

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-19/0465 of 8 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System Hilti HIT-HY 170

Bonded fasteners and bonded expansion fasteners for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Hilti plants

30 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-19/0465 issued on 10 September 2024

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de 8.06.01-72/25

European Technical Assessment ETA-19/0465

English translation prepared by DIBt

Page 2 of 30 | 8 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 30 | 8 September 2025

Specific Part

1 Technical description of the product

The Injection System Hilti HIT-HY 170 is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 170 and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex B3, B4, C1, C2, C4, C6
Characteristic resistance for static and quasi-static shear load	See Annex C3, C5, C7
Displacements for static and quasi-static loads	See Annex C8 and C9
Characteristic resistance for seismic performance category C1	No performance assessed
Characteristic resistance and displacements for seismic performance category C2	See Annex C10, C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance
	assessed

Page 4 of 30 | 8 September 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

The following standards and documents are referred to in this European Technical Assessment:

-	EN 1992-1-1:2004 + AC:2010	Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings	
-	EN 1992-4:2018	Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete	
-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels	
-	EN 10088-1:2014	Stainless steels - Part 1: List of stainless steels	
-	EN ISO 10684:2004 + AC:2009	Fasteners - Hot dip galvanized coatings	
-	EN 206:2013 + A1:2016	Concrete - Specification, performance, production and conformity	
-	EN 10204:2004	Metallic products – Types of inspection documents	
-	DIN 488-1:2009-08	Reinforcing steels – Part 1: Grades, properties, marking	
-	EOTA TR 055	Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601, February 2018	

Issued in Berlin on 8 September 2025 by Deutsches Institut für Bautechnik

LBD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Stiller

Installed condition

Figure A1: Threaded rod, HAS..., HAS-U-..., HIT-V-..., AM...8.8

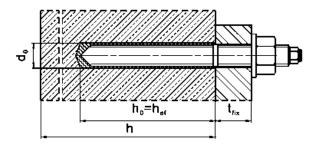


Figure A2: Threaded rod, HAS..., HAS-U-..., HIT-V-..., AM...8.8, with Hilti Filling Set...

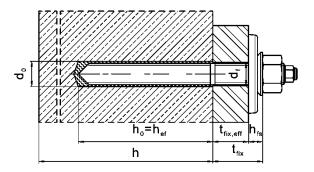


Figure A3: Internally threaded sleeve HIS-(R)N

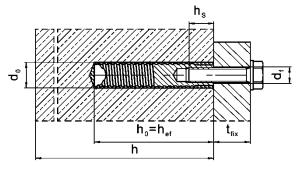
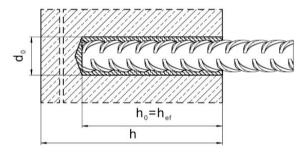
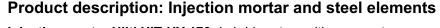




Figure A4: Reinforcing bar (rebar)

Injection System Hilti HIT-HY 170	
Product description Installed condition	Annex A1

Injection mortar Hilti HIT-HY 170: hybrid system with aggregate

330 ml and 500 ml

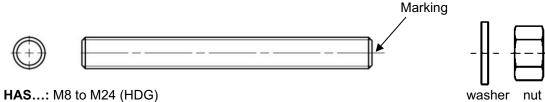
Marking:
HILTI HIT
Production number and
Production line
Expiry date mm/yyyy

Product name: "Hilti HIT-HY 170"

Marking

Static mixer Hilti HIT-RE-M

Steel elements



HAS-U...: M8 to M24 (HDG) washer nut

Marking by embossing: Steel grade number and length identification letter

5 = HAS-U 5.8, 5.8 HDG 8 = HAS-U 8.8, 8.8 HDG

1 = HAS-U A4 2 = HAS-U HCR

AM 8.8: M8 to M24 (HDG)

Marking alternatives:

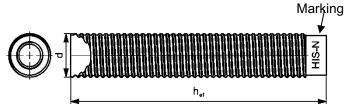
Colour code:

5.8 = RAL 5010 (blue) 8.8 = RAL 1023 (yellow) A4 = RAL 3000 (red) Marking by embossing:

Steel grade and length identification letter (see HAS-U)

Injection System Hilti HIT-HY 170 Product description Injection mortar / Static mixer Steel elements Annex A2

Marking


HIT-V-...: M8 to M24 (F)

Marking: e.g.,

5.8 - I	=	HIT-V-5.8	Mx I
5.8F - I	=	HIT-V-5.8F	Mx I
8.8 - I	=	HIT-V-8.8	Mx I
8.8F - I	=	HIT-V-8.8F	MxI
R-I	=	HIT-V-R	Mx I
HCR - I	=	HIT-V-HCR	Mx I

Commercial standard threaded rod: M8 to M24

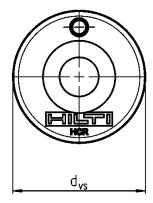
- Materials and mechanical properties according to Table A1.
- Inspection certificate 3.1 according to EN 10204. The document shall be stored.
- · Marking of embedment depth.
- For hot dip galvanized elements, the requirements of the standard EN ISO 10684 shall be considered, especially with regards to the combination of nuts and rods.

