

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-19/0601 vom 8. September 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

Hilti Aktiengesellschaft
Feldkircherstrasse 100
9494 SCHAAN
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

52 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-19/0601 vom 29. Januar 2024

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z207617.25 | 8.06.01-71/25

Seite 2 von 52 | 8. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 52 | 8. September 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3 ist ein Verbunddübel, der aus einem Foliengebinde mit Injektionsmörtel Hilti HIT-HY 200-A V3 oder HIT-HY 200-R V3 und einem Stahlteil gemäß Anhang A besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und / oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 bis C3, C5 bis C6, C8 bis C10, C12 bis C14, B3 bis B7
Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C4, C7, C11, C15
Verschiebungen für Kurzzeit- und Langzeiteinwirkungen	Siehe Anhang C16 bis C19
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C20 bis C24

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Performance	
Brandverhalten	Klasse A1	
Feuerwiderstand	Siehe Anhang C25 bis C28	

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 52 | 8. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

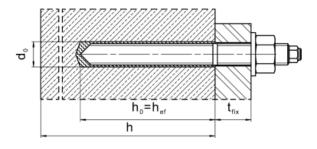
Gemäß EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG]. Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

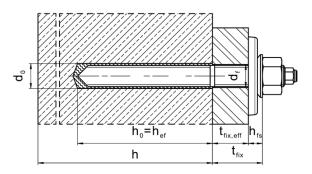
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Folgende Normen und Dokumente werden in dieser Europäischen Technischen Bewertung in Bezug genommen:

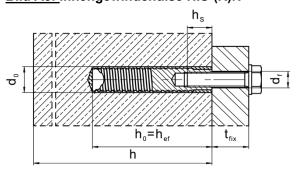
EN 1992-1-1:2004 + AC:2010	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
EN 1992-4:2018	Eurocode 2 - Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton
EN 1993-1-4:2006 + A1:2015	Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-4: Allgemeine Bemessungsregeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
EN 10088-1:2014	Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle
EN ISO 10684-:2004 + AC:2009	Verbindungselemente – Feuerverzinkung
EN 206:2013 + A2:2021	Beton - Festlegung, Eigenschaften, Herstellung und Konformität
EN 10204:2004	Metallische Erzeugnisse – Arten von Prüfbescheinigungen
DIN 488-1:2009-08	Betonstahl – Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung
EOTA TR 055	Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601, February 2018
EOTA TR 082	Design of bonded fasteners in concrete under fire conditions, June 2023


Ausgestellt in Berlin am 8. September 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Andreas Kummerow Beglaubigt
Abteilungsleiter Stiller



Einbauzustand


Bild A1: Gewindestange, HAS..., HAS-U..., HIT-V-... und AM 8.8

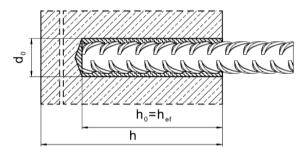

Bild A2: Gewindestange, HAS..., HAS-U..., HIT-V-... und AM 8.8 mit Hilti Verfüll-Set...

Bild A3: Innengewindehülse HIS-(R)N

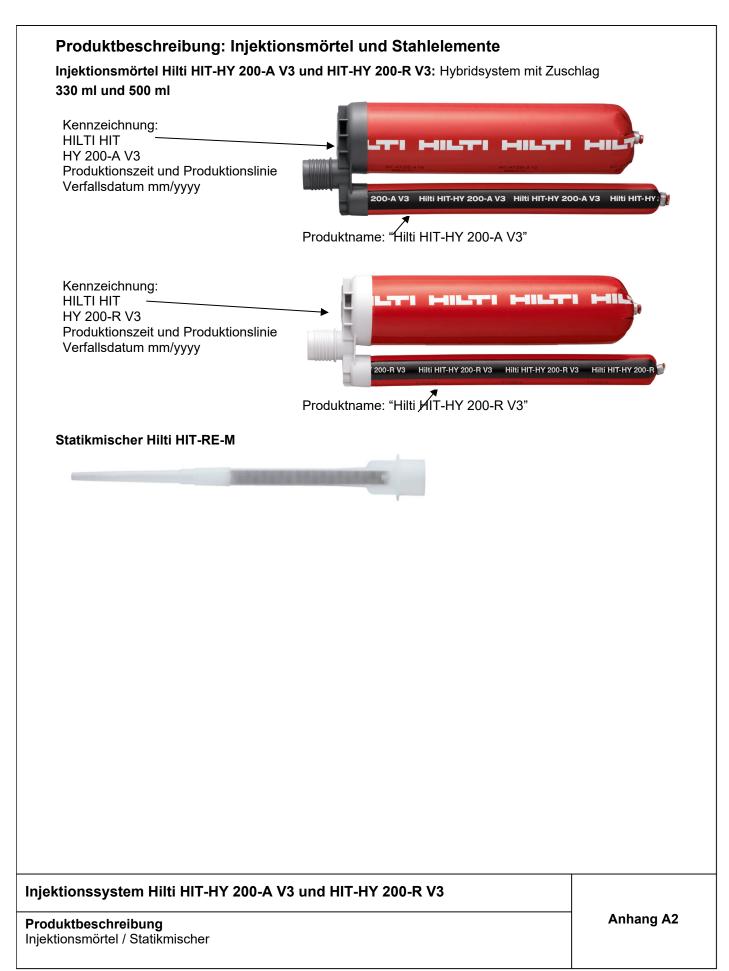
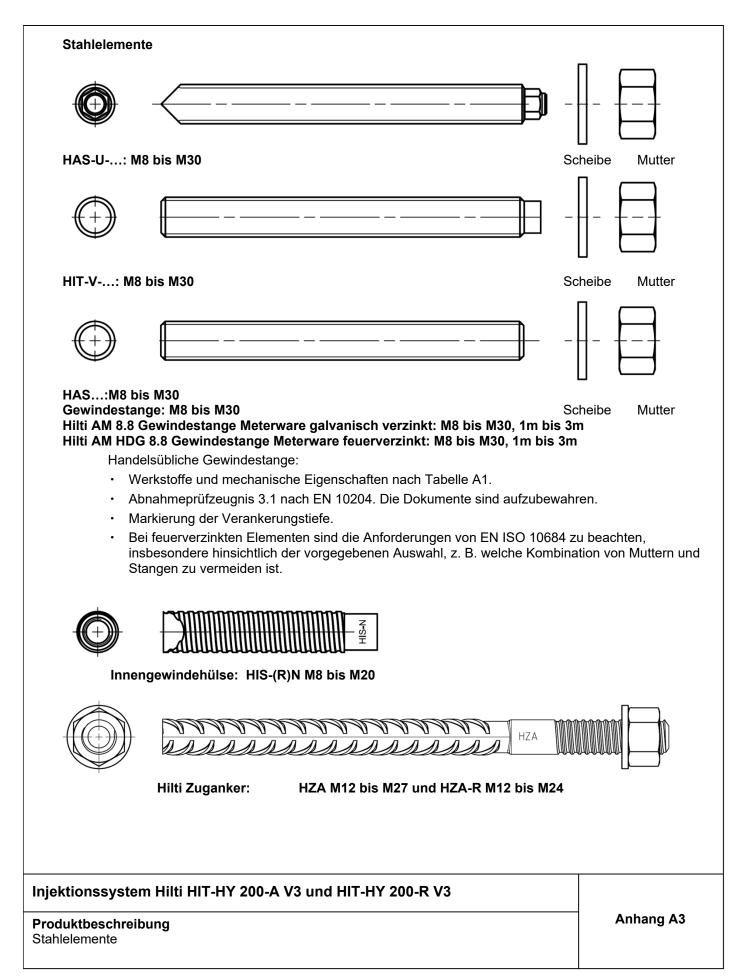
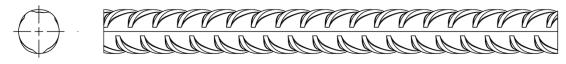
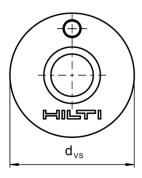


