

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-19/0465 vom 8. September 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem Hilti HIT-HY 170

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

Hilti AG

Feldkircherstraße 100

9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

30 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-19/0465 vom 10. September 2024

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z208529.25

Seite 2 von 30 | 8. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 30 | 8. September 2025

Besonderer Teil

Das Injektionssystem Hilti HIT-HY 170 ist ein Verbunddübel, der aus einem Foliengebinde mit dem Injektionsmörtel Hilti HIT-HY 170 und einem Stahlteil nach Anhang A besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasi-statische Einwirkungen unter Zugbeanspruchung	Siehe Anhang B3, B4, C1, C2, C4, C6
Charakteristischer Widerstand für statische und quasi-statische Einwirkungen unter Querbeanspruchung	Siehe Anhang C3, C5, C7
Verschiebungen für statische und quasi-statische Einwirkungen	Siehe Anhang C8 und C9
Charakteristischer Widerstand für seismische Leitungskategorie C1	Leistung nicht bewertet
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C2	Siehe Anhang C10 und C11

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 30 | 8. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Folgende Normen und Dokumente werden in dieser Europäischen Technischen Bewertung in Bezug genommen:

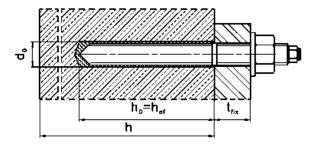
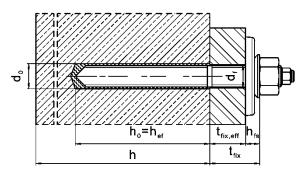
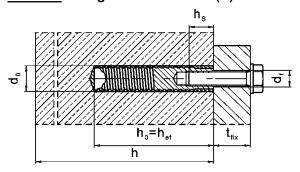
-	EN 1992-1-1:2004 + AC:2010	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
-	EN 1992-4:2018	Eurocode 2 - Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton
-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-4: Allgemeine Bemessungsregeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
-	EN 10088-1:2014	Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle
-	EN ISO 10684:2004 + AC:2009	Verbindungselemente – Feuerverzinkung
-	EN 206:2013 + A1:2016	Beton - Festlegung, Eigenschaften, Herstellung und Konformität
-	EN 10204:2004	Metallische Erzeugnisse – Arten von Prüfbescheinigungen
-	DIN 488-1:2009-08	Betonstahl – Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung
-	EOTA TR 055	Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601, February 2018

Ausgestellt in Berlin am 8. September 2025 vom Deutschen Institut für Bautechnik

LBD Dipl.-Ing. Andreas Kummerow Beglaubigt
Abteilungsleiter Stiller

Einbauzustand

Bild A1: Gewindestange, HAS..., HAS-U..., HIT-V-... und AM 8.8

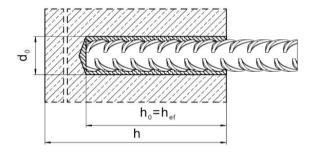

Bild A2: Gewindestange, HAS..., HAS-U..., HIT-V-... und AM 8.8 mit Hilti Verfüll-Set...

Bild A3: Innengewindehülse HIS-(R)N

Bild A4: Betonstahl

Injektionssystem Hilti HIT-HY 170	
Produktbeschreibung Einbauzustand	Anhang A1

Produktbeschreibung: Injektionsmörtel und Stahlelemente Injektionsmörtel Hilti HIT-HY 170: Hybridsystem mit Zuschlag 330 ml und 500 ml Kennzeichnung: HILTI HIT Chargennummer und Produktionslinie Verfallsdatum mm/yyyy Hilti HIT-HY 170 Hilti HIT-HY 170

Produktname: "Hilti HIT-HY 170"

Kennzeichnung

Statikmischer Hilti HIT-RE-M

Stahlelemente

HAS-U...: M8 bis M24 (HDG)

Scheibe Mutter

Kennzeichnung: Prägung Festigkeitsklasse und Längenidentifikation

= HAS-U 5.8, 5.8 HDG 8 = HAS-U 8.8, 8.8 HDG

1 = HAS-U A4 2 = HAS-U HCR

HAS...: M8 bis M24 (HDG)

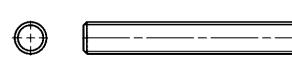
AM 8.8: M8 bis M24 (HDG) Kennzeichnung - Alternativen:

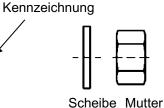
Farbkennzeichnung: Prägung:

5.8 = RAL 5010 (blau)

8.8 = RAL 1023 (gelb) = RAL 3000 (rot) A4

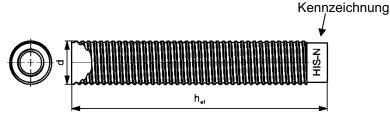
Festigkeitsklasse und Längenidentifikation (siehe HAS-U)


Injektionssystem Hilti HIT-HY 170


Produktbeschreibung

Injektionsmörtel, Statikmischer, Stahlelemente

Anhang A2


HIT-V-...: M8 bis M24 (F)

Kennzeichnung: e.g.,

5.8 - I HIT-V-5.8 M...x I 5.8F - I = HIT-V-5.8F M...x I 8.8 - I = HIT-V-8.8 M...x I 8.8F - I =HIT-V-8.8F M...x I HIT-V-R R-I M ...x I HCR-I = HIT-V-HCR M ...x I

Handelsübliche Gewindestange: M8 bis M24

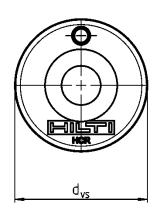
- · Werkstoffe und mechanische Eigenschaften nach Tabelle A1.
- · Abnahmeprüfzeugnis 3.1 nach EN 10204. Die Dokumente sind aufzubewahren.
- · Markierung der Verankerungstiefe.
- Bei feuerverzinkten Elementen sind die Anforderungen von EN ISO 10684 zu beachten, insbesondere hinsichtlich der vorgegebenen Auswahl, z. B. welche Kombination von Muttern und Stangen zu vermeiden ist.