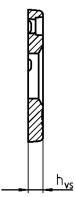
Internally threaded sleeve HIS-(R)N: M8 to M16

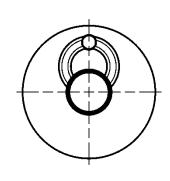
Marking: Identifying mark - HILTI and embossing "HIS-N" (for zinc coated steel) or embossing "HIS-RN" (for stainless steel)

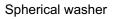
Reinforcing bar (rebar): \$\psi 8\$ to \$\psi 25\$

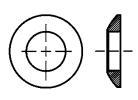
- · Materials and mechanical properties according to Table A1.
- · Dimensions according to Annex B
- Minimum value of related rib area f_{R,min} according to EN 1992-1-1
- Rib height of the bar h_{rib} shall be in the range 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: nominal diameter of the bar; h_{rib}: rib height of the bar)


Product description
Steel elements


Annex A3




Hilti Filling Set to fill the annular gap between anchor and fixture


Sealing washer

Hilti Filling Set			M10	M12	M16	M20	M24
Diameter of sealing washer	d _{VS}	[mm]	42	44	52	60	70
Thickness of sealing washer	h _{VS}	[mm]	5	5	6	6	6
Thickness of Hilti Filling Set	h _{fS}	[mm]	9	10	11	13	15

Injection System Hilti HIT-HY 170	
Product description Steel elements, Hilti Filling Set	Annex A4

Table A1: Materials

Designation	Material			
Reinforcing bars (rebars)				
Rebar EN 1992-1-1, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$			
Steel elements made	e of zinc coated steel			
HAS 5.8 (HDG), HAS-U 5.8 (HDG), HIT-V 5.8(F), Threaded rod 5.8	Strength class 5.8, f_{uk} = 500 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (I_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized ¹⁾ \geq 50 μ m			
Threaded rod 6.8	Strength class 6.8, f_{uk} = 600 N/mm², f_{yk} = 480 N/mm², Elongation at fracture (I_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m or hot dip galvanized ¹⁾ \geq 50 μ m			
HAS 8.8 (HDG), HAS-U 8.8 (HDG), HIT-V 8.8(F), AM 8.8 (HDG), Threaded rod 8.8	Strength class 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Elongation at fracture (I ₀ =5d) > 12% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized ¹⁾ \geq 50 μ m			
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm			
Washer	Electroplated zinc coated ≥ 5 μm Hot dip galvanized ≥ 50 μm			
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\geq 5~\mu m$ Hot dip galvanized $^1) \geq 50~\mu m$			
Hilti Filling Set (F)	Sealing washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 50~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$, (F) Hot dip galvanized $\geq 50~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$, (F) Electroplated zinc - nickel coated $\geq 6~\mu m$			
Steel elements made of stainless steel corrosion resistance class (CRC) II according EN 1993-1-4				
Threaded rod	Strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm². Elongation at fracture (I_0 = 5d) > 12% ductile. Stainless steel 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1.			
Washer	Stainless steel EN 10088-1			
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel EN 10088-1.			

¹⁾ For commercial standard hot dip galvanized threaded rods and nuts, the requirements of the standard EN ISO 10684 shall be considered.

Injection System Hilti HIT-HY 170	
Product description Materials	Annex A5

Table A1 continued

Designation	Material	
Steel elements made of stainless steel corrosion resistance class (CRC) III according EN 1993-1-4		
HAS A4, HAS-U A4 HIT-V-R	Strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm²; Elongation at fracture (I_0 =5d) > 12% ductile	
Threaded rod	Strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm²; Elongation at fracture (I_0 =5d) > 12% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1	
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 according to EN 10088-1	
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1	
Nut	Strength class 70, f _{uk} = 700 N/mm², f _{yk} = 450 N/mm²; Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1	
Hilti Filling Set A4	Sealing washer: Stainless steel according to EN 10088-1 et A4 Spherical washer: Stainless steel according to EN 10088-1 Lock nut: Stainless steel according to EN 10088-1	
Steel elements mad	e of stainless steel corrosion resistance class (CRC) V according EN 1993-1-4	
HAS-U HCR HIT-V-HCR	For \leq M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², For $>$ M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (I_0 =5d) $>$ 12% ductile	
Threaded rod	For \leq M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², For $>$ M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (I_0 =5d) $>$ 12% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1	
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1	
Nut	For \leq M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², For $>$ M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², High corrosion resistant steel 1.4529, 1.4565 EN 10088-1	

Injection System Hilti HIT-HY 170	
Product description Materials	Annex A6

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loading.
- Seismic performance category C2: M12 and M16 (see Table B1).

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206 + A1.
- Strength classes C20/25 to C50/60 according to EN 206 + A1.
- · Cracked and uncracked concrete (see Table B1).

