.00	477656.00	mm ⁴
Radii of gyration	i _γ i _z	14.31 16.95	14.35 16.86	24.35 16.80	mm mm
Polar radii of gyration	i _p i _{p,M}	22.18 45.52	22.14 45.33	29.58 29.58	mm mm
Warping radius of gyration	i _{ω,M}	7.02	7.02	17.32	mm
Torsional constant	J	848.88	856.29	575.03	mm ⁴
Secondary torsional constant Location of the shear center	Js	105319.00	105394.00	91246.30	mm ⁴
Location of the shear center	Ум,0 Z _{М,0}	19.15 60.32	19.15 60.31	0.00 0.00	mm mm
	y _M	0.00 39.75	0.00 39.55	0.00	mm mm
Warping constants	Ι _{ω,C}	2.09277E+08 38387600	2.07678E+08 38417600.00	1.43225E+08 1.43225E+08	mm ⁶ mm ⁶
Section moduli	$r_{\omega,M}$ $S_{v,max}$	0.00 4002.48	0.00 4108.45	0.00 7834.29	- mm ³
	$S_{y,min}$	-3487.10	-3514.15	-7833.74	mm ³
	$S_{z,max}$ $S_{z,min}$	5227.58 -5277.58	5230.56 -5230.56	7460.71 -7460.71	mm³ mm³
Torsional section modulus	S _t	282.96	285.43	287.51	mm ³
Max. plastic bending moment	$M_{pl,y,k}$ $M_{pl,z,k}$	NPA ³⁾	NPA NPA	NPA NPA	kNm kNm
Max. plastic section moduli	Z_{v}	NPA NPA NPA	NPA NPA NPA	NPA NPA	mm³
Plastic shear areas	Z _z A _{pl.v}	NPA	NPA	NPA	mm ³ mm ²
Area bisecting axis position	$A_{pl,z}$ $f_{y,0}$	NPA NPA	NPA NPA	NPA NPA	mm ²
Plastic shear forces	$f_{z,0}$ $V_{pl,v,k}$	NPA NPA	NPA NPA	NPA NPA	mm kN
Digatic axial force	$V_{pl,z,k}$	NPA	NPA NDA	NPA NDA	kN
Plastic axial force	N _{pl,k} BC _v	NPA	NPA	NPA	kN -
Buckling curves	BC _z	C C	C C	C C	-

³⁾ NPA: No performance assessed

ilti trapeze frame	
equirements for performance assessment	Annex B2

Table C1.1: Resistance of the trapeze frame with centric single load according to Annex A1 at elevated temperatures: Parameter of the regression curve $F_{Rk}(t) = c_3 (c_1 + c_2 / t)$

Clear span s [mm]	C ₁	C ₂	C ₃	t _{min} [Minutes]	t _{max} [Minutes]
700	265.723	93772.378	0.86796	30	130
1000	-269.244	111054.96	0.89370	30	132
1250	-174.179	88162.761	0.8910	30	132

Table C1.2: Resistance $F_{Rk,t}$ of the trapeze frame with centric single load according to Annex A1 at elevated temperatures after t = 30, 60, 90 und 120 minutes

Clear span s [mm]	F _{Rk,30} [N]	F _{Rk,60} [N]	F _{Rk,90} [N]	F _{Rk,120} [N]
700	2944	1587	1135	909
1000	3068	1414	862	586
1250	2463	1154	718	499

Symbols and designation

δ Deformation

 $\delta_{\text{max},t}$ Maximum deformation after an exposure time $\leq t$ minutes to elevated temperatures $F_{\text{Rk},30}(\delta)$ Load displacement function for an exposure time t=30 minutes to elevated temperatures

 $\mathsf{F}_{\mathsf{Rk},\mathsf{t}}$ Resistance after an exposure time t to elevated temperatures

 $F_{Rk}(t) \hspace{1cm} \text{Resistance time function at elevated temperatures} \\$

Hilti trapeze frame	
Resistance and deformations at elevated temperatures	Annex C1

Table C2.1: Load displacement function and deformation of the trapeze frame with centric single load according to Annex A1 at elevated temperatures. Parameter of the load displacement curve $F_{Rk,30}(\delta) = a_3 (a_1 * \delta^{a2})$

Clear span s	a ₁	a ₂	a ₃	δ
[mm]				[mm]
700	624.4191	0.271158	0.630376	4 ≤ δ ≤ 217
1000	99.19606	0.598566	0.721039	30 ≤ δ ≤ 379
1250	91.69105	0.581169	0.700153	28 ≤ δ ≤ 420