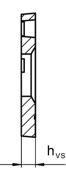
Bild A4: Betonstahl

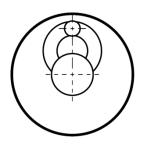


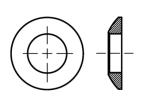
Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Produktbeschreibung Einbauzustand	Anhang A1






Betonstahl (rebar): φ 8 bis φ 32


- · Werkstoffe und mechanische Eigenschaften nach Tabelle A1
- Maße nach Anhang B6


Hilti Verfüll-Set zum Verfüllen des Ringspalts zwischen Stahlelement und Anbauteil

Verschlussscheibe

Kugelscheibe

Hilti Verfüll-Set		M10	M12	M16	M20	M24	
Durchmesser der Verschlussscheibe d _{VS} [mm]		[mm]	42	44	52	60	70
Höhe der Verschlussscheibe	h _{VS}	[mm]	5	5	6	6	6
Höhe des Verfüll-Sets	h _{fS}	[mm]	9	10	11	13	15

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Produktbeschreibung Hilti Verfüll-Set	Anhang A4

Tabelle A1: Werkstoffe

Bezeichnung	Werkstoff
Betonstahl (rebar)	
Betonstahl EN 1992-1-1, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C mit f_{yk} und k nach NDP oder NCI des EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$.
Stahlelemente aus v	verzinktem Stahl
HAS 5.8 (HDG) HAS-U-5.8 (HDG), HIT-V-5.8(F), Gewindestange 5.8	Festigkeitsklasse 5.8, f_{uk} = 500 N/mm², f_{yk} = 400 N/mm², Bruchdehnung (I_0 =5d) > 8% duktil. Galvanisch verzinkt \geq 5 μ m, (F) oder (HDG) feuerverzinkt ¹⁾ \geq 50 μ m.
Gewindestange 6.8	Festigkeitsklasse 6.8, f_{uk} = 600 N/mm², f_{yk} = 480 N/mm², Bruchdehnung (I_0 =5d) > 8% duktil. Galvanisch verzinkt \geq 5 μ m oder feuerverzinkt $^{1)} \geq$ 50 μ m.
HAS 8.8 (HDG), HAS-U 8.8 (HDG), AM 8.8 (HDG) HIT-V-8.8(F), Gewindestange 8.8	Festigkeitsklasse 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil. Galvanisch verzinkt \geq 5 μ m, (F) oder (HDG) feuerverzinkt ¹⁾ \geq 50 μ m.
Hilti Zuganker HZA	Rundstahl mit Gewinde: galvanisch verzinkt ≥ 5 μm. Betonstahl: Betonstabstahl Klasse B gemäß NDP oder NCI des EN 1992-1-1/NA.
Innengewindehülse HIS-N	Galvanisch verzinkt ≥ 5 μm.
Scheibe	Galvanisch verzinkt ≥ 5 μm, feuerverzinkt ≥ 50 μm.
Mutter	Festigkeit der Mutter abgestimmt auf die Festigkeit der Gewindestange. Galvanisch verzinkt \geq 5 μ m, (F) feuerverzinkt \geq 50 μ m.
Hilti Verfüll-Set (F)	Verschlussscheibe: Galvanisch verzinkt $\geq 5~\mu m$, (F) feuerverzinkt $\geq 45~\mu m$. Kugelscheibe: Galvanisch verzinkt $\geq 5~\mu m$, (F) feuerverzinkt $\geq 50~\mu m$. Sicherungsmutter: Galvanisch verzinkt $\geq 5~\mu m$, (F) Galvanische Zink-Nickel Beschichtung $\geq 6~\mu m$.

¹⁾ Für handelsübliche feuerverzinkte Gewindestangen und Muttern sind die Anforderungen von EN ISO 10684 zu beachten.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Produktbeschreibung Werkstoffe	Anhang A5

Tabelle A1: fortgesetzt

Ctablelements are	
	nichtrostendem Stahl ändigkeitsklasse (CRC) II gemäß EN 1993-1-4
Gewindestange	Für \leq M24: Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm²; Für $>$ M24: Festigkeitsklasse 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm²; Bruchdehnung (I_0 =5d) $>$ 12% duktil. Nichtrostender Stahl 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1
Scheibe	Nichtrostender Stahl 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1
Mutter	Für ≤ M24: Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm², Für > M24: Festigkeitsklasse 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm², Nichtrostender Stahl 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1
	nichtrostendem Stahl ändigkeitsklasse (CRC) III gemäß EN 1993-1-4
HAS A4, HAS-U A4, HIT-V-R	Für \leq M24: Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm², Für $>$ M24: Festigkeitsklasse 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm², Bruchdehnung (I_0 =5d) $>$ 12% duktil.
Gewindestange	Für ≤ M24: Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm²; Für > M24: Festigkeitsklasse 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm²; Bruchdehnung (I_0 =5d) > 12% duktil. Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1
Hilti Zuganker HZA-R	Rundstahl mit Gewinde: Nichtrostender Stahl 1.4404, 1.4362, 1.4571 EN 10088-1 Betonstahl: Betonstabstahl Klasse B gemäß NDP oder NCI des EN 1992-1-1/NA.
Innengewindehülse HIS-RN	Nichtrostender Stahl 1.4401, 1.4571 EN 10088-1
Scheibe	Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1
Mutter	Für ≤ M24: Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm², Für > M24: Festigkeitsklasse 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm², Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1
Hilti Verfüll-Set A4	Verschlussscheibe: Nichtrostender Stahl gemäß EN 10088-1 Kugelscheibe: Nichtrostender Stahl gemäß EN 10088-1 Sicherungsmutter: Nichtrostender Stahl gemäß EN 10088-1
	nochkorrosionsbeständigem Stahl ändigkeitsklasse (CRC) V gemäß EN 1993-1-4
HAS-U HCR, HIT-V-HCR	Für ≤ M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Für > M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil.
Gewindestange	Für ≤ M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Für > M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Bruchdehnung (I_0 =5d) > 12% duktil Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1
Scheibe	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1
Mutter	Für ≤ M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Für > M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Produktbeschreibung Werkstoffe	Anhang A6

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- · Statische und quasi-statische Belastung.
- Seismische Leistungskategorie C1 und C2 (siehe Tabelle B1).
- Brandbeanspruchung: Gewindestange Größe M8 bis M30

Verankerungsgrund:

- · Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206.
- Festigkeitsklassen C20/25 bis C50/60 nach EN 206.
- · Gerissener und ungerissener Beton.

Temperatur im Verankerungsgrund:

- Beim Einbau
 - -10 °C bis +40 °C für die übliche Temperaturveränderung nach dem Einbau
- Im Nutzungszustand

Temperaturbereich I: -40 °C bis +40 °C

(max. Langzeittemperatur +24 °C und max. Kurzzeittemperatur +40 °C)

Temperaturbereich II: -40 °C bis +80 °C

(max. Langzeittemperatur +50 °C und max. Kurzzeittemperatur +80 °C)

Temperaturbereich III: -40 °C bis +120 °C

(max. Langzeittemperatur +72 °C und max. Kurzzeittemperatur +120 °C)

Tabelle B1: Spezifikationen des Verwendungszweckes

	HIT-HY 200-A V3 und HIT-HY 200-R V3 mit					
Stahlelemente	Gewindestangen entsprechend Anhang A	Betonstahl	HZA(-R)	HIS-(R)N		
Hammerbohren mit Hohlbohrer TE-CD oder TE- YD	√	✓	√	✓		
Hammerbohren	✓	✓	✓	✓		
Diamantbohren mit Aufrauwerkzeug TE-YRT	✓	✓	✓	✓		
Installation in wassergefülltem Bohrloch	✓	✓	✓	_1)		
Statische und quasistatische Belastung in ungerissenem Beton	M8 bis M30	φ 8 bis φ 32	M12 bis M27	M8 bis M20		
Statische und quasistatische Belastung in gerissenem Beton	M8 bis M30	φ 10 bis φ 32	M12 bis M27	M8 bis M20		
Seismische Leistungskategorie C1	M10 bis M30	φ 10 bis φ 32	M12 bis M27	_1)		
Seismische Leistungskategorie C2	M12 bis M24,	_1)	_1)	_1)		
Nutzungsdauer 50 oder 100 Jahre	50 und 100	50 und 100	50 und 100	50		
Brandbeanspruchung	✓	✓	_1)	_1)		