Temperature in the base material:

- At installation
 - -5 °C to +40 °C for the standard variation of temperature after installation
- · In-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Table B1: Specifications of intended use

	HIT-HY 170 with								
Elements	Threaded rod (Annex A)	HIS-(R)N	Rebar						
Hammer drilling with hollow drill bit TE-CD or TE-YD	✓	✓	✓						
Hammer drilling mode com-	✓	✓	✓						
Static and quasi-static loading in uncracked concrete	M8 to M24	M8 to M16	φ 8 to φ 25						
Static and quasi-static loading in cracked concrete	M10 to M24	_1)	_1)						
Seismic performance category C2	M12 and M16	_1)	_1)						

¹⁾ No performance assessed.

Injection System Hilti HIT-HY 170	
Intended use Specifications	Annex B1

Use conditions (environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4 corresponding to corrosion resistance classes Annex A (stainless steels).

Design:

- Fastenings are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4 and EOTA Technical Report TR 055.

Installation:

- Use category: dry or wet concrete (not in flooded holes) for all drilling techniques.
- Drilling technique:
 - · Hammer drilling,
 - · Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD
- Installation direction D3: downward, horizontal and upward (e.g. overhead) installation admissible for all elements.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Hilti HIT-HY 170	
Intended use Specifications	Annex B2

Table B2: Installation parameters of threaded rod according to Annex A

Threaded rod according to Annex A					M10	M12	M16	M20	M24
Diameter of eleme	d	[mm]	8	10	12	16	20	24	
Nominal diameter	of drill bit	d_0	[mm]	10	12	14	18	22	28
Range of effective depth and depth o		$h_{ef} = h_0$	[mm]	60 to 96	60 to 120	70 to 144	to to to		
Maximum	pre-setting	d _f	[mm]	9	12	14	18	22	26
diameter of clearance hole in the fixture	through setting 1)	d _f	[mm]	11	14	16	20 ²⁾	24 ²⁾	30 ²⁾
Thickness of Hilti F	Filling Set	h _{fs}	[mm]	-	-	10	11	-	-
Effective fixture thi Hilti Filling Set	ckness with	$t_{fix,ef}$	[mm]	$t_{\text{fix,ef}} = t_{\text{fix}} - h_{\text{fs}}$					
Minimum thickness of concrete member		h _{min}	[mm]		h_{ef} + 30 mm h_{ef} + 2·d ₀				
Maximum installation torque		max. T _{inst}	[Nm]	10	20	40	80	150	200
Minimum spacing	S _{min}	[mm]	40	50	60	75	90	115	
Minimum edge dis	tance	C _{min}	[mm]	40	45	45	50	55	60

¹⁾ For shear loaded anchors the provision of EN 1992-4, §6.2.2, shall be considered.

Table B3: Installation parameters of internally threaded sleeve HIS-(R)N

HIS-(R)N			М8	M10	M12	M16
Outer diameter of sleeve	d	[mm]	12,5	16,5	20,5	25,4
Nominal diameter of drill bit	d_0	[mm]	14	18	22	28
Effective embedment depth and drill hole depth	h _{ef}	[mm]	90	110	125	170
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230
Maximum installation torque	max. T _{inst}	[Nm]	10	20	40	80
Thread engagement length min-max	h _s	[mm]	8 to 20	10 to 25	12 to 30	16 to 40
Minimum spacing	S _{min}	[mm]	60	75	90	115
Minimum edge distance	C _{min}	[mm]	40	45	55	65

Injection System Hilti HIT-HY 170	
Intended use Installation parameters of threaded rod, HAS, HAS-U, HIT-V and AM 8.8 and of internally threaded sleeve HIS-(R)N	Annex B3

²⁾ If no Hilti Filling Set set is used, a second washer is required (identical to specified one).

Table B4: Installation parameters of reinforcing bar (rebar)

Reinforcing bar (rebar)			φ8	ф 10	φ.	φ 12 φ 13 φ 14 φ 16 φ 18 φ 20 φ 22 φ					φ 24	φ 25		
Diameter	ф	[mm]	8	10	1	2	13	14	16	18	20	22	24	25
Effective embedment and drill hole depth	h _{ef} = h ₀	[mm]	60 to 160	60 to 200		0 0 40	75 to 280	75 to 280	80 to 320	90 to 360	90 to 400	100 to 440	100 to 480	100 to 500
Nominal diameter of drill bit	d_0	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	18	20	22	25	28	32	32
Minimum thickness of concrete member	h _{min}	[mm]		n _{ef} + 30 100 m		h _{ef} + 2·d ₀								
Minimum spacing	S _{min}	[mm]	40	50	6	0	70	70	80	100	100	125	125	125
Minimum edge distance	C _{min}	[mm]	40	45	4	5	50	50	50	65	65	70	70	70

¹⁾ Either of the two given values can be used.