Table C2.2: Load displacement values $F_{Rk,30}(\delta)$ and deformation of the trapeze frame with centric single load according to Annex A1 at elevated temperatures

	Clear span s		
δ	700 mm	1000 mm	1250 mm
[mm]		F _{Rk,30} (δ) [N]	
50	1137	744	624
100	1372	1126	933
150	1532	1435	1181
200	1656	1705	1396
250	-	1949	1589
300	-	2174	1767
350	-	2384	1932

Table C2.3: Maximum displacement of the trapeze frame with centric single load according to Annex A1 at elevated temperatures until time t

_	Clear span s			
δ _{max,t} [mm]	700 mm	1000 mm	1250 mm	
$\delta_{max,60}$	303	395	430	
δ _{max,90}	303	395	430	
δ _{max,120}	303	395	430	

Hilti trapeze frame	
Resistance and deformations at elevated temperatures	Annex C2

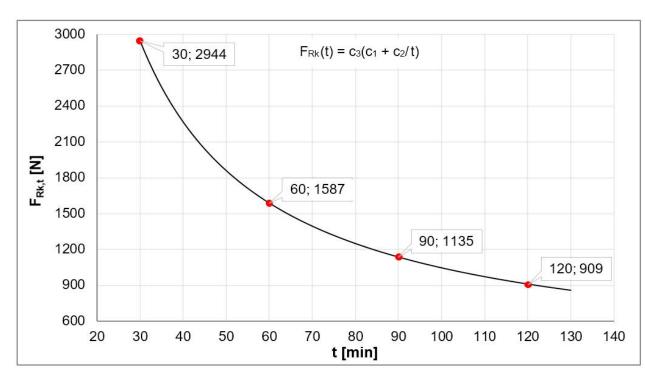


Figure C3.1: Resistance at elevated temperatures for trapeze frame with clear span of 700 mm

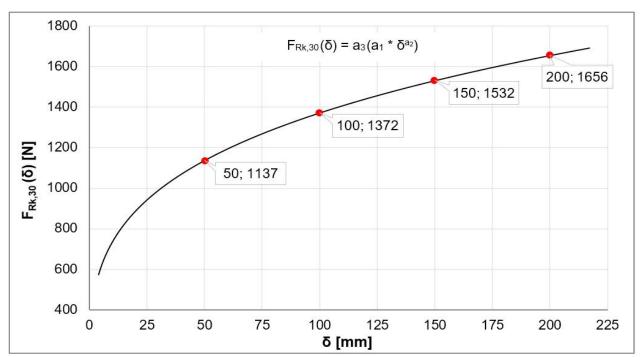


Figure C3.2: Deformation when exposed to elevated temperatures until 30 minutes for trapeze frame with clear span of 700 mm

Hilti trapeze frame	
Resistance and deformations at elevated temperatures	Annex C3

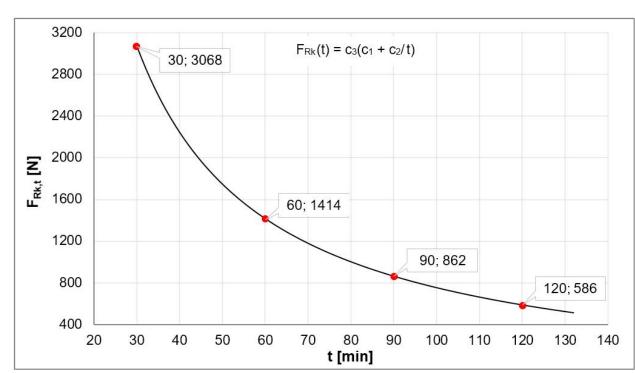


Figure C4.1: Resistance at elevated temperatures for trapeze frame with clear span 1000 mm

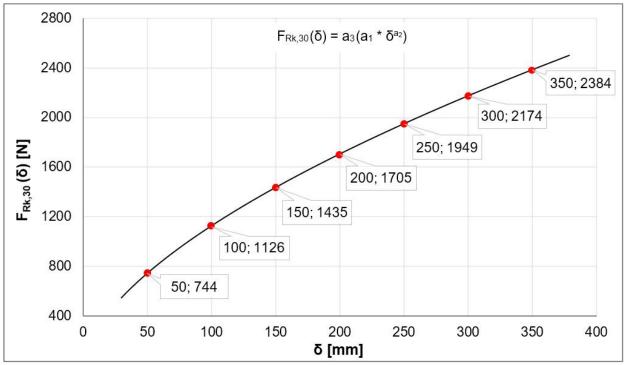


Figure C4.2: Deformation when exposed to elevated temperatures until 30 minutes for trapeze frame with clear span of 1000 mm