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Spezifizierung	Anhang B1

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (alle Stahlsorten).
- Für alle anderen Bedingungen entsprechend EN 1993-1-4
 Korrosionsbeständigkeitsklasse nach Tabelle A1 (nichtrostende Stähle).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Befestigungselements (z.B. Lage des Befestigungselements zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4 und EOTA Technical Report TR 055.
- Bemessung unter Brandbeanspruchung in Übereinstimmung mit: EOTA Technical Report TR 082

Einbau:

- Nutzungskategorie I1: Montage und Verwendung in trocknem oder feuchtem Beton (nicht in mit Wasser gefüllten Bohrlöchern) für alle Bohrverfahren.
- Nutzungskategorie I2: Montage im wassergefüllten Bohrloche (kein Meerwasser) und Verwendung in trockenem oder feuchtem Beton für Hammerbohren und Hammerbohren mit Hilti Hohlbohrer TE-CD, TE-YD
- · Bohrverfahren:
 - Hammerbohren,
 - · Hammerbohren mit Hilti Hohlbohrer TE-CD, TE-YD,
 - · Diamantbohren mit nachfolgendem Aufrauen mit Hilti Aufrauwerkzeug TE-YRT.
- Montagerichtung D3: vertikal nach unten, horizontal und vertikal nach oben (z.B. Überkopf) für alle Elemente zulässig.
- Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Spezifizierung	Anhang B2



Tabelle B2: Montagekennwerte Gewindestangen entsprechend Anhang A

Gewindestangen ents		M8	M10	M12	M16	M20	M24	M27	M30		
Elementdurchmesser	d	[mm]	8	10	12	16	20	24	27	30	
Bohrernenndurchmess	er	d ₀	[mm]	10	12	14	18	22	28	30	35
Wirksame Verankerung Bohrlochtiefe	$h_{ef} = h_0$	[mm]	60 bis 160	60 bis 200	70 bis 240	80 bis 320	90 bis 400	96 bis 480	108 bis 540	120 bis 600	
Maximaler Durchmesser des	Vorsteck- montage	d _f	[mm]	9	12	14	18	22	26	30	33
Durchgangslochs im Anbauteil	Durchsteck- montage 1)	d _f	[mm]	11	14	16	20 2)	24 ²⁾	30 ²⁾	32 ²⁾	37 ²⁾
Höhe des Verfüll-Sets		h _{fs}	[mm]	-	9	10	11	13	15	-	-
Effektive Anbauteildick Verfüll-Set	e mit Hilti	t _{fix,eff}	[mm]	$t_{\text{fix,eff}} = t_{\text{fix}} - h_{\text{fs}}$							
Minimale Bauteildicke	h _{min}	[mm]	2	h_{ef} + 30 h_{ef} + 2·d ₀							
Maximales Anzugsdreh	max T _{inst}	[Nm]	10	20	40	80	150	200	270	300	
Minimaler Achsabstand s _{min} [r			[mm]	40	50	60	75	90	115	120	140
Minimaler Randabstan	d	C _{min}	[mm]	40	45	45	50	55	60	75	80

¹⁾ Für querkraftbelastete Dübel sind die Bestimmungen der EN 1992-4, §6.2.2 zu beachten.

²⁾ Wird kein Hilti Verfüll-Set verwendet, ist eine zweite Unterlegscheibe (identisch mit der angegebenen) erforderlich.

Hilti Gewindestange Meterware AM (HDG) 8.8

Kennzeichnung:

Festigkeitsklasse und Längenidentifikation: z. B 8L.

5 = HAS-U 5.8, 5.8 HDG 8 = HAS-U 8.8, 8.8 HDG

1 = HAS-U A4 2 = HAS-U HCR

HIT-V Kennzeichnung:

5.8-I = HIT-V-5.8 M...xI 5.8F-I = HIT-V-5.8F M...xI 8.8-I = HIT-V-8.8 M...xI 8.8F-I = HIT-V-8.8F M...xI R-I = HIT-V-R M...xI HCR-I = HIT-V-HCR M...xI

HAS, AM Kennzeichnung - Alternativen:

Farbkennzeichnung

5.8 = RAL 5010 (blau) 8.8 = RAL 1023 (gelb) A4 = RAL 3000 (rot)

Farbkennzeichnung

Festigkeitsklasse und Längenidentifikation (siehe HAS-U)

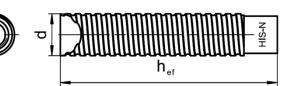
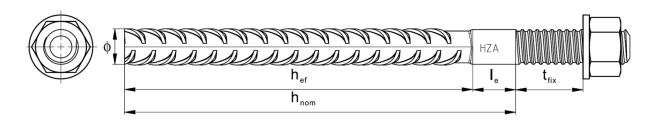

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Montagekennwerte für Gewindestange, HAS-U, HIT-V und AM 8.8	Anhang B3

Tabelle B3: Montagekennwerte Innengewindehülse HIS-(R)N

Innengewindehülse HIS-(R)N			М8	M10	M12	M16	M20
Außendurchmesser Hülse	12,5	16,5	20,5	25,4	27,6		
Bohrernenndurchmesser	d ₀	[mm]	14	18	22	28	32
Wirksame Verankerungstiefe und Bohrlochtiefe	$h_{ef} = h_0$	[mm]	90	110	125	170	205
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d_{f}	[mm]	9	12	14	18	22
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230	270
Maximales Anzugsdrehmoment	max T _{ins}	t [Nm]	10	20	40	80	150
Einschraubtiefe min-max	h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Minimaler Achsabstand	S _{min}	[mm]	60	75	90	115	130
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	90

Innengewindehülse HIS-(R)N...

Kennzeichnung:


Identifizierung - HILTI und Prägung "HIS-N" (für C-Stahl) Prägung "HIS-RN" (für rostfreien Stahl)

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck	Anhang B4
Montagekennwerte für Innengewindehülse HIS-(R)N	

Tabelle B4: Montagekennwerte Hilti Zuganker HZA und HZA-R

Hilti Zuganker HZA			M12	M16	M20	M24	M27
Hilti Zuganker HZA-R			M12	M16	M20	M24	-
Betonstahl Durchmesser	ф	[mm]	12	16	20	25	28
Nominelle Einbindetiefe und Bohrlochtiefe HZA	$h_{nom} = h_0$	[mm]	90 bis 240	100 bis 320	110 bis 400	120 bis 500	140 bis 560
Nominelle Einbindetiefe und Bohrlochtiefe HZA-R	$h_{nom} = h_0$	[mm]	170 bis 240	180 bis 320	190 bis 400	200 bis 500	-
Wirksame Verankerungstiefe ($h_{ef} = h_{nom} - I_{e}$) HZA	h _{ef}	[mm]		ł	n _{nom} – 20)	
Wirksame Verankerungstiefe ($h_{ef} = h_{nom} - I_{e}$) HZA-R	h _{ef}	[mm]		h	_{nom} – 10	0	
Länge des glatten Schaftes HZA	l _e	[mm]			20		
Länge des glatten Schaftes HZA-R	l _e	[mm]			100		
Bohrernenndurchmesser	d_0	[mm]	16	20	25	32	35
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	14	18	22	26	30
Höhe des Verfüll-Sets	h _{fS}	[mm]	10	11	13	15	-
Effektive Anbauteildicke mit Hilti Verfüll-Set	$t_{fix,eff}$	[mm]	$t_{fix,eff} = t_{fix} - h_{fs}$				
Maximales Anzugsdrehmoment	max T _{inst}	[Nm]	40	80	150	200	270
Minimale Bauteildicke	h _{min}	[mm]	h _{nom} + 2·d ₀				
Minimaler Achsabstand	S _{min}	[mm]	65	80	100	130	140
Minimaler Randabstand	C _{min}	[mm]	45	50	55	60	75