Table B5: Maximum working time and minimum curing time 1)

Temperat ma	Temperature in the base material T ²⁾		Maximum working time t _{work}	Minimum curing time t _{cure}
-5°C	to	0°C	10 min	12 h
> 0°C	to	5°C	10 min	5 h
> 5°C	to	10°C	8 min	2,5 h
> 10°C	to	20°C	5 min	1,5 h
> 20°C	to	30°C	3 min	45 min
> 30°C	to	40°C	2 min	30 min

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Injection System Hilti HIT-HY 170	
Intended use Installation parameters of rebar Maximum working time and minimum curing time	Annex B4

²⁾ The minimum temperature of the injection mortar Hilti HIT-HY 170 during installation is + 5°C.

Table B6: Parameters of drilling, cleaning and setting tools

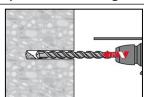
	Elements			Installation		
Threaded rod (Annex A)	HIS-(R)N	Rebar	Hammer drilling	Hollow drill bit 1)	Brush	Piston plug
			CCCCC		***************************************	
Size	Size	Size	d ₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ
M8	-	ф8	10	-	10	-
M10	-	φ8 / φ10	12	12	12	12
M12	M8	φ10 / φ12	14	14	14	14
-	-	φ12	16	16	16	16
M16	M10	φ13 / φ14	18	18	18	18
-	-	φ16	20	20	20	20
M20	M12	φ18	22	22	22	22
-	-	φ20	25	25	25	25
M24	M16	φ22	28	28	28	28
-	-	φ24 / φ25	32	32	32	32

¹⁾ With vacuum cleaner Hilti VC 4X/10/20/40/60 (automatic filter cleaning activated, eco mode off) or a vacuum cleaner providing equivalent cleaning performance in combination with the specified Hilti hollow drill bit TE-CD or TE-YD.

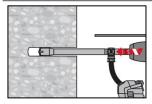
Cleaning alternatives

including vacuum cleaner.

Manual Cleaning (MC): Hilti hand pump for blowing out drill holes with diameters d₀ ≤ 18 mm and drill hole depths h₀ ≤ 10·d Compressed air cleaning (CAC): Air nozzle with an orifice opening of minimum 3,5 mm in diameter. Automatic Cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system


Injection System Hilti HIT-HY 170	
Intended use Drilling, cleaning and setting tools Cleaning alternatives	Annex B5

Installation instructions

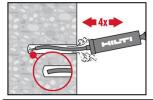

Hole drilling

a) Hammer drilling

Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

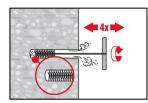
b) Hammer drilling with Hilti hollow drill bit

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with vacuum attachment following the requirements given in Table B6. This drilling system removes the dust and cleans the bore hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.


Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Manual Cleaning (MC)


Uncracked concrete only.

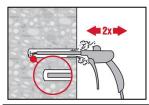
For drill hole diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10 \cdot d$

The Hilti manual pump may be used for blowing out drill holes up to diameters $d_0 \le 18$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$.

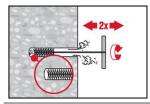
Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust

Brush 4 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

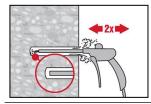
The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.



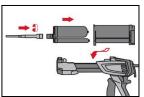
Blow out again with manual pump at least 4 times until return air stream is free of noticeable dust.


Injection System Hilti HIT-HY 170	
Intended use Installation instructions	Annex B6

Compressed air cleaning (CAC) for all drill hole diameters d_0 and all drill hole depths h_0

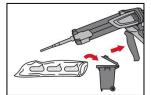


Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.


Brush 2 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

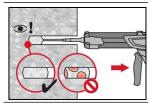

Injection preparation

Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

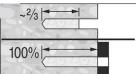
Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.

Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are

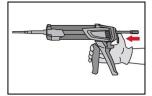

2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack

B7

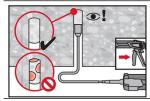
Injection System Hilti HIT-HY 170	
Intended use Installation instructions	Annex I



Inject adhesive from the back of the drill hole without forming air voids.

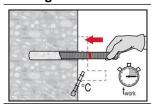

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length. In water saturated concrete it is required to set the fastener immediately after cleaning the drillhole.

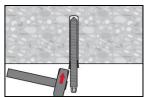


Pre-setting: Fill approximately 2/3 of the drill hole.

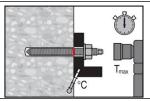
Through-setting: Fill 100% of the drill hole.



After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.


Overhead installation and/or installation with embedment depth hef > 250mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug HIT-SZ (see Table B6). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

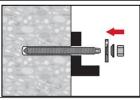
Setting the element



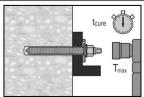
Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth until working time t_{work} (see Table B5) has elapsed.

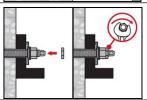
After setting the element the annular gap between the anchor and the fixture (through-setting) or concrete (pre-setting) has to be filled with mortar.

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (HIT-OHW).