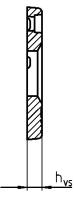
Innengewindehülse HIS-(R)N: M8 bis M16

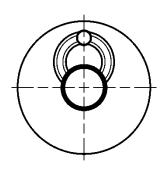
Kennzeichnung: Identifizierung - HILTI und Prägung "HIS-N" (für C-Stahl) Prägung "HIS-RN" (für rostfreien Stahl)

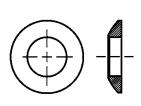
Betonstahl (rebar): ϕ 8 bis ϕ 25

- Werkstoffe und mechanische Eigenschaften nach Tabelle A1
- Maße nach Anhang B7
- Mindestwerte der bezogenen Rippenfläche f_{R,min} nach EN 1992-1-1
- Die Rippenhöhe des Betonstahls h_{rib} soll im folgenden Bereich liegen $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ : Nomineller Durchmesser des Betonstahls; h_{rib} : Rippenhöhe des Betonstahls)


Injektionssystem Hilti HIT-HY 170	
Produktbeschreibung Stahlelemente	Anhang A3




Hilti Verfüll-Set zum Verfüllen des Ringspalts zwischen Anker und Anbauteil


Verschlussscheibe

Hilti Verfüll-Set		M10	M12	M16	M20	M24
Durchmesser der Verschlussscheibe d _{VS}	[mm]	42	44	52	60	70
Höhe der Verschlussscheibe h _{VS}	[mm]	5	5	6	6	6
Höhe des Verfüll-Sets h _{fS}	[mm]	9	10	11	13	15

Injektionssystem Hilti HIT-HY 170	
Produktbeschreibung Hilti Verfüll-Set	Anhang A4

Tabelle A1: Werkstoffe

Table 1 and 100
Werkstoff
Stäbe und Betonstabstahl vom Ring Klasse B oder C mit f_{yk} und k nach NDP oder NCI des EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$.
ktem Stahl
Festigkeitsklasse 5.8, f_{uk} = 500 N/mm², f_{yk} = 400 N/mm², Bruchdehnung (I_0 =5d) > 8% duktil. Galvanisch verzinkt \geq 5 μ m, (HDG) feuerverzinkt ¹⁾ \geq 50 μ m.
Festigkeitsklasse 6.8, f_{uk} = 600 N/mm², f_{yk} = 480 N/mm², Bruchdehnung (I_0 =5d) > 8% duktil. Galvanisch verzinkt \geq 5 μ m, feuerverzinkt ¹⁾ \geq 50 μ m.
Festigkeitsklasse 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil. Galvanisch verzinkt \geq 5 μ m, (HDG) feuerverzinkt ¹⁾ \geq 50 μ m.
Galvanisch verzinkt $\geq 5~\mu m$.
Galvanisch verzinkt \geq 5 μ m, feuerverzinkt \geq 50 μ m.
Festigkeit der Mutter abgestimmt auf Festigkeit der Ankerstange. Galvanisch verzinkt $\geq 5~\mu m$, feuerverzinkt ¹⁾ $\geq 50~\mu m$.
$eq:Verschlussscheibe: Galvanisch verzinkt $\geq 5 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
ichtrostendem Stahl
indigkeitsklasse (CRC) II gemäß EN 1993-1-4
Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil. Nichtrostender Stahl 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1.
Nichtrostender Stahl EN 10088-1.
Festigkeit der Mutter abgestimmt auf Festigkeit der Ankerstange. Nichtrostender Stahl EN 10088-1.

Für handelsübliche feuerverzinkte Gewindestangen und Muttern sind die Anforderungen von EN ISO 10684 zu beachten.

Injektionssystem Hilti HIT-HY 170	
Produktbeschreibung Werkstoffe	Anhang A5

Tabelle A1 fortgesetzt

Paraiahnung	Worketoff				
Bezeichnung	Werkstoff				
Stahlelemente aus nichtrostendem Stahl					
der Korrosionsbest	der Korrosionsbeständigkeitsklasse (CRC) III gemäß EN 1993-1-4				
HAS A4 HAS-U A4 HIT-V-R	Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm² Bruchdehnung (I_0 =5d) > 12% duktil.				
Gewindestange	Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil. Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1.				
Innengewindehülse HIS-RN	Nichtrostender Stahl 1.4401, 1.4571 EN 10088-1				
Scheibe	Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1.				
Mutter	Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm². Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1.				
Hilti Verfüll-Set A4	Verschlussscheibe: Nichtrostender Stahl gemäß EN 10088-1 Kugelscheibe: Nichtrostender Stahl gemäß EN 10088-1 Sicherungsmutter: Nichtrostender Stahl gemäß EN 10088-1				
Stahlelemente aus l	nochkorrosionsbeständigem Stahl				
der Korrosionsbest	ändigkeitsklasse (CRC) V gemäß EN 1993-1-4				
HAS-U HCR HIT-V-HCR	Für ≤ M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Für > M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil.				
Gewindestange	Für ≤ M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Für > M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil. Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1.				
Scheibe	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1.				
Mutter	Festigkeit der Mutter abgestimmt auf Festigkeit der Ankerstange. Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1.				

Injektionssystem Hilti HIT-HY 170	
Produktbeschreibung Werkstoffe	Anhang A6

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- · Statische und quasi-statische Belastung.
- Seismische Leistungskategorie C2: M12 und M16 (siehe Tabelle B1).

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206 + A1.
- Festigkeitsklassen C20/25 bis C50/60 nach EN 206 + A1.
- · Gerissener und ungerissener Beton (siehe Tabelle B1).