Kennzeichnung:

Prägung "HZA(-R)" M .. / t_{fix}

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Montagekennwerte für Hilti Zuganker HZA und HZA-R	Anhang B5

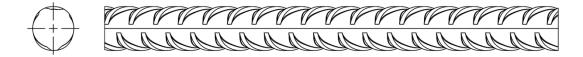


Tabelle B5: Montagekennwerte Betonstahl

Betonstahl (rebar)				ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Durchmesser	ф	[mm]	8	10	1	12		16	20	25	26	28	30	32
Wirksame Verankerungstiefe und Bohrlochtiefe	$h_{ef} = h_0$	[mm]	60 bis 160	60 bis 200	70 bis 240		75 bis 280	80 bis 320	90 bis 400	100 bis 500	104 bis 520	112 bis 560	120 bis 600	128 bis 640
Nenndurchmesser des Bohrer	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40
Minimale Bauteildicke	h _{min}	[mm]		_{ef} + 30		h _{ef} + 2·d ₀								
Minimaler Achsabstand	S _{min}	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimaler Randabstand	C _{min}	[mm]	40	45	4	5	50	50	65	70	75	75	80	80

¹⁾ Beide angegebenen Durchmesser können verwendet werden.

Betonstahl

Für Betonstahl

- Mindestwerte der bezogenen Rippenfläche f_{R,min} nach EN 1992-1-1
- Die Rippenhöhe des Betonstahls h_{rib} soll im folgenden Bereich liegen 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Nomineller Durchmesser des Betonstahls; h_{rib}: Rippenhöhe des Betonstahls)

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Montagekennwerte Betonstahl	Anhang B6

Tabelle B6: Maximale Verarbeitungszeit und min. Aushärtezeit

			HIT-HY 2	00-A V3	HIT-HY 200-R V3			
Temperatur im Verankerungsgrund T ¹⁾		Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}			
-10 °C	bis	-5 °C	1,5 h	7 h	3 h	20 h		
> -5 °C	bis	0 °C	50 min	4 h	1,5 h	8 h		
> 0 °C	bis	5 °C	25 min	2 h	45 min	4 h		
>5 °C	bis	10 °C	15 min	75 min	30 min	2,5 h		
>10 °C	bis	20 °C	7 min	45 min	15 min	1,5 h		
>20 °C	bis	30 °C	4 min	30 min	9 min	1 h		
>30 °C	bis	40 °C	3 min	30 min	6 min	1 h		

 $^{^{1)}~}$ Die Temperatur des Foliengebindes darf 0 $^{\circ}\mathrm{C}$ nicht unterschreiten.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Maximale Verarbeitungszeit und minimale Aushärtezeit	Anhang B7

Tabelle B7: Angaben zu Bohr-, Reinigungs- und Setzwerkzeugen

Stahlelemente					Bohren und Reinigen						
Gewinde- stangen (Anhang A)	HIS-(R)N	Beton- stahl	HZA(-R)	Hamme	rbohren Hohl- bohrer ¹⁾	Diama	ntbohren Aufrau- werkzeug	Bürste	Stau- zapfen		
	¥ ¥	4444444444444	2222222222			€ 👂 🗲		************			
Größe	Größe	Größe	Größe	d ₀ [mm]	d ₀ [mm]	d ₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ		
M8	-	φ8	-	10	-	-	-	10	-		
M10	-	φ8 / φ10	-	12	12	-	-	12	12		
M12	M8	φ10 / φ12	-	14	14	-	-	14	14		
-	-	φ12	M12	16	16	-	-	16	16		
M16	M10	φ14	-	18	18	18	18	18	18		
-	-	φ16	M16	20	20	20	20	20	20		
M20	M12	-	-	22	22	22	22	22	22		
-	-	φ20	M20	25	25	25	25	25	25		
M24	M16	-	-	28	28	28	28	28	28		
M27	-	-	-	30	30	30	30	30	30		
-	M20	φ25 / φ26	M24	32	32	32	32	32	32		
M30	-	ф28	M27	35	35	35	35	35	35		
-	-	φ30	-	37	372)	-	-	37	37		
-	-	ф32	-	40	402)	-	-	40	40		

Mit Staubsauger Hilti VC 4X/10/20/40/60 (automatische Filterreinigung aktiviert, ECO-Modus aus) oder einem Staubsauger, der in Kombination mit den spezifizierten Hilti Hohlbohrern TE-CD oder TE-YD eine gleichwertige Reinigungsleistung liefert.

Reinigungsalternativen.

Handreinigung (MC):

Hilti-Handausblaspumpe zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 20$ mm und einer Bohrlochtiefe von $h_0 \le 10$ ·d.

Druckluftreinigung (CAC):

Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm zum Ausblasen mit Druckluft.

Automatische Reinigung (AC):

Die Reinigung wird während dem Bohren mit dem Hilti TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Verwendungszweck

Angaben zu Bohr-, Reinigungs- und Setzwerkzeugen Reinigungsalternativen

Anhang B8

²⁾ Für Hilti Hohlbohrer TE-YD ab Größe 37 muss der Staubsauger Hilti VC 60X (automatische Filterreinigung aktiviert) oder ein Staubsauger mit gleichwertiger Reinigungsleistung in Kombination mit dem angegebenen Hilti Hohlbohrer TE-YD verwendet werden.

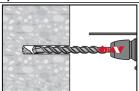
Tabelle B8: Hilti Aufrauwerkzeug TE-YRT - Angaben zur Verwendung

	Zugehörige Komponenten										
Diama	ntbohren	Aufrauwerkzeug TE-YRT Abnu									
2											
d_0	[mm]	d ₀ [mm]	Größe								
Nominal	Gemessen	ա ₀ լուույ	Große								
18	17,9 bis 18,2	18	18								
20	19,9 bis 20,2	20	20								
22	21,9 bis 22,2	22	22								
25	24,9 bis 25,2	25	25								
28	27,9 bis 28,2	28	28								
30	29,9 bis 30,2	30	30								
32	31,9 bis 32,2	32	32								
35	34,9 bis 35,2	35	35								

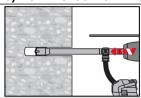
Tabelle B9: Hilti Aufrauwerkzeug TE-YRT - Aufrau- und Ausblaszeiten

h _{ef}	Aufrauzeit t _{roughen}	Minimale Ausblaszeit t _{blowing}
[mm]	[sec]	[sec]
0 bis 100	10	30
101 bis 200	20	40
201 bis 300	30	50
301 bis 400	40	60
401 bis 500	50	70
501 bis 600	60	80
> 600	t _{roughen} [sec] = h _{ef} [mm] / 10	$t_{blowing}$ [sec] = $t_{roughen}$ [sec] + 20

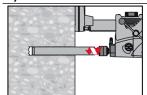
Hilti Aufrauwerkzeug TE-YRT und Abnutzungslehre RTG


Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Verwendungszweck Angaben zum Hilti Aufrauwerkzeug TE-YRT	Anhang B9

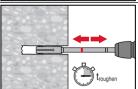
Montageanweisung


Bohrlocherstellung

a) Hammerbohren


Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.

b) Hammerbohren mit Hilti Hohlbohrer

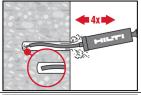

Die Bohrlocherstellung bis zur erforderlichen Setztiefe erfolgt drehschlagend mit einem Hilti Hohlbohrer TE-CD oder TE-YD mit angeschlossenem Staubsauger gemäß den Anforderungen nach Tabelle B7. Dieses Bohrsystem beseitigt bei Anwendung gemäß der Gebrauchsanweisung des Hohlbohrers das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs. Nach Beendigung des Bohrens kann mit der Mörtelverfüllung gemäß Montageanweisung begonnen werden.

c) Diamantbohren mit nachfolgendem Aufrauen mit Hilti Aufrauwerkzeug TE-YRT:

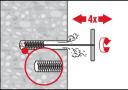
Diamantbohren ist zulässig, wenn geeignete Diamantbohrmaschinen und zugehörige Bohrkronen verwendet werden.