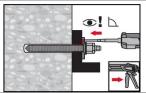

Loading the anchor: After required curing time t_{cure} (see Table B5) remove excess mortar, the anchor can be loaded. Do not damage thread of element while removing excess mortar.

The applied installation torque shall not exceed the values T_{max} given in Table B2 and Table B3.


Injection System Hilti HIT-HY 170	
Intended use	Annex B8
Installation instructions	


Installation of Hilti Filling Set to fill the annular gap between fastener and fixture

Use Hilti Filling Set with standard nut. Observe the correct orientation of filling washer and spherical washer.



The applied installation torque shall not exceed the values T_{max} given in Table B2.

Optional:

Installation of lock nut. Tighten with a ¼ to ½ turn. (Not for size M24.)

Fill the annular gap between the anchor rod and fixture with 1-3 strokes of Hilti injection mortar HIT-HY 170.

Follow the installation instructions supplied with the foil pack.

After required curing time t_{cure} the anchor can be loaded.

Injection System Hilti HIT-HY 170	
Intended use Installation instructions	Annex B9

Essential characteristics under static and quasi-static loading

Table C1: Essential characteristics for threaded rods according to Annex A under tension load in concrete

Threaded rod according	to Annex A			М8	M10	M12	M16	M20	M24
Installation factor		γinst	[-]	1,0					
Steel failure				•					
Characteristic resistance - threaded rod 5.8, 6.8, 8.8,	$N_{Rk,s}$	[kN]	$A_s \cdot f_{uk}$						
	5.8	_		18,3	29,0	42,1	78,5	122,5	176,5
	5.8 HDG/ F			16,6	26,8	42,1	78,5	122,5	176,5
Characteristic resistance	8.8	− N _{Rk.s}	[kN]	29,3	46,4	67,4	125,6	196,0	282,4
HAS, HAS-U, AM, HIT-V	8.8 HDG/ F	™Rk,s —	- [KIN]	26,5	42,9	67,4	125,6	196,0	282,4
	A4 (70 - 50)	_		25,6	40,6	59,0	109,9	171,5	247,1
	HCR (80 - 70))		29,3	46,4	67,4	125,6	196,0	247,1
Partial factor grade 5.8, 6.	8 and 8.8	$\gamma_{\text{Ms},N}{}^{1)}$	[-]	1,5					
Partial factor HAS A4, HAS-U A4, Threaded rod: CRC II and III (Table A1)			[-]	1,87					
Partial factor HAS-U HCR Threaded rod: CRC V (Tal	,	γ _{Ms,N} 1)	[-]			1,5			2,1
Concrete cone failure									
Factor for uncracked conc	rete	k _{ucr,N}	[-]	11,0					
Factor for cracked concret	e	$k_{\text{cr},N}$	[-]	7,7					
Edge distance		C _{cr,N}	[mm]	1,5 · h _{ef}					
Spacing		S _{cr,N}	[mm]			3,0	· h _{ef}		
Splitting failure									
		h / h _{ef}	≥ 2,0	1,0 · h _{ef}					
Edge distance c _{cr.sp} [mm] for		2,0 > h / h	l _{ef} > 1,3	4,6 h _{ef}	- 1,8 h	2,0 ·· 1,3 ··		\ -	
ocr,sp [11111] 101		h / h _{ef}	≤ 1,3	2,26	3 h _{ef}		1,0 h _{ef}	2,26 h _{ef}	C _{cr,sp}
Spacing		S _{cr,sp}	[mm]			2.0	cr,sp		

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 170	
Performance Essential characteristics under tension load in concrete – threaded rods	Annex C1

²⁾ No performance assessed.

Table C1 continued

Threaded rod accordi	ng to Annex A			M8	M10	M12	M16	M20	M24
Combined pullout and	d concrete cone	failure							'
Characteristic bond res	istance in uncracl	ked concr	ete C20/25	5					
Temperature range I: 24 °C / 40 °C τ _{Rk,ucr} [N/mm²] 10,9									
Temperature range II:	50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm ²]			7	,7		
Characteristic bond res	istance in cracked	d concrete	C20/25						
Temperature range I:	24 °C / 40 °C	$ au_{Rk,cr}$	[N/mm ²]	2) 5,8 6,2					,2
Temperature range II:	50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]	2) 4,1 4,6					,6
Influence factors ψ or	n bond resistance	e τ _{Rk} in cr	acked and	uncrac	ked co	ncrete		•	
Influence of concrete st	trength class: τ _{Rk}	= τ _{Rk,(C20/2}	5) · Ψc						
			C30/37			1,	04		
Temperature range I ar	nd II :	ψ _c [-]	C40/50	1,07					
Influence of sustanined	load								
Temperature range I:	24 °C / 40 °C	0	F 3	0,95					
Temperature range II:	50 °C / 80 °C	$$ ψ^0 sus	[-]	0,79					

Injection System Hilti HIT-HY 170	
Performance Essential characteristics under tension load in concrete – threaded rods	Annex C2