Temperatur im Verankerungsgrund:

- Beim Einbau
 - -5 °C bis +40 °C für die übliche Temperaturveränderung nach dem Einbau.
- Im Nutzungszustand

Temperaturbereich I: -40 °C bis +40 °C

(max. Langzeittemperatur +24 °C und max. Kurzzeittemperatur +40 °C)

Temperaturbereich II: -40 °C bis +80 °C

(max. Langzeittemperatur +50 °C und max. Kurzzeittemperatur +80 °C)

Tabelle B1: Spezifikationen des Verwendungszwecks

	HIT-HY 170 mit						
Elemente	Gewindestange (Anhang A)	HIS-(R)N	Betonstahl				
Hammerbohren mit Hohlbohrer TE-CD oder TE-YD	✓	✓	✓				
Hammerbohren	✓	✓	✓				
Statische und quasi-statische Belastung in ungerissenem Beton	M8 bis M24	M8 bis M16	φ 8 bis φ 25				
Statische und quasi-statische Belastung in gerissenem Beton	M10 bis M24	_1)	_1)				
Seismische Leistungskategorie C2	M12 und M16	_1)	_1)				

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 170	
Verwendungszweck Spezifizierung	Anhang B1

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Stahlsorten).
- Für alle anderen Bedingungen entsprechend EN 1993-1-4 Korrosionsbeständigkeitsklasse nach Anhang A (nichtrostende Stähle).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Befestigungselements (z. B. Lage des Befestigungselements zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4 und EOTA Technical Report TR 055.

Einbau:

- Nutzungskategorie: trockener oder feuchter Beton (nicht in mit Wasser gefüllten Bohrlöchern) für alle Bohrverfahren
- Bohrverfahren:
 - · Hammerbohren,
 - · Hammerbohren mit Hilti Hohlbohrer TE-CD, TE-YD.
- Montagerichtung D3: vertikal nach unten, horizontal und vertikal nach oben (z.B. Überkopf) für alle Elemente zulässig.
- · Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Injektionssystem Hilti HIT-HY 170	
Verwendungszweck Spezifizierung	Anhang B2

Tabelle B2: Montagekennwerte der Gewindestange gemäß Anhang A

Gewindestange gemä	Gewindestange gemäß Anhang A						M16	M20	M24
Elementdurchmesser	d	[mm]	8	10	12	16	20	24	
Bohrernenndurchmess	er	d ₀	[mm]	10	12	14	18	22	28
Setztiefe und Bohrlochtiefe		h _{ef} = h ₀	[mm]	60 bis 96	60 bis 120	70 bis 144	80 bis 192	90 bis 240	96 bis 288
Maximaler Durchmesser des	Vorsteck- montage	d _f	[mm]	9	12	14	18	22	26
Durchgangslochs im Anbauteil	Durchsteck- montage 1)	d _f	[mm]	d _f	[mm]	11	14	16	20 ²⁾
Höhe des Verfüll-Sets		h _{fs}	[mm]	-	-	10	11	-	-
Effektive Anbauteildicke Verfüll-Set	e mit Hilti	$t_{\text{fix,ef}}$	[mm]	$t_{\text{fix,ef}} = t_{\text{fix}} - h_{\text{fs}}$					
Minimale Bauteildicke		h _{min}	[mm]	h_{ef} + 30 mm h_{ef} + 2·d ₀				1	
Maximales Anzugsdrehmoment		T _{max}	[Nm]	10	20	40	80	150	200
Minimaler Achsabstand	S _{min}	[mm]	40	50	60	75	90	115	
Minimaler Randabstand	d	C _{min}	[mm]	40	45	45	50	55	60

¹⁾ Für querkraftbelastete Dübel sind die Bestimmungen der EN 1992-4, §6.2.2 zu beachten.

Tabelle B3: Montagekennwerte Innengewindehülse HIS-(R)N

HIS-(R)N			М8	M10	M12	M16
Außendurchmesser Hülse	d	[mm]	12,5	16,5	20,5	25,4
Bohrernenndurchmesser	d_0	[mm]	14	18	22	28
Wirksame Verankerungstiefe und Bohrlochtiefe	h _{ef}	[mm]	90	110	125	170
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	12	14	18
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230
Maximales Anzugsdrehmoment	max. T _{inst}	[Nm]	10	20	40	80
Einschraubtiefe min-max	h _s	[mm]	8 to 20	10 to 25	12 to 30	16 to 40
Minimaler Achsabstand	S _{min}	[mm]	60	75	90	115
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65

Injektionssystem Hilti HIT-HY 170	
Verwendungszweck Montagekennwerte für Gewindestange, HAS, HAS-U und AM 8.8 und für Innengewindehülse HIS-(R)N	Anhang B3

²⁾ Wird kein Hilti Verfüll-Set verwendet, ist eine zweite Unterlegscheibe (identisch mit der angegebenen) erforderlich.

Tabelle B4: Montagekennwerte Betonstahl

Betonstahl (rebar)	Betonstahl (rebar)				φ.	12	φ 13	φ 14	φ 16	φ 18	φ 20	φ 22	φ 24	φ 25
Durchmesser	ф	[mm]	8	10	1	2	13	14	16	18	20	22	24	25
Wirksame Verankerungstiefe und Bohrlochtiefe	h _{ef} = h ₀	[mm]	60 to 160	60 to 200	7 to 24	-	75 to 280	75 to 280	80 to 320	90 to 360	90 to 400	100 to 440	100 to 480	100 to 500
Nenndurchmesser des Bohrer	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	18	20	22	25	28	32	32
Minimale Bauteildicke	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm					h	_{ef} + 2·	d_0				
Minimaler Achsabstand	S _{min}	[mm]	40	50	6	0	70	70	80	100	100	125	125	125
Minimaler Randabstand	C _{min}	[mm]	40	45	4	5	50	50	50	65	65	70	70	70

¹⁾ Beide angegebenen Durchmesser können verwendet werden.