Kennwerte zur Verwendung in Kombination mit dem Hilti Aufrauwerkzeug TE-YRT siehe Tabelle B8.

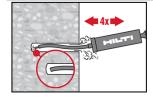
Vor dem Aufrauen muss das Wasser aus dem Bohrloch entfernt werden. Verwendbarkeit des Aufrauwerkzeugs mit der Abnutzungslehre RTG prüfen. Das Bohrloch über die gesamte Bohrtiefe bis zur geforderten Verankerungstiefe h_{ef} aufrauen. Aufrauzeit t_{roughen} siehe Tabelle B9.


Bohrlochreinigung

Unmittelbar vor der Injektion des Mörtels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein.


Schlechte Bohrlochreinigung = geringe Traglasten.

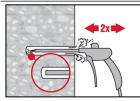
Handreinigung (MC)


Ungerissener Beton. Bohrlochdurchmesser $d_0 \le 20$ mm und Bohrlochtiefen $h_0 \le 10 \cdot d$.

Für Bohrlochdurchmesser $d_0 \le 20$ mm und Bohrlochtiefen $h_0 \le 10 \cdot d$. Das Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

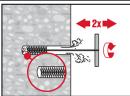
4-mal mit Stahlbürste in passender Größe (siehe Tabelle B7) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

Bohrloch erneut mit der Hilti Handausblaspumpe vom Bohrlochgrund mindestens 4-mal ausblasen, bis die rückströmende Luft staubfrei ist.


Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Verwendungszweck Montageanweisung

Anhang B10

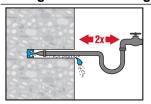


Druckluftreinigung (CAC) für alle Bohrlochdurchmesser do und Bohrlochtiefen ho.

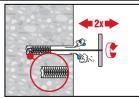


Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.

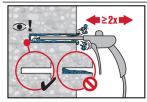
Für Bohrlochdurchmesser ≥ 32 mm muss der Kompressor mindestens 140 m³/h Luftstrom haben.



2-mal mit Stahlbürste in passender Größe (siehe Tabelle B7) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten Ø ≥ Bohrloch Ø) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.



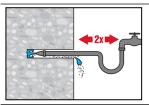
Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei ist.


Reinigen von diamantgebohrten Löchern, die mit dem Hilti Aufrauwerkzeug TE-YRT aufgeraut wurden.

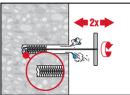
Das Bohrloch 2-mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt.

2-mal mit Stahlbürste in passender Größe (siehe Tabelle B7) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

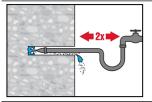
Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei und das Bohrloch trocken ist. Vor dem Verfüllen mit Mörtel das Wasser vollständig aus dem Bohrloch entfernen bis das Bohrloch vollständig trocken ist (tblowing siehe Tabelle B9). Für Bohrlochdurchmesser ≥ 32 mm muss der Kompressor mindestens 140 m³/h Luftstrom haben.

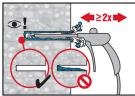

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Verwendungszweck Montageanweisung **Anhang B11**

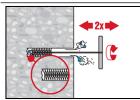


Reinigung und Wasser entfernen von wassergefüllten Bohrlöchern, die mittels Hammerbohren und Hammerbohren mit Hilti Hohlbohrer erstellt wurden:

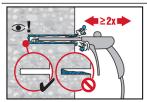

Für alle Bohrlochdurchmesser do und alle Bohrlochtiefen ho


Das Bohrloch 2-mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt

2-mal mit Stahlbürste in passender Größe (siehe Tabelle B7) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.



Das Bohrloch 2-mal mittels Wasser mit einem Schlauch vom Bohrlochgrund spülen, bis klares Wasser aus dem Bohrloch austritt. Normaler Wasserleitungsdruck genügt



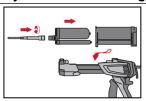
Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.

Für Bohrlochdurchmesser ≥ 32 mm muss der Kompressor mindestens 140 m³/h Luftstrom haben.

2-mal mit Stahlbürste in passender Größe (siehe Tabelle B7) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürsten $\emptyset \ge$ Bohrloch \emptyset) - falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden

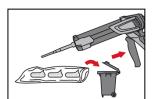
Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei ist.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3


Verwendungszweck

Montageanweisung

Anhang B12

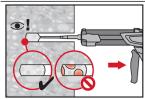

Injektionsvorbereitung

Hilti Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern.

Befolgen Sie die Bedienungsanleitung des Auspressgerätes.

Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion. Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

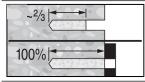
Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:


2 Hübe für 330 ml Foliengebinde,

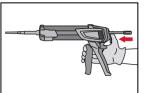
3 Hübe für 500 ml Foliengebinde,

4 Hübe für 500 ml Foliengebinde ≤ 5 °C.

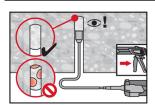
Die Temperatur des Foliengebindes darf 0 °C nicht unterschreiten.


Injektion des Mörtels vom Bohrlochgrund ohne Luftblasen zu bilden.

Injizieren des Mörtels vom Bohrlochgrund und während jedem Hub den Mischer langsam etwas herausziehen.


Das Bohrloch verfüllen. Nach dem Einsetzen des Stahlelements muss der Ringspalt vollständig mit Mörtel ausgefüllt sein.

In nassem Beton muss das Befestigungselement direkt nach dem Reinigen gesetzt werden.

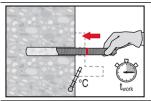


Vorsteckmontage: Das Bohrloch zu ca. 2/3 verfüllen.

Durchsteckmontage: Das Bohrloch vollständig verfüllen (100%).

Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

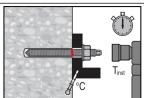
Überkopfanwendung und/oder Montage bei Verankerungstiefen von h_{ef} > 250mm. Das Injizieren des Mörtels bei Überkopfanwendung ist nur mit Hilfe von Stauzapfen und Verlängerungen möglich.


HIT-RE-M Mischer, Mischerverlängerung und entsprechenden Stauzapfen Hilti HIT-SZ (siehe Tabelle B7) zusammenfügen. Den Stauzapfen bis zum Bohrlochgrund einführen und Mörtel injizieren. Während der Injektion wird der Stauzapfen über den Staudruck vom Bohrlochgrund automatisch nach außen geschoben.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

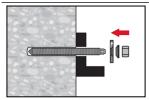
Verwendungszweck Montageanweisung **Anhang B13**

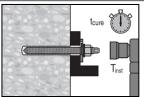
Setzen des Stahlelements


Vor der Montage sicherstellen, dass das Stahlelement trocken und frei von Öl und anderen Verunreinigungen ist.

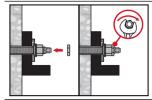
Stahlelement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit t_{work} (siehe Tabelle B6) abgelaufen ist.

Nach dem Setzen muss der Ringspalt zwischen Stahlelement und Beton (Vorsteckmontage) bzw. dem Anbauteil (Durchsteckmontage) vollständig mit Mörtel verfüllt sein.

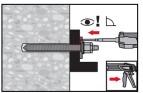

Bei Überkopfanwendung das Element in seiner endgültigen Position z.B. mittels Keilen (Hilti HIT-OHW), gegen Herausrutschen sichern.


Last bzw. Drehmoment aufbringen: Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B6) den Überschussmörtel entfernen und darauf achten, das Gewinde nicht zu beschädigen. Die Befestigung kann belastet werden.