Table C2: Essential characteristics for threaded rods according to Annex A under shear load in concrete

Threaded rod according	to Annex A			M8	M10	M12	M16	M20	M24
Steel failure without leve	r arm					•	•		•
Characteristic resistance		$V^0_{Rk,s}$	[kN]			k ₆ ·	$N_{Rk,s}$		
Factor grade 5.8 k ₆ [-]					0	,6			
Factor grade 6.8, 8.8, CRO	C II, III, V	k ₆	[-]			0	,5		
Partial factor grade 5.8, 6.8 and 8.8		γ _{Ms,V} 1)	[-]			1,:	25		
Partial factor HAS A4, HAS Threaded rod: CRC II and		γ _{Ms,V} 1)	[-]			1,	56		
Partial factor HAS-U HCR, Threaded rod: CRC V (Tal		γ _{Ms,V} 1)	[-]	1,25			1,75		
Ductility factor		k ₇	[-]	-] 1,0					
Steel failure with lever a	rm								
Characteristic resistance – commercial threaded rod 5.8, 6.8, 8.8, CRC II, III, V		${\sf M^0}_{\sf Rk,s}$	[Nm]	1,2 · W _{el} · f _{uk}					
	5.8			18,7	37,3	65,4	166,2	324,6	561,0
	5.8 HDG	_		16,1	33,2	65,4	166,2	324,6	561,0
Characteristic resistance	8,8	 NAO	[Nlma]	29,9	59,8	104,6	265,9	519,3	897,6
HAS, HAS-U, AM, HIT-V	8.8 HDG	$- M^0_{Rk,s}$	[Nm]	25,9	53,1	104,6	265,9	519,3	897,6
	A4 (70 - 50)	_		26,2	52,3	91,5	232,6	454,4	785,4
	HCR (80 - 70)	_		29,9	59,8	104,6	265,9	519,3	785,4
Ductility factor		k ₇	[-]			1	,0		
Concrete pry-out failure									
Pry-out factor		k ₈	[-]	2,0					
Concrete edge failure									
Effective length of fastene	r	I _f	[mm]	min (h _{ef} ; 12 · d _{nom})					
Outside diameter of faster	er	d _{nom}	[mm]	8	10	12	16	20	24

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 170	
Performance Essential characteristics under shear load in concrete – threaded rods	Annex C3

Essential characteristics for internally threaded sleeve HIS-(R)N under tension load in concrete Table C3:

HIS-(R)N			M8	M10	M12	M16	
Installation factor							
Hammer drilling	γinst	[-]		,	1,0		
Hammer drilling with Hilti hollow drill be TE-CD or TE-YD	it γ _{inst}	[-]			1,0		
Steel failure							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	
Partial factor	γ _{Ms,N} ²⁾	[-]	1,50				
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$N_{Rk,s}$	[kN]	26 41 59 110				
Partial factor	$\gamma_{\text{Ms,N}}^{2)}$	[-]	1,87				
Concrete cone failure							
Factor for uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0				
Edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}				
Spacing	S _{cr,N}	[mm]		3,0) · h _{ef}		
Splitting failure							
	h / h _e	_f ≥ 2,0	1,0 ⋅ h _{ef}	h/h _{ef}			
Edge distance $c_{cr,sp}$ [mm] for	2,0 > h /	2,0 > h / h _{ef} > 1,3		า 1,3			
	h / h _e	h / h _{ef} ≤ 1,3		5 1	1,0·h _{ef} 2	c _{cr,sp}	
Spacing	S _{cr,sp}	[mm]		2.	C _{cr,sp}		
Combined pullout and concrete con	e failure						
Effective embedment depth	h _{ef}	[mm]	90	110	125	170	
Effective fastener diameter d ₁		[mm]	12,5	16,5	20,5	25,4	
Characteristic bond resistance in uncra	acked cond	crete C20/2	25				
Temperature range I: 24°C/40	°C τ _{Rk,ucr}	[N/mm²]	10,0				
Temperature range II: 50°C/80)°C τ _{Rk,ucr}	[N/mm²]	7,5				
Influence factors ψ on bond resista	nce τ _{Rk} in ι	uncracked	concrete				
For ψ_c and ${\psi^0}_{sus}$ see Table C1							

Annex C4

No performance assessed.
In absence of national regulations.