Hilti trapeze frame	
Resistance and deformations at elevated temperatures	Annex C4

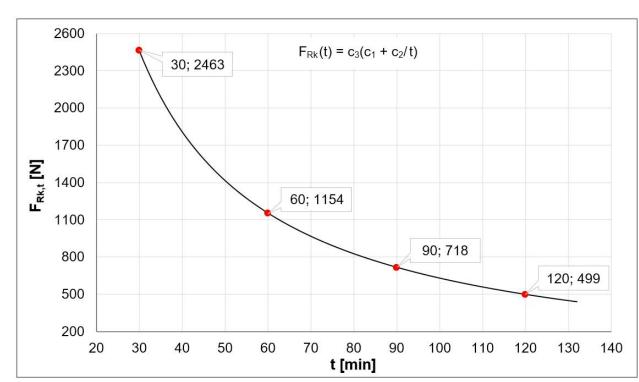


Figure C5.1: Resistance at elevated temperatures for trapeze frame with clear span of 1250 mm

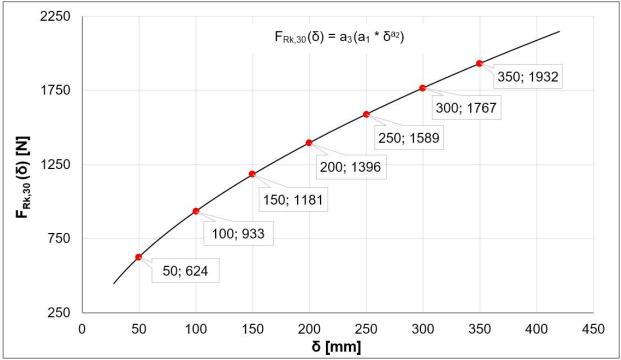
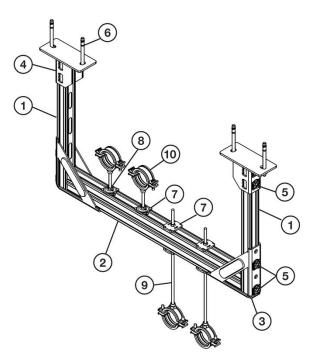
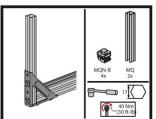



Figure C5.2: Deformation when exposed to elevated temperatures until 30 minutes for trapeze frame with clear span of 1250 mm

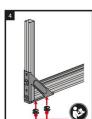
Hilti trapeze frame	
Resistance and deformations at elevated temperatures	Annex C5

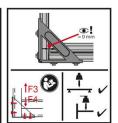
			Item no. / Artikel Nr.	Description / Bezeichnung
Channel / Schiene	1		369596 2048102	MQ-41/3 3m channel* MQ-41/3 LL 3m channel*
	2		369603	MQ-41 D 3m channel*
	3		369655	MQW-S/2 angle
	4		369651	MQP-21-72 base plate
Fixation / Befestigung	5		2184853	MQN-B pushbutton
	6 6 6	A B C	2107848 2105718 2079912	HST2 M12x105 10 stud anchor HST3 M12x105 30/10 stud anchor HUS3-H 10x70 15/-/-
	7 7	A B	2199452 2199455	MQA-M10-B pipering saddle MQZ-L11 bored plate
M10	8		216466	M10 hegaxon nut
	9		339795	AM10x1000 4.8 threaded rod**
	7 7	A B	2199453 2199456	MQA-M12-B pipering saddle MQZ-L13 bored plate
M12	8		216467	M12 hexagon nut
	9		339797	AM12x1000 4.8 threaded rod**
	7		2199454	MQA-M16-B pipering saddle
M16	8		216468	M16 hexagon nut
			216422	AM16x1000 4.8 threaded rod**
	Fixation / Fixation / Befestigung M10 M12	Schiene 2	Schiene 2 3 3 4 5 5 6 A 6 B 6 C 7 7 8 8 9 7 M16 8 9 7 M16 8 9 9 7 M16 8 9 9 7 M16 8 9 9 9 9 7 M16 8 9 9 9 9 9 9 9 9 9	Schiene 2 369603