Das aufzubringende Drehmoment darf die angegebenen Werte max T_{inst} nach Tabelle B2 bis Tabelle B4 nicht überschreiten.


Einbau des Hilti Verfüll-Sets

Verwendung des Hilti Verfüll-Sets mit Standardmutter. Korrekte Orientierung der Verschlussscheibe und der Kugelscheibe beachten.



Das aufzubringende Drehmoment darf die angegebenen Werte max T_{inst} nach Tabelle B2 bis Tabelle B4 nicht überschreiten.

Optional:

Sicherungsmutter aufdrehen und mit einer 1/4 bis 1/2 Umdrehung anziehen. (Nicht für Größe M24.)

Ringspalt zwischen Stahlelement und Anbauteil mit einem Hilti HIT-HY ... oder HIT-RE... Injektionsmörtel mit 1 bis 3 Hüben verfüllen.

Befolgen Sie die Bedienungsanleitung, des entsprechenden Mörtels, die dem Foliengebinde beigelegt ist

Nach \dot{A} blauf der erforderlichen Aushärtezeit t_{cure} kann der die Befestigung belastet werden.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Verwendungszweck Montageanweisung

Anhang B14

Wesentliche Merkmale unter statischer und quasi-statischer Beanspruchung

Tabelle C1: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Zugbeanspruchung in Beton

Gewindestangen gemäß	Anhang A			M8	M10	M12	M16	M20	M24	M27	M30	
Für eine Nutzungsdauer	von 50 und 100	Jahren				•		•	•	•		
Montagebeiwert für Monta	age in trockenem	und fe	uchtem	(was	sserge	esättio	gt) Beto	on				
Hammerbohren (HD)		γinst	[-]	1,0								
Hammerbohren mit Hilti Ho oder TE-YD (HDB)	ohlbohrer TE-CD	γ _{inst}	[-]	1)				1,0				
Diamantbohren mit aufrau Aufrauwerkzeug TE-YRT (γ _{inst}	[-]		1)				1,0			
Montagebeiwert für Monta	age in wasserget	füllte Bo	hrlösch	ner (k	ein M	eerwa	asser)					
Hammerbohren (HD)		γinst	[-]					1,4				
Hammerbohren mit Hilti Ho oder TE-YD (HDB)	ohlbohrer TE-CD	γinst	[-]	1)				1,4				
Stahlversagen												
Charakteristischer Widerst handelsübliche Gewindest 8.8, CRC II, III, V		$N_{Rk,s}$	[kN]				A	$\mathbf{A_s} \cdot \mathbf{f_{uk}}$				
	5.8			18,3	29,0	42,1	78,5	122,5	176,5	229,5	280,5	
Charakteristischer	5.8 HDG/ F	_		16,6	26,8	42,1	78,5	122,5	176,5	229,5	280,5	
Widerstand	8.8	_ NI	[LA]]	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8	
HAS, HAS-U, AM, HIT-V	8.8 HDG/ F	$-N_{Rk,s}$	[kN]	26,5	42,9	67,4	125,6	196,0	282,4	367,2	448,8	
	A4 (70 - 50)	_	_		25,6	40,6	59,0	109,9	171,5	247,1	229,5	280,5
	HCR (80 - 70)			29,3	46,4	67,4	125,6	196,0	247,1	321,3	392,7	
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 6.8 (Tabelle A1)	und 8.8	$\gamma_{\text{Ms},\text{N}}^{2)}$	[-]					1,5				
Teilsicherheitsbeiwert HAS HIT-V-R, Gewindestange ((Tabelle A1)	,	γ _{Ms,N} ²⁾	[-]				1,87			2,86		
Teilsicherheitsbeiwert HAS-U HCR, HIT-V-HCR, Gewindestange CRC V (Tabelle A1)			[-]	1,5 2,1								
Betonausbruch												
Faktor für ungerissenen Be	eton	k _{ucr,N}	[-]					11,0				
Faktor für gerissenen Beto	n	k _{cr,N}	[-]					7,7				
Randabstand		C _{cr,N}	[mm]				1	,5 ⋅ h _{ef}				
Achsabstand		S _{cr,N}	[mm]				3	,0 ⋅ h _{ef}				

¹⁾ Leistung nicht bewertet.

²⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C1

Tabelle	C1:	fortg	esetzt
----------------	-----	-------	--------

Gewindestange entsprechend An	hang A		M8 M10 M12 M16 M20 M24 M27						M30	
Versagen durch Spalten										
	h	/ h _{ef} ≥ 2,0	1,0 · h _{ef}							
Randabstand $c_{cr,sp}$ [mm] für	2,0 > h	ı / h _{ef} > 1,3	4,6 ·	h _{ef} - 1	,8 · h	1,3				
	h	/ h _{ef} ≤ 1,3	2	,26 · h	ef	_	1,0	h _{ef} 2,2	c,	cr,sp
Achsabstand	S _{cr,sp}	[mm]				2.0	C _{cr,sp}			
Kombiniertes Versagen durch He		n und Beto	nausb	ruch						
für eine Nutzungsdauer von 50 Ja										
Charakteristische Verbundtragfähig feuchtem (wassergesättigt) Beton, a						ontag	e in tro	ockene	m unc	l
Temperaturbereich I: 24 °C / 40 °	C $\tau_{Rk,ucr}$	[N/mm ²]					18			
Temperaturbereich II: 50 °C / 80 °	C τ _{Rk,ucr}	[N/mm ²]					15			
Temperaturbereich III: 72 °C / 120 °	C $\tau_{Rk,ucr}$	[N/mm ²]				•	13			
Charakteristische Verbundtragfähig feuchtem (wassergesättigt) Beton, a	_					tage i	n trock	enem	und	
Temperaturbereich I: 24 °C / 40 °	C $\tau_{Rk,cr}$	[N/mm ²]	7,5	9,4			9	,5		
Temperaturbereich II: 50 °C / 80 °	C $\tau_{Rk,cr}$	[N/mm ²]	6,4				8,0			
Temperaturbereich III: 72 °C / 120 °	C $\tau_{Rk,cr}$	[N/mm ²]] 5,5 6,8 6,9							
Charakteristische Verbundtragfähig Bohrloch (kein Meerwasser), HD un		erissenem B	eton (20/25	5 für M	ontag	e in wa	asserg	efüllte	m
Temperaturbereich I: 24 °C / 40 °	C $\tau_{Rk,ucr}$	[N/mm ²]	14,0	13,8	13,5	13,0	12,5	11,9	11,4	10,9
Temperaturbereich II: 50 °C / 80 °	C $\tau_{Rk,ucr}$	[N/mm ²]	11,9	11,7	11,5	11,1	10,6	10,1	9,7	9,3
Temperaturbereich III: 72 °C / 120 °	C $\tau_{Rk,ucr}$	[N/mm ²]	10,2	10,1	9,9	9,5	9,1	8,7	8,3	8,0
Charakteristische Verbundtragfähig Bohrloch (kein Meerwasser), HD un		senem Bet	on C20)/25 fü	ir Mon	tage i	n was	sergefü	ülltem	
Temperaturbereich I: 24 °C / 40 °	C $\tau_{Rk,cr}$	[N/mm ²]	6,1	7,4	7,2	6,7	6,4	6,1	6,1	6,0
Temperaturbereich II: 50 °C / 80 °	C $\tau_{Rk,cr}$	[N/mm ²]	5,2	6,3	6,1	5,7	5,5	5,2	5,2	5,1
Temperaturbereich III: 72 °C / 120 °		[N/mm ²]	4,5	5,4	5,2	4,9	4,7	4,5	4,5	4,4
Einflussfaktoren ψ auf Verbundtra	agfähigkei	t $ au_{Rk}$ in geri	ssene	m und	d unge	risseı	nem B	eton		
Einfluss der Betonfestigkeitsklasse:	$\tau_{Rk} = \tau_{Rk,(C)}$	20/25) · Ψc								
Temperaturbereich I bis III:	Ψc	[-]				(f _{ck} /	20) ^{0,1}			
Einfluss der Dauerlast										
Temperaturbereich I: 24°C/40°C	ψ^0_{sus}	[-]				0	,80			
Temperaturbereich II: 50°C/80°C	ψ^0_{sus}	[-]				0	,89			
Temperaturbereich III: 72°C/120°	$^{\circ}$ C ψ^{0}_{sus}	[-]				0	72			