Table C4: Essential characteristics for internally threaded sleeve HIS-(R)N under shear load in concrete

HIS-(R)N			М8	M10	M12	M16	
Steel failure without lever arm		<u> </u>					
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$V^0_{Rk,s}$	[kN]	13	23	34	63	
Partial factor	$\gamma_{Ms,V}^{1)}$	[-]	1,25				
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	
Partial factor	$\gamma_{Ms,V}^{1)}$	[-]	1,56				
Ductility factor	k ₇	[-]	1,0				
Steel failure with lever arm							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	${\sf M^0}_{\sf Rk,s}$	[Nm]	30	60	105	266	
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	
Ductility factor	k ₇	[-]		1	,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]	2,0				
Concrete edge failure							
Effective length of fastener	I _f	[mm]	90	110	125	170	
Outside diameter of fastener	d _{nom}	[mm]	12,5	16,5	20,5	25,4	

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 170	
Performance Essential characteristics under shear load in concrete - HIS-(R)N	Annex C5

Table C5: Essential characteristics for rebar under tension load in concrete

Rebar			ф8	ф 10	φ 12	ф 13	φ 14	ф 16	ф 18	ф 20	ф 22	ф 24	ф 25
Installation factor for installation	n in d	ry or w	vet (wa	iter sa	aturate	ed) co	ncrete)					
Hammer drilling	γinst	[-]	1,0										
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]						1,0					
Steel failure													
Characteristic resistance	$N_{\text{Rk},s}$	[kN]					ŀ	$\lambda_{s} \cdot f_{uk}$	1)				
Characteristic resistance Rebar B500B acc. to DIN 488-1	$N_{\text{Rk,s}}$	[kN]	27,1	42,4	61,1	71,7	83,1	108,6	137,4	169,6	205,3	244,3	265,1
Partial factor	γ _{Ms,N} ²) [-]			•			1,4					
Concrete cone failure													
Factor for uncracked concrete	k _{ucr,N}	[-]						11,0					
Edge distance	$C_{cr,N}$	[mm]						1,5 · h	ef				
Spacing	S _{cr,N}	[mm]		3,0 ⋅ h _{ef}									
Splitting failure relevant for u	ncrac	ked co	ncret	е									
Edge distance c _{cr,sp} [mm] for h /	h _{ef} ≥2	2,0	1	∣,0·h _{ef}			h/ 2 1		1,0·h _{ef}	2,26	c _{cr}	,sp	
2,0 >	h / h _{ef}	> 1,3	4,6·ł	n _{ef} - 1	,8∙h								
h /	h _{ef} ≤ 1	1,3	2	,26∙h _∈	ef								
Spacing	S _{cr,sp}	[mm]						2 c _{cr,s}	р				
Combined pull-out and concr	ete co	ne fai	lure										
Characteristic bond resistance i concrete, all drilling methods (H			concre	ete C	20/25	for ins	stallati	on in	dry or	wet (\	water	satura	ited)
Temp. range I: 24°C/40°C τ _R	_{k,ucr} [N	/mm²]						10,0					
Temp. range II: 50°C/80°C τ _R	_{k,ucr} [N	[N/mm²] 7,0											
Influence factors ψ on bond re	esista	nce τ _г	_{Rk} in ur	ncrac	ked co	oncre	te						
For ψ_c and ψ^0_{sus} see Table C1													

¹⁾ f_{uk} according to rebar specification.

Injection System Hilti HIT-HY 170	
Performance Essential characteristics under tension load in concrete - rebars	Annex C6

²⁾ In absence of national regulations.

Table C6: Essential characteristics for rebar under shear load in concrete

Rebar			ф8	ф 10	φ 12	ф 13	ф 14	ф 16	ф 18	ф 20	ф 22	ф 24	ф 25
Steel failure without lever arm			•		•		•	•	•	•	•	•	•
Characteristic resistance	$V^0_{Rk,s}$	[kN]					0,5	· A _s ·	f _{uk} 1)				
Characteristic resistance Rebar B500B acc. to DIN 488-1	$V^0_{Rk,s}$	[kN]	13,6	21,2	30,5	35,8	41,6	54,3	68,7	84,8	102,6	122,1	132,5
Partial factor	γ _{Ms,V} 2)	[-]						1,5					
Ductility factor	k ₇	[-]						1,0					
Steel failure with lever arm													
Characteristic resistance	$M^0_{Rk,s}$	[Nm]					1,2	· W _{el} ·	f _{uk} 1)				
Characteristic resistance Rebar B500B acc. to DIN 488-1	${\rm M^0}_{\rm Rk,s}$	[Nm]	32,6	63,6	109,9	139,8	174,6	260,6	371,0	508,9	677,4	879,4	994,0
Ductility factor	k ₇	[-]						1,0					
Concrete pry-out failure													
Pry-out factor	k ₈	[-]						2,0					
Concrete edge failure													
Effective length of fastener	l _f	[mm]				mi	n (h _{ef} ;	12 · c	I _{nom})				3)
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	13	14	16	18	20	22	24	25

Annex C7

 f_{uk} according to rebar specification. In absence of national regulations. min $(h_{nom}; max(\ 8 \cdot d_{nom}; 300))$

Table C7: Displacement under tension load

Threaded rod according to Annex	М8	M10	M12	M16	M20	M24		
Uncracked concrete								
Displacement	δ_{N0}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,09
Cracked concrete								
Displacement	δ_{N0}	[mm/(N/mm²)]	1)	0,07	0,07	0,06	0,06	0,06
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	1)	0,11	0,11	0,11	0,15	0,17