Tabelle B5: Maximale Verarbeitungszeit und minimale Aushärtezeit 1)

	perati rungs	ur im grund T ²⁾	Minimale Aushärtezeit t _{cure}		
-5°C	bis	0°C	10 min	12 h	
0°C	bis	5°C	10 min	5 h	
> 5°C	bis	10°C	8 min	2,5 h	
> 10°C	bis	20°C	5 min	1,5 h	
> 20°C	bis	30°C	3 min	45 min	
> 30°C	bis	40°C	2 min	30 min	

Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Injektionssystem Hilti HIT-HY 170	
Verwendungszweck	Anhang B4
Montagekennwerte für Betonstahl	
Minimale Verarbeitungszeit und minimale Aushärtezeit	

²⁾ Die minimale Temperatur des Injektionsmörtels Hilti HIT-HY 170 während der Montage ist + 5°C.

Tabelle B6: Angaben zu Bohr-, Reinigungs- und Setzwerkzeugen

:	Stahlelemen	t		Installation		
Gewinde- stange (Anhang A)	HIS-(R)N	Betonstahl	Hammer- bohren	Hohlbohrer 1)	Bürste	Stau-zapfen
Size	Size	Size	d ₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ
M8	-	φ8	10	-	10	-
M10	-	φ8 / φ10	12	12	12	12
M12	M8	φ10 / φ12	14	14	14	14
-	-	φ12	16	16	16	16
M16	M10	φ13 / φ14	18	18	18	18
-	-	φ16	20	20	20	20
M20	M12	φ18	22	22	22	22
-	-	φ20	25	25	25	25
M24	M16	φ22	28	28	28	28
-	-	φ24 / φ25	32	32	32	32

Mit Staubsauger Hilti VC 4X/10/20/40*60 (automatische Filterreinigung aktiviert, ECO-Modus aus) oder einem Staubsauger, der in Kombination mit den spezifizierten Hilti Hohlbohrern TE-CD oder TE-YD eine gleichwertige Reinigungsleistung liefert.

Reinigungsalternativen

Handreinigung (MC):

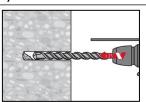
Hilti-Handausblaspumpe zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 20$ mm und einer Bohrlochtiefe von $h_0 \le 10 \cdot d$.

Druckluftreinigung (CAC):

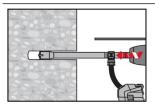
Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm zum Ausblasen mit Druckluft.

Automatische Reinigung (AC):

Die Reinigung wird während dem Bohren mit dem Hilti TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.


Injektionssystem Hilti HIT-HY 170	
Verwendungszweck Angaben zu Bohr- und Reinigungswerkzeugen Reinigungsalternativen	Anhang B5

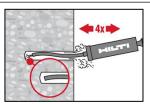
Montageanweisung


Bohrlocherstellung

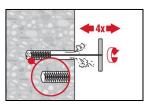
a) Hammerbohren

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.

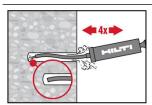
b) Hammerbohren mit Hilti Hohlbohrer


Die Bohrlocherstellung bis zur erforderlichen Setztiefe erfolgt drehschlagend mit einem Hilti Hohlbohrer TE-CD oder TE-YD mit angeschlossenem Staubsauger gemäß den Anforderungen nach Tabelle B6. Dieses Bohrsystem beseitigt bei Anwendung gemäß der Gebrauchsanweisung des Hohlbohrers das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs. Nach Beendigung des Bohrens kann mit Mörtelverfüllung gemäß Montageanweisung begonnen werden.

Bohrlochreinigung

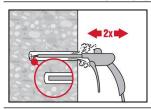

Unmittelbar vor dem Setzen des Befestigungselements muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein. Schlechte Bohrlochreinigung = geringe Traglasten.

Handreinigung (MC)

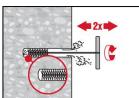

Ungerissener Beton. Bohrlochdurchmesser $d_0 \le 18$ mm und Bohrlochtiefen $h_0 \le 10 \cdot d$.

Für Bohrlochdurchmesser $d_0 \le 18$ mm und Verankerungstiefen $h_{ef} \le 10 \cdot d$. Das Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

4-mal mit Stahlbürste in passender Größe (siehe Tabelle B6) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

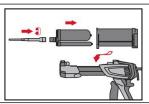


Bohrloch erneut mit der Hilti Handausblaspumpe vom Bohrlochgrund mindestens 4-mal ausblasen, bis die rückströmende Luft staubfrei ist.


Injektionssystem Hilti HIT-HY 170 Verwendungszweck Montageanweisung Anhang B6

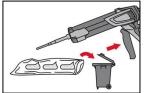
Druckluftreinigung (CAC) für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.

Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.



2-mal mit Stahlbürste in passender Größe (siehe Tabelle B6) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei ist.

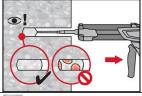

Injektionsvorbereitung

Hilti Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern.

Befolgen Sie die Bedienungsanleitung des Auspressgerätes.

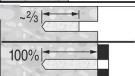
Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion. Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:


2 Hübe für 330 ml Foliengebinde, 3 Hübe für 500 ml Foliengebinde.

Injektionss	ystem Hilti	HIT-HY	170
-------------	-------------	--------	-----

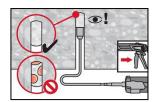
Verwendungszweck Montageanweisung **Anhang B7**


Injektion des Mörtels vom Bohrlochgrund ohne Luftblasen zu bilden.

Injizieren des Mörtels vom Bohrlochgrund und während jedem Hub den Mischer langsam etwas herausziehen.

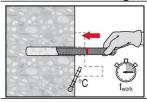
Das Bohrloch verfüllen. Nach dem Einsetzen des Befestigungselementes muss der Ringspalt vollständig mit Mörtel ausgefüllt sein.

In nassem Beton muss das Befestigungselement direkt nach dem Reinigen gesetzt werden.



Vorsteckmontage: Das Bohrloch zu ca. 2/3 verfüllen.

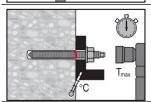
Durchsteckmontage: Das Bohrloch vollständig verfüllen (100%).


Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

Überkopfanwendung und/oder Montage bei Verankerungstiefen von h_{ef} > 250mm. Das Injizieren des Mörtels bei Überkopfanwendung ist nur mit Hilfe von Stauzapfen und Verlängerungen möglich.

HIT-RE-M Mischer, Mischerverlängerung und entsprechenden Stauzapfen Hilti HIT-SZ (siehe Tabelle B6) zusammenfügen. Den Stauzapfen bis zum Bohrlochgrund einführen und Mörtel injizieren. Während der Injektion wird der Stauzapfen über den Staudruck vom Bohrlochgrund automatisch nach außen geschoben.

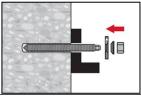
Setzen des Befestigungselementes


Vor der Montage sicherstellen, dass das Element trocken und frei von Öl und anderen Verunreinigungen ist.

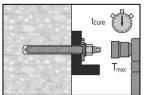
Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit t_{work} (siehe Tabelle B5) abgelaufen ist.

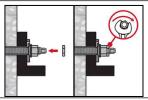
Nach dem Setzen muss der Ringspalt zwischen Stahlelement und Beton (Vorsteckmontage) bzw. dem Anbauteil (Durchsteckmontage) vollständig mit Mörtel verfüllt sein.

Bei Überkopfanwendung das Element in seiner endgültigen Position z.B. mittels Keilen (Hilti HIT-OHW), gegen Herausrutschen sichern.

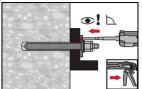

Last bzw. Drehmoment aufbringen: Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B5) den Überschussmörtel entfernen und darauf achten, das Gewinde nicht zu beschädigen. Der Anker kann belastet werden.

Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} nach Tabellen B2 und B3 nicht überschreiten.


Injektionssystem Hilti HIT-HY 170 Verwendungszweck Montageanweisung Anhang B8


Einbau des Hilti Verfüll-Sets

Verwendung des Hilti Verfüll-Sets mit Standardmutter. Korrekte Orientierung der Verschlussscheibe und der Kugelscheibe beachten.



Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} nach Tabelle B2 nicht überschreiten.

Optional:

Sicherungsmutter aufdrehen und mit einer 1/4 bis 1/2 Umdrehung anziehen. (Nicht für Größe M24.)

Ringspalt zwischen Ankerstange und Anbauteil mit Hilti Injektionsmörtel HIT-HY 170 mit 1 bis 3 Hüben verfüllen. Befolgen Sie die Bedienungsanleitung, die dem Foliengebinde beigelegt ist.

Nach Ablauf der erforderlichen Aushärtezeit t_{cure} kann der Anker belastet werden.

Injektionssystem Hilti HIT-HY 170

Verwendungszweck Montageanweisung **Anhang B9**

Wesentliche Merkmale unter statischer und quasi-statischer Beanspruchung

Tabelle C1: Wesentliche Merkmale für Gewindestange gemäß Anhang A unter Zugbeanspruchung in Beton

Gewindestange gemäß Anha	M8	M10	M12	M16	M20	M24			
Mantanahaissart					11110		,0	11120	1012-7
Stahlversagen		γinst	L J			<u> </u>	,,,		
Charakteristischer Widerstand handelsübliche Gewindestang CRC II, III, V		S, N _{Rk,s}	[kN]			As	· f _{uk}		
	5.8			18,3	29,0	42,1	78,5	122,5	176,5
Charakteristischer	5.8 HDG/ F			16,6	26,8	42,1	78,5	122,5	176,5
Widerstand	8.8	_		29,3	46,4	67,4	125,6	196,0	282,4
HAS, HAS-U, AM, HIT-V	8.8 HDG/ F	$-N_{Rk,s}$	[kN]	26,5	42,9	67,4	125,6	196,0	282,4
	A4 (70 - 50)			25,6	40,6	59,0	109,9	171,5	247,1
	HCR (80 - 70)		29,3	46,4	67,4	125,6	196,0	247,1
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 6.8 und	8.8	γ _{Ms,N} 1)	[-]	1,5					
Teilsicherheitsbeiwert HAS A4, HAS-U A4 Gewindestange CRC II + III (T	abelle A1)	γ _{Ms,N} 1)	[-]	1,87					
Teilsicherheitsbeiwert HAS-U HCR, HIT-V-HCR Gewindestange CRC V (Tabe	lle A1)	γ _{Ms,N} 1)	[-]	1,5 2,1				2,1	
Betonausbruch									•
Faktor für ungerissenen Betor	n k _{ucr}	,N	[-]	11,0					
Faktor für gerissenen Beton	k _{cr,N}	١	[-]	7,7					
Randabstand	C _{cr,N}	١	[mm]			1,5	\cdoth_{ef}		
Achsabstand s _{cr,N} [mm]					3,0	\cdot h _{ef}			
Versagen durch Spalten									
Pandahatand		h / h _{ef} ≥ 2	2,0	1,0 · h _{ef}		h/h _{ef}			
		> h / h _{ef}	> 1,3				\		
			1,3	2,26 h _{ef} 1,0 h _{er} 2,26 h _{ef} c _{cr.sp}				C _{cr,sp}	
Achsabstand s _{cr,sp} [mm]						2.0	cr,sp		

¹⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C1

²⁾ Leistung nicht bewertet.