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C2

Tabelle C1: fortgesetzt

Gewindestange entsp	rechend Anha	ng A		M8	M10	M12	M16	M20	M24	M27	M30
Kombiniertes Versage für eine Nutzungsdau			und Beto	nausk	ruch						
Charakteristische Verbufeuchtem (wassergesät	0 0						ontag	e in tro	ckene	em und	
Temperaturbereich I:	24 °C / 40 °C	$\tau_{\text{Rk,ucr,100}}$	[N/mm ²]				1	17			
Temperaturbereich II:	50 °C / 80 °C	$ au_{Rk,ucr,100}$	[N/mm ²]				1	14			
Temperaturbereich III: 7	72 °C / 120 °C	$ au_{ m Rk,ucr,100}$	[N/mm ²]				1	12			
Charakteristische Verbu feuchtem (wassergesät							tage ii	n trock	enem	und	
Temperaturbereich I:	24 °C / 40 °C	$\tau_{\text{Rk,cr,100}}$	[N/mm ²]	6,5	6,7			8	,1		
Temperaturbereich II:	50 °C / 80 °C	$\tau_{\text{Rk,cr,100}}$	[N/mm ²]	5,5	5,7			7	,0		
Temperaturbereich III: 7	72 °C / 120 °C	$ au_{ m Rk,cr,100}$	[N/mm ²]	5	,0			6	,0		
Charakteristische Verbu Bohrloch (kein Meerwas			ssenem B	eton (C20/25	für M	ontag	e in wa	asserg	efüllte	m
Temperaturbereich I:	24°C/40°C	$ au_{\text{Rk,ucr,100}}$	[N/mm ²]	14,0	13,8	13,5	13,0	12,5	11,9	11,4	10,9
Temperaturbereich II:	50°C/80°C	$ au_{\text{Rk,ucr,100}}$	[N/mm ²]	11,9	11,7	11,5	11,1	10,6	10,1	9,7	9,3
Temperaturbereich III:	72°C/120°C	$\tau_{\text{Rk,ucr,100}}$	[N/mm ²]	10,2	10,1	9,9	9,5	9,1	8,7	8,3	8,0
Charakteristische Verbu Bohrloch (kein Meerwas			enem Bet	on C2	0/25 fü	ir Mon	tage ii	n wass	sergefü	illtem	
Temperaturbereich I:	24°C/40°C	$\tau_{\text{Rk,cr,100}}$	[N/mm ²]	5,5	5,3	6,1	5,8	5,5	5,3	5,1	4,8
Temperaturbereich II:	50°C/80°C	$ au_{\text{Rk,cr,100}}$	[N/mm ²]	4,5	4,5	5,2	4,9	4,7	4,5	4,3	4,1
Temperaturbereich III:	72°C/120°C	$ au_{\text{Rk,cr,100}}$	[N/mm ²]	3,9	3,8	4,5	4,2	4,0	3,8	3,7	3,5
Einflussfaktoren ψ auf	f Verbundtragf	ähigkeit [,]	τ _{Rk,100} in g	erisse	nem ເ	ınd ur	geris	senem	Beto	า	
Einfluss der Betonfestig	keitsklasse: τ_{RI}	$t_k = \tau_{Rk,(C20)}$	/25) · Ψc								
Temperaturbereich I bis	s III:	ψ_{c}	[-]				(f _{ck} /2	20)0,1			
Einfluss der Dauerlast											
Temperaturbereich I:	24°C/40°C	$\psi^0_{\text{sus,100}}$	[-]				0,	85			
Temperaturbereich II:	50°C/80°C	$\psi^0_{\text{sus,100}}$	[-]				0,	95			
Temperaturbereich III:	72°C/120°C	$\psi^0_{sus,100}$	[-]				0,	80			

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C3

Tabelle C2: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Querbeanspruchung in Beton

Gewindestange entspre	chend Anhar	ıg A		M8	M10	M12	M16	M20	M24	M27	M30	
Für eine Nutzungsdauer	r von 50 und	100 Jal	nren				1					
Steel failure without lev	er arm											
Charakteristischer Widers	stand	$V^0_{Rk,s}$	[kN]				k	6 · N _{Rk,s}	i			
Faktor Festigkeitsklasse	5.8	k ₆	[-]	0,6								
Faktor Festigkeitsklasse 6	6.8 und 8.8	k ₆	[-]					0,5				
Faktor HAS A4, HAS-U A Gewindestange CRC II un A1)		k ₆	[-]					0,5				
Faktor HAS-U HCR, HIT- Gewindestange CRC V (,	k ₆	[-]					0,5				
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 6.8	, 8.8	γ _{Ms,V} 1)	[-]					1,25				
	eilsicherheitsbeiwert HAS A4, HAS-U 4, HIT-V-R, Gewindestange CRC II $\gamma_{Ms,V}^{1)}$ [-] 1,56 nd III (Tabelle A1)				2,	2,38						
Teilsicherheitsbeiwert HAS-U HCR, HIT-V-HCR Gewindestange CRC V (γ _{Ms,V} 1)	[-]	1,25 1,75									
Duktilitätsfaktor		k ₇	[-]	1,0								
Stahlversagen mit Hebe	elarm											
Charakteristischer Widers handelsübliche Gewindes 6.8, 8.8, CRC II, III, V		$M^0_{Rk,s}$	[Nm]	1,2 · W _{el} · f _{uk}								
	5.8			18,7	37,3	65,4	166,2	324,6	561,0	832,2	1124,4	
	5.8 HDG/ F	_		16,1	33,2	65,4	166,2	324,6	561,0	832,2	1124,4	
Charakteristischer	8.8	- NAO	[N.L]	29,9	59,8	104,6	265,9	519,3	897,6	1331,5	1799,0	
Widerstand	8.8 HDG/ F	− M ⁰ _{Rk,s}	[IMIII]	25,9	53,1	104,6	265,9	519,3	897,6	1331,5	1799,0	
HAS, HAS-U, AM, HIT-V	A4 (70 - 50)	_		26,2	52,3	91,5	232,6	454,4	785,4	832,2	1124,4	
	HCR (80 - 70)		29,9	59,8	104,6	265,9	519,3	785,4	1165,0	1574,1	
Duktilitätsfaktor		k ₇	[-]					1,0				
Betonausbruch auf der	lastabgewan	dten Se	eite									
Faktor		k ₈	[-]					2,0				
Betonkantenbruch												
Wirksame Länge des Befestigungselements		l _f	[mm]			min (h	_{ef} ; 12 · (i _{nom})		max(8	(h _{ef} ; · d _{nom} ; 0))	
Außendurchmesser des Befestigungselements		d _{nom}	[mm]	8	10	12	16	20	24	27	30	

¹⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton	Anhang C4

Tabelle C3: Wesentliche Merkmale für Innengewindehülse HIS-(R)N unter Zugbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M1	6	M20
Für eine Nutzungsdauer von 50 Jahr	en					•	'	
Montagebeiwert								
Hammerbohren	γ̃inst	[-]			1,0			
Hammerbohren mit Hilti Hohlbohrer TE CD oder TE-YD	- γinst	[-]			1,0			
Diamantbohren mit aufrauen mit Hilti Aufrauwerkzeug TE-YRT	γ̃inst	[-]	1)			1,0		
Stahlversagen								
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	25	46	67	12:	5	116
Teilsicherheitsbeiwert	$\gamma_{\text{Ms,N}}^{2)}$	[-]			1,50			
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	0	166
Teilsicherheitsbeiwert	γ _{Ms,N} 2)	[-]		1	,87	•		2,4
Betonausbruch							'	
Faktor für ungerissenen Beton	k _{ucr,N}	[-]			11,0			
Faktor für gerissenen Beton	$k_{\text{cr},N}$	[-]			7,7			
Randabstand	$c_{\text{cr},N}$	[mm]			$1,5 \cdot h_{ef}$	ŧ		
Achsabstand	S _{cr,N}	[mm]			$3,0 \cdot h_{ef}$:		
Versagen durch Spalten								
_	h / h _{ef} 2	≥ 2,0	1,0 · h _{ef}					
Randabstand $c_{cr,sp}$ [mm] für	2,0 > h / h	_{ef} > 1,3	4,6 h _{ef}	- 1,8 h	1,3			
	h / h _{ef} ≤ 1,3		2,26 h _{ef}		+	1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Achsabstand	S _{cr,sp}	[mm]			$2 \cdot c_{\text{cr,sp}}$			

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C5

²⁾ Sofern nationale Regelungen fehlen.