¹⁾ No performance assessed

Table C8: Displacement under shear load

Threaded rod according to Annex A	М8	M10	M12	M16	M20	M24		
Displacement	δ_{V0}	[mm/(N/mm²)]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δ_{V^∞}	[mm/(N/mm²)]	0,09	0,08	0,08	0,06	0,06	0,05

Table C9: Displacement under tension load

HIS-(R)N			М8	M10	M12	M16
Uncracked conc	rete					
Displacement	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,06	0,07	0,08	0,09
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,07	0,08	0,09

Table C10: Displacement under shear load

HIS-(R)N			M8	M10	M12	M16
Displacement	δ_{V0}	[mm/(N/mm²)]	0,10	0,10	0,10	0,10
Displacement	$\delta_{V^{\infty}}$	[mm/(N/mm²)]	0,15	0,15	0,15	0,15

Injection System Hilti HIT-HY 170

Performance
Displacements

Annex C8

Table C11: Displacements under tension load

Rebar			ф8	ф 10	ф 12	ф 13	ф 14	ф 16	ф 18	ф 20	ф 22	ф 24	ф 25
Uncracked concrete temperature range I: 24°C / 40°C													
Dianlacement	δ_{N0}	[mm/(N/mm²)]	0,12	0,12	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,14	0,14
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,12	0,12	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,14	0,14
Uncracked concrete	temp	erature range II	50°C	/ 80°C	;								
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,08	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,10	0,10
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,08	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,10	0,10

Table C12: Displacements under shear load

Rebar			ф8	ф 10	ф 12	ф 13	ф 14	ф 16	ф 18	ф 20	ф 22	ф 24	ф 25
Displacement	δ_{V0}	[mm/kN]	0,06	0,05	0,05	0,05	0,04	0,04	0,04	0,04	0,04	0,03	0,03
Displacement -	δ_{V^∞}	[mm/kN]	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,05

Injection System Hilti HIT-HY 170

Performance
Displacements

Annex C9

Essential characteristics under seismic loading

Table C13: Essential characteristics for threaded rods according to Annex A under tension loads for seismic performance category C2

Threaded rod according to Annex A	M12	M16		
Steel failure				
HAS 8.8 (HDG), HAS-U 8.8 (HDG), AM 8.8 (HDG), Threaded rod 8.8	$N_{Rk,s,C2}$	[kN]	N _F	Rk,s
Combined pullout and concrete cone failure				
Temperature range I: 24 °C / 40 °C	τ _{Rk,C2}	[N/mm ²]	2,0	1,9
Temperature range II: 50 °C / 80 °C	τ _{Rk,C2}	[N/mm ²]	1,4	1,3

Table C14: Essential characteristics for threaded rods according to Annex A under shear loads for seismic performance category C2

Threaded rod according to Annex A			M12	M16	
Steel failure without lever arm with Hilti Filling Set					
HAS 8.8, HAS-U 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	28	46	
Steel failure without lever arm without Hilti Filling Set					
HAS 8.8, HAS-U 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	24	40	
HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG	$V_{Rk,s,C2}$	[kN]	18	30	
Threaded rod, electroplated zinc coated 8.8	$V_{Rk,s,C2}$	[kN]	17	28	
Threaded rod, hot dip galvanized 8.8	$V_{Rk,s,C2}$	[kN]	13	21	

Injection System Hilti HIT-HY 170	
Performance Essential characteristics under tension and shear load for seismic performance category C2	Annex C10

Table C15: Displacements under tension load for seismic performance category C2

Threaded rod according to Annex A			M12	M16
Displacement DLS	$\delta_{\text{N,C2(50\%)}}$	[mm]	0,2	0,2
Displacement ULS	$\delta_{\text{N,C2(100\%)}}$	[mm]	0,6	0,4

Table C16: Displacements under shear load for seismic performance category C2

Threaded rod according to Annex A			M12	M16
Installation with Hilti Filling Set		'		
Displacement DLS	δ _{V,C2(50%)}	[mm]	1,6	1,2
Displacement ULS	δ _{V,C2(100%)}	[mm]	4,5	3,2
Installation without Hilti Filling Set				
Displacement DLS: HAS 8.8, HAS-U 8.8, AM 8.8, Threaded rods 8.8	δ _{V,C2(50%)}	[mm]	2,9	3,2
Displacement DLS: HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG, Threaded rods 8.8 hot dip galvanized	δ _{V,C2(50%)}	[mm]	2,2	2,3
Displacement ULS: HAS 8.8, HAS-U 8.8, AM 8.8, Threaded rods 8.8	δ _{V,C2(100%)}	[mm]	5,4	9,2
Displacement ULS: HAS 8.8 HDG, HAS-U 8.8 HDG, AM 8.8 HDG, Threaded rods 8.8 hot dip galvanized	δ _{V,C2(100%)}	[mm]	4,1	4,3

Injection System Hilti HIT-HY 170	
Performance Displacements under tension and shear load for seismic performance category C2	Annex C11