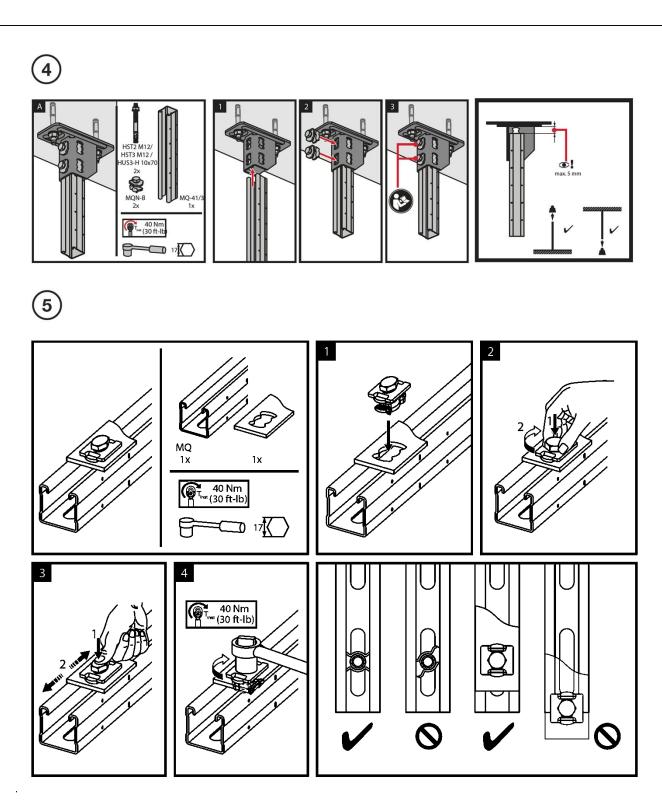

 $^{^{\}star}$ other lengths of the channels also possible / * andere Schienenlängen auch möglich

Assembly Instructions / Montagehinweise

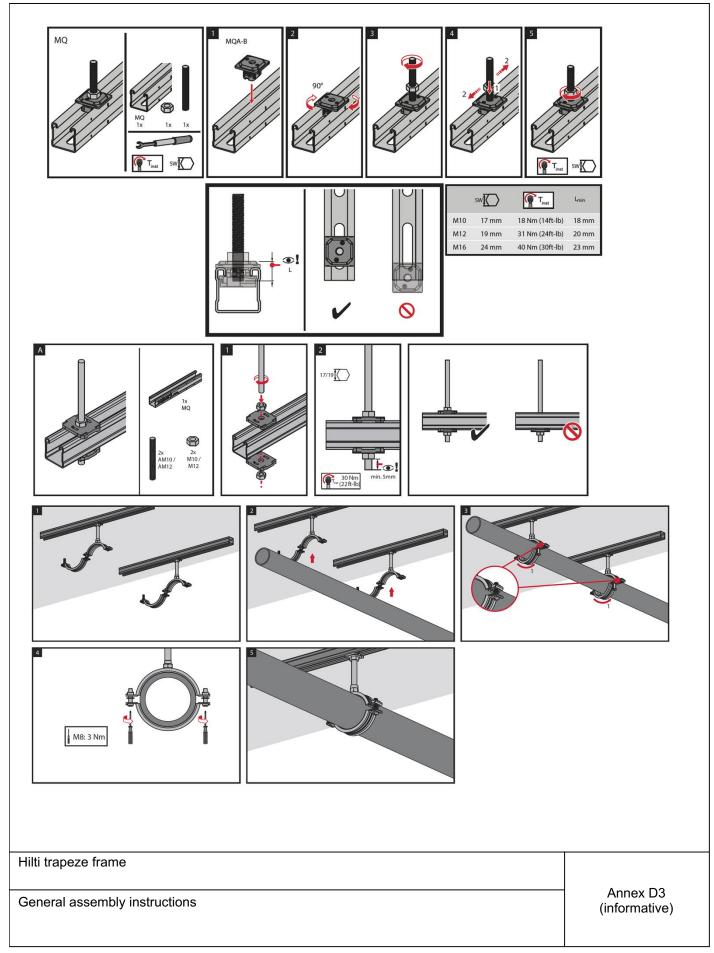
Please use the Threaded rod either in closed long holes or closed round holes in the channel Verwendung von Gewindestangen nur durch geschlossene Langlöcher bzw. Rundlöcher der Schiene







Hilti trapeze frame	
General assembly instructions	Annex D1 (informative)


^{**} Threaded rod available in 1,2 & 3 meters / **Gewindestange erhältlich in 1,2 & 3 Meter

[
Hilti trapeze frame	
	1
	Annex D2
General assembly instructions	(informative)
	(
	1