Tabelle C1 fortgesetzt

Kombiniertes Versagen durch Herausziehen und Betonausbruch										
Charakteristische Verbundtragfähigkeit in ungerissenem Beton C20/25										
Temperaturbereich I:	24 °C / 40 °C	$\tau_{\text{Rk,ucr}}$	[N/mm²]	10,9						
Temperaturbereich II:	50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]	7,7						
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25										
Temperaturbereich I:	24 °C / 40 °C	$\tau_{\text{Rk,cr}}$	[N/mm²]	2)	5,8	6,2				
Temperaturbereich II:	50 °C / 80 °C	$\tau_{\text{Rk,cr}}$	[N/mm²]	2)	4,1	4,6				
Einflussfaktoren ψ au	ıf Verbundtragfä	higkeit $ au_{\scriptscriptstyle extsf{F}}$	_{Rk} in gerisse	nem ur	nd ungerissenem Beton					
Einfluss der Betonfestig	gkeitsklasse: τ _{Rk}	= τ _{Rk,(C20/25}	5) • ψc							
			C30/37		1,04					
Temperaturbereich I ur	nd II :	ψ _c [-]	C40/50	1,07						
			C50/60	1,09						
Einflussfaktor Dauerlas	st									
Temperaturbereich I:	24 °C / 40 °C	0	гı							
Temperaturbereich II:	50 °C / 80 °C	$-\psi^0$ sus	[-]							

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C2

Tabelle C2: Wesentliche Merkmale für Gewindestange gemäß Anhang A unter Querbeanspruchung in Beton

Gewindestange gemäß Ar	M8	M10	M12	M16	M20	M24					
Stahlversagen ohne Hebe	larm										
Charakteristischer Widersta	nd	$V^0_{Rk,s}$	[kN]	k ₆ ⋅ N _{Rk,s}							
Faktor Festigkeitsklasse 5.8		k ₆	[-]			0	,6				
Faktor Festigkeitsklasse 6.8 CRC II, III, V	, 8.8,	k ₆	[-]			0	,5				
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 6.8 ur	nd 8.8	$\gamma_{Ms,V}{}^{1)}$	[-]			1,	25				
Teilsicherheitsbeiwert HAS A4, HAS-U A4 Gewindestange CRC II + III	(Tabelle A1)	γ _{Ms,V} 1)	[-]			1,	56				
Teilsicherheitsbeiwert HAS-U HCR, HIT-V-HCR Gewindestange CRC V (Tabelle A1)			[-]			1,25			1,75		
Duktilitätsfaktor		k ₇	[-]			1	,0				
Stahlversagen mit Hebela	rm										
Charakteristischer Widersta handelsübliche Gewindesta 8.8, CRC II, III, V		${\sf M^0}_{\sf Rk,s}$	[Nm]	1,2 · W _{el} · f _{uk}							
	5.8			18,7	37,3	65,4	166,2	324,6	561,0		
Charakteristischer	5.8 HDG	_		16,1	33,2	65,4	166,2	324,6	561,0		
Widerstand	8,8	— N 40	[Nima]	29,9	59,8	104,6	265,9	519,3	897,6		
HAS, HAS-U, AM, HIT-V	8.8 HDG	$-M^0_{Rk,s}$	[Nm]	25,9	53,1	104,6	265,9	519,3	897,6		
	A4 (70 - 50)			26,2	52,3	91,5	232,6	454,4	785,4		
	HCR (80 - 70)	_		29,9	59,8	104,6	265,9	519,3	785,4		
Duktilitätsfaktor		k ₇	[-]	1,0							
Betonausbruch auf der las	stabgewandten S	Seite	,								
Faktor		k ₈	[-]	[-] 2,0							
Betonkantenbruch											
Wirksame Länge des Befestigungselements			[mm]	min (h _{ef} ; 12 · d _{nom})							
Außendurchmesser des Befestigungselements		d _{nom}	[mm]	8	10	12	16	20	24		

¹⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton	Anhang C3

Tabelle C3: Wesentliche Merkmale für Innengewindehülse HIS-(R)N unter Zugbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M1	6		
Montagebeiwert					'	'			
Hammerbohren		1,0							
Hammerbohren mit Hilti Hohlbohrer TE- CD oder TE-YD	- γinst	[-]			1,0				
Stahlversagen									
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	25	46	67	129	5		
Teilsicherheitsbeiwert	$\gamma_{\text{Ms},\text{N}}{}^{2)}$	[-]		1	,50				
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange Festigkeitsklasse 70	ristischer Widerstand HIS-RN ube oder Gewindestange N _{Rk,s} [kN] 26 41				59	110	0		
Teilsicherheitsbeiwert	$\gamma_{\text{Ms},\text{N}}^{2)}$	[-]		1	,87				
Betonausbruch									
Faktor für ungerissenen Beton	$k_{\text{ucr},N}$	[-]		11,0					
Randabstand	C _{cr,N}	[mm]		1,5	5 · h _{ef}				
Achsabstand	S _{cr,N}	[mm]	3,0 · h _{ef}						
Versagen durch Spalten									
	h / h _{ef}	≥ 2,0	1,0 ⋅ h _{ef}	h/h _{ef} 2,0					
Randabstand $c_{cr,sp}$ [mm] für	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8	h _{1,3}					
	h / h _{ef}	- ≤ 1,3	2,26 h _{ef}	+	1,0·h _{ef}	2,26·h _{ef}	C cr,sp		
Achsabstand	S _{cr,sp}	[mm]		2.	C _{cr,sp}				
Kombiniertes Versagen durch Herau	sziehen u	ınd Beton	ausbruch						
Wirksame Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	0		
Durchmesser des Befestigungselement	s d ₁	[mm]	12,5	16,5	20,5	25,	4		
Charakteristische Verbundtragfähigkeit	in ungeris	senem Be	ton C20/25						
Temperaturbereich I: $24^{\circ}\text{C}/40^{\circ}\text{C} \tau_{\text{Rk},\text{ucr}} \text{[N/mm}^2\text{]}$ 10,0									
Temperaturbereich II: $50^{\circ}\text{C}/80^{\circ}\text{C}$ $\tau_{\text{Rk},\text{ucr}}$ [N/mm²] 7,5									
Einflussfaktoren ψ auf Verbundtragfä	ihigkeit τ	_{Rk} in unge	rissenem Be	ton					
Für Faktoren ψ_c und ${\psi^0}_{\text{sus}}$ siehe Tabelle	C1.								
) Leistung night hewertet									

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton - HIS-(R)N	Anhang C4

²⁾ Sofern nationale Regelungen fehlen.

Tabelle C4: Wesentliche Merkmale für Innengewindehülse HIS-(R)N unter Querbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M16	
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange der Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	13	23	34	63	
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]		1,	25		
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange der Festigkeitsklasse 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]		1,	56		
Duktilitätsfaktor	k ₇	[-]		1	,0		
Stahlversagen mit Hebelarm							
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange der Festigkeitsklasse 8.8	${\sf M^0}_{\sf Rk,s}$	[Nm]	30	60	105	266	
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange der Festigkeitsklasse 70	${\sf M^0}_{\sf Rk,s}$	[Nm]	26	52	92	233	
Duktilitätsfaktor	k ₇	[-]		1	,0		
Betonausbruch auf der lastabgewandter	Seite						
Faktor	k ₈	[-]	2,0				
Betonkantenbruch							
Wirksame Länge des Befestigungselements	l _f	[mm]	90	110	125	170	
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	12,5	16,5	20,5	25,4	

¹⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton - HIS-(R)N	Anhang C5

Tabelle C5: Wesentliche Merkmale für Betonstahl unter Zugbeanspruchung in Beton

Beton														
Betonstahl				ф8	ф 10	ф 12	ф 13	ф 14	ф 16	ф 18	ф 20	ф 22	ф 24	ф 25
Montagebeiwert für Mo	ntage in	trocke	enem	und fe	euchte	m (wa	asserg	jesätti	gt) Be	ton				
Hammerbohren	γ _{inst} [-] 1,0													
Hammerbohren mit Hilti Hohlbohrer TE-CD oder	TE-YD ⁾	/inst	[-]						1,0					
Stahlversagen														
Charakteristischer Wider	rstand I	V _{Rk,s}	[kN]					A	$\lambda_{s} \cdot f_{uk}$	1)				
Charakteristischer Wider Betonstahl B500B nach DIN 488-1		$V_{Rk,s}$	[kN]	27,1	42,4	61,1	71,7	83,1	108,6	137,4	169,6	205,3	244,3	265,1
Teilsicherheitsbeiwert)	/Ms,N ²⁾	[-]						1,4					
Betonausbruch														
Faktor für ungerissenen	Beton I	₹ _{ucr,N}	[-]						11,0					
Randabstand	(C _{cr,N}	[mm]						1,5 · h	ef				
Achsabstand	5	S _{cr,N}	[mm]						3,0 · h	ef				
Versagen durch Spalte	n für un	geris	sener	n Beto	on									
	h / h,	_{ef} ≥ 2	,0		1,0⋅h _{et}	f			h _{ef}					
Randabstand c _{cr,sp} [mm] für	2,0 > h	/ h _{ef} >	> 1,3	4,6	h _{ef} - 1	,8⋅h			,3 -					
	h / h	_{ef} ≤ 1	,3	2	.,26·h。	ef			+	1,0·h _{ef}	2,26	c _{ci}	r,sp	
Achsabstand	5	S _{cr.sp}	[mm]						2 c _{cr,s}					
Kombiniertes Versager		- /-1		nen u	nd Be	tonau	ısbru			<u>r </u>				
Charakteristische Verbur feuchtem (wassergesätti)/25 fü	r Mon	tage i	n troc	kenen	n und	
Temperaturber 24°C/4 eich I:	0°C τ _{Rk,ι}	ucr [N/	mm²]	10,0										
Temperaturber eich II: 50°C/8	0°C τ _{Rk,ι}	ucr [N/	/mm²]	7,0										
Einflussfaktoren ψ auf	Verbund	dtrag	fähigk	ceit τ _F	_k in u	ngeris	sene	m Bet	on					
Für Faktoren ψ _c und ψ ⁰ sı	siehe T	abell	e C1											

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton - Betonstahl	Anhang C6

²⁾ Sofern nationale Regelungen fehlen.

Tabelle C6: Wesentliche Merkmale für Betonstahl unter Querbeanspruchung in Beton

Deterretable			1.0	1.40	1.40	140	1.44	1.40	1.40	1.00	1.00	104	1.05
Betonstahl			ф8	φ 10	φ 12	φ 13	φ 14	φ 16	φ 18	φ 20	φ 22	φ 24	φ 25
Stahlversagen ohne Hebelarm	1												
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]					0,5	$\cdot \: A_s \: \cdot$	$f_{uk}^{1)}$				
Charakteristischer Widerstand Betonstahl B500B nach DIN 488-1	$V^0_{Rk,s}$	[kN]	13,6	21,2	30,5	35,8	41,6	54,3	68,7	84,8	102,6	122,1	132,5
Teilsicherheitsbeiwert	γ _{Ms,V} ²⁾	[-]	1,5										
Duktilitätsfaktor	k ₇	[-]						1,0					
Stahlversagen mit Hebelarm													
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]					1,2	· W _{el} ·	f _{uk} 1)				
Charakteristischer Widerstand Betonstahl B500B nach DIN 488-1	$M^0_{Rk,s}$	[Nm]	32,6	63,6	109,9	139,8	174,6	260,6	371,0	508,9	677,4	879,4	994,0
Duktilitätsfaktor	k ₇	[-]						1,0					
Betonausbruch auf der lastab	gewand	lten S	eite										
Faktor	k ₈	[-]						2,0					
Betonkantenbruch		•											
Wirksame Länge des Befestigungselements	I _f	[mm]	min (h _{ef} ; 12 · d _{nom})					3)					
Außendurchmesser des Befestigungselements	d_{nom}	[mm]	8	10	12	13	14	16	18	20	22	24	25

¹⁾ f_{uk} entsprechend der Spezifikation des Betonstahls.

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton - Betonstahl	Anhang C7

²⁾ Sofern nationale Regelungen fehlen.

³⁾ min $(h_{nom}; max(8 \cdot d_{nom}; 300))$

Tabelle C7: Verschiebungen unter Zugbeanspruchung

Gewindestange gemäß Anhang	М8	M10	M12	M16	M20	M24		
Ungerissener Beton								
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Gerissener Beton								
Verschiebung	δ_{N0}	[mm/(N/mm²)]	1)	0,07	0,07	0,06	0,06	0,06
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	1)	0,11	0,11	0,11	0,15	0,17

¹⁾ Leistung nicht bewertet

Tabelle C8: Verschiebungen unter Querbeanspruchung

Gewindestange gemäß Anh	nang A		M8	M10	M12	M16	M20	M24
Verschiebung	δ_{V0}	[mm/(N/mm²)]	0,06	0,06	0,05	0,04	0,04	0,03
Verschiebung	$\delta_{V^{\infty}}$	[mm/(N/mm²)]	0,09	0,08	0,08	0,06	0,06	0,05

Tabelle C9: Vo Zugbeansprud		_	M8	M10	M12	M16				
Ungerissener Beton										
Verschiebung	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,06	0,07	0,08	0,09				
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,07	0,08	0,09				

Tabelle C10: Verschiebungen unter Querbeanspruchung

HIS-(R)N			М8	M10	M12	M16
Verschiebung	δ_{V0}	[mm/(N/mm²)]	0,10	0,10	0,10	0,10
Verschiebung	$\delta_{V^{\infty}}$	[mm/(N/mm²)]	0,15	0,15	0,15	0,15

Injektionssystem Hilti HIT-HY 170	
Leistung Verschiebungen	Anhang C8

Tabelle C11: Verschiebungen unter Zugbeanspruchung

Betonstahl			ф8	ф 10	ф 12	ф 13	ф 14	ф 16	ф 18	ф 20	ф 22	ф 24	ф 25
Ungerissener Beton Temperaturbereich I: 24°C / 40°C													
) (a ma ah i ah um m	δ_{N0}	[mm/(N/mm²)]	0,12	0,12	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,14	0,14
Verschiebung $\frac{}{\delta_{\text{N}}}$	$\delta_{N\infty}$	[mm/(N/mm²)]	0,12	0,12	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,14	0,14
Ungerissener Beto	n Tem	peraturbereich II	: 50°C	: / 80°C	2								
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,08	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,10	0,10
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,08	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,10	0,10

Tabelle C12: Verschiebungen unter Querbeanspruchung

Betonstahl			ф8	ф 10	ф 12	ф 13	ф 14	ф 16	ф 18	ф 20	ф 22	ф 24	φ 25
Vorashishung	δ_{V0}	[mm/kN]	0,06	0,05	0,05	0,05	0,04	0,04	0,04	0,04	0,04	0,03	0,03
Verschiebung -	$\delta_{V^{\infty}}$	[mm/kN]	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,05

Injektionssystem Hilti HIT-HY 170

Leistung
Verschiebungen

Anhang C9

Wesentliche Merkmale unter seismischer Beanspruchung

Tabelle C13: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Zugbeanspruchung für seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A	M12	M16		
Stahlversagen				
HAS 8.8 (HDG), HAS-U 8.8 (HDG), AM 8.8 (HDG), Gewindestange 8.8	$N_{Rk,s,C2}$	[kN]	67	126
Kombiniertes Versagen durch Herausziehen und B	etonausbru	ch		
Temperaturbereich I: 24 °C/40 °C	$ au_{Rk,C2}$	[N/mm ²]	2,0	1,9
Temperaturbereich II: 50 °C/80 °C	$\tau_{\text{Rk,C2}}$	[N/mm ²]	1,4	1,3

Tabelle C14: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Querbeanspruchung für seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A			M12	M16						
Stahlversagen ohne Hebelarm mit Hilti Verfüll-Set										
HAS 8.8, HAS-U 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	28	46						
Stahlversagen ohne Hebelarm ohne Hilti Verfüll-S	et	•								
HAS 8.8, HAS-U 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	24	40						
HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG	$V_{Rk,s,C2}$	[kN]	18	30						
Gewindestange, galvanisch verzinkt 8.8	$V_{Rk,s,C2}$	[kN]	17	28						
Gewindestange, feuerverzinkt 8.8	$V_{Rk,s,C2}$	[kN]	13	21						

Injektionssystem Hilti HIT-HY 170	
Leistung Wesentliche Merkmale unter Zug- und Querbeanspruchung für seismische Leistungskategorie C2	Anhang C10

Tabelle C15: Verschiebungen unter Zugbeanspruchung für seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A			M12	M16
Verschiebung DLS	δ _{N,C2(50%)}	[mm]	0,2	0,2
Verschiebung ULS	δ _{N,C2(100%)}	[mm]	0,6	0,4

Tabelle C16: Verschiebungen unter Querbeanspruchung für Seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A			M12	M16
Einbau mit Hilti Verfüll-Set				
Verschiebung DLS	δ _{V,C2(50%)}	[mm]	1,6	1,2
Verschiebung ULS	δ _{V,C2(100%)}	[mm]	4,5	3,2
Einbau ohne Verfüll-Set				
Verschiebung DLS: HAS 8.8, HAS-U 8.8, AM 8.8, Gewindestange 8.8	$\delta_{\text{V,C2(50\%)}}$	[mm]	2,9	3,2
Verschiebung DLS: HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG, Gewindestange feuerverzinkt 8.8	δ _{V,C2(50%)}	[mm]	2,2	2,3
Verschiebung ULS: HAS 8.8, HAS-U 8.8, AM 8.8, Gewindestange 8.8	δ _{V,C2(100%)}	[mm]	5,4	9,2
Verschiebung ULS: HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG, Gewindestange feuerverzinkt 8.8	δ _{V,C2(100%)}	[mm]	4,1	4,3

Injektionssystem Hilti HIT-HY 170	
Leistung Verschiebungen unter Zug- und Querbeanspruchung für seismische Leistungskategorie C2	Anhang C11