Tabelle C3: fortgesetzt

HIS-(R)N			М8	M10	M12	M16	M20
Kombiniertes Versagen durch Herausziehen und Betonausbruch für eine Nutzungsdauer von 50 Jahren							
Wirksame Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	205
Durchmesser des Befestigungselements	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6
Charakteristische Verbundtragfähigkeit ir feuchtem (wassergesättigt) Beton, alle B					ntage in tro	ockenem ι	ınd
Temperaturbereich I: 24 °C / 40 °C	$ au_{Rk,ucr}$	[N/mm²]			13		
Temperaturbereich II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]			11		
Temperaturbereich III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]			9,5		
Charakteristische Verbundtragfähigkeit in gerissenem Beton C20/25 für Montage in trockenem und feuchtem (wassergesättigt) Beton, alle Bohrverfahren (HD, HDB, DD + RT)							
Temperaturbereich I: 24 °C / 40 °C	$\tau_{\text{Rk,cr}}$	[N/mm²]			7		
Temperaturbereich II: 50 °C / 80 °C	$\tau_{\text{Rk,cr}}$	[N/mm²]			5,5		
Temperaturbereich III: 72 °C / 120 °C	$\tau_{\text{Rk,cr}}$	[N/mm²]			5		
Einflussfaktoren ψ auf Verbundtragfäh	higkeit 1	c _{Rk} in geris	ssenem u	nd ungeri	ssenem B	eton	
Einfluss der Betonfestigkeitsklasse: τ_{Rk} =	τ _{Rk,(C20/}	₂₅₎ · ψ _c					
Temperaturbereich I bis III:	ψ_{c}	[-]			$(f_{ck}/20)^{0,1}$		
Einfluss der Dauerlast							
Temperaturbereich I: 24 °C / 40 °C	$\psi^0_{\sf sus}$	[-]			0,80		
Temperaturbereich II: 50 °C / 80 °C	$\psi^0_{\sf sus}$	[-]			0,89		
Temperaturbereich III: 72 °C / 120 °C	$\psi^0_{\sf sus}$	[-]			0,72		

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C6

Tabelle C4: Wesentliche Merkmale für Innengewindehülse HIS-(R)N unter Querbeanspruchung in Beton

HIS-(R)N			M8	M10	M12	M16	M20
Für eine Nutzungsdauer von 50 Jahren		'					,
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange der Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	13	23	34	63	58
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]			1,25		
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange der Festigkeitsklasse 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	83
Teilsicherheitsbeiwert	$\gamma_{Ms,V}{}^{1)}$	[-]		1,	56		2,0
Duktilitätsfaktor	k ₇	[-]			1,0		
Stahlversagen mit Hebelarm							
Charakteristischer Widerstand HIS-N mit Schraube oder Gewindestange der Festigkeitsklasse 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519
Charakteristischer Widerstand HIS-RN mit Schraube oder Gewindestange der Festigkeitsklasse 70	${\sf M}^0_{\sf Rk,s}$	[Nm]	26	52	92	233	454
Duktilitätsfaktor	k ₇	[-]			1,0		
Betonausbruch auf der lastabgewandten S	eite	·					
Faktor	k ₈	[-]			2,0		
Betonkantenbruch		'					
Wirksame Länge des Befestigungselements	I _f	[mm]	90	110	125	170	205
Außendurchmesser des Befestigungselements	d_{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

¹⁾ Sofern nationale Regelungen fehlen.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton	Anhang C7

Tabelle C5: Wesentliche Merkmale für Hilti Zuganker HZA / HZA-R unter Zugbeanspruchung in Beton

Hilti Zuganker HZA, HZA-R				M12	M16	M20	M24	. N	/127
Für eine Nutzungsdauer von S	50 und 10	0 Jahre	n	ı	ı		1		
Montagebeiwert für Montage ir	trockene	m und fe	euchtem (w	asserges	ättigt) Be	ton			
Hammerbohren		γinst	[-]			1,0			
Hammerbohren mit Hilti Hohlbol CD oder TE-YD	hrer TE-	γ̃inst	[-]			1,0			
Diamantbohren mit aufrauen mi Aufrauwerkzeug TE-YRT	t Hilti	γ̃inst	[-]	1)		1	,0		
Montagebeiwert für Montage ir	wasserg	efüllte B	ohrlöscher	(kein Mee	erwasser)			
Hammerbohren		γinst	[-]			1,4			
Hammerbohren mit Hilti Hohlbol TE-CD oder TE-YD	hrer	γinst	[-]			1,4			
Stahlversagen									
Charakteristischer Widerstand H	HZA	$N_{Rk,s}$	[kN]	46	86	135	194	2	253
Charakteristischer Widerstand H	IZA-R	$N_{Rk,s}$	[kN]	62	111	173	248		1)
Teilsicherheitsbeiwert		$\gamma_{\text{Ms}}^{2)}$	[-]		1,4				
Betonausbruch									
Effektive Verankerungstiefe	HZA	h_{ef}	[mm]	h _{nom}					
Ellektive veralikerungstiele	HZA-R	h_{ef}	[mm]	h _{nom}					1)
Faktor für ungerissenen Beton		$k_{\text{ucr},N}$	[-]			11,0			
Faktor für gerissenen Beton		$k_{\text{cr},N}$	[-]			7,7			
Randabstand		C _{cr,N}	[mm]	1,5 · h _{ef}					
Achsabstand		S _{cr,N}	[mm]	3,0 · h _{ef}					
Versagen durch Spalten für u	ngerissei	nen Beto	on	1					
		h / h _{ef} ≥	≥ 2,0	1,0·h	h/h ef 2,0	-			
Randabstand $c_{cr,sp}$ [mm] für	2	,0 > h / h	n _{ef} > 1,3	4,6·h _{ef} -	1,8·h _{1,3}	i -			
		h / h _{ef} ≤ 1,3		2,26·h _{ef} 1,0·h _{ef} 2			2,26·h _{ef}	C _{cr,s}	
Achsabstand		S _{cr,sp}	[mm]			$2 \cdot c_{cr,sp}$			

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C8

²⁾ Sofern nationale Regelungen fehlen.

Tabelle C5: fortgesetzt

Hilti Zuganker HZA, HZA-R				M12	M16	M20	M24	M27
Durchmesser des Betonstahl		d	[mm]	12	16	20	25	28
Effektive Verankerungstiefe	HZA	h_{ef}	[mm]	h _{nom} – 20				
	HZA-R	h _{ef}	[mm]	h _{nom} – 100			1)	
Vembinishes Versages durch Hersustishes und Betensushrush								

Kombiniertes Versagen durch Herausziehen und Betonausbruch für eine Nutzungsdauer von 50 Jahren

Charakteristische Verbundtragfähigkeit in ungerissenem Beton C20/25 für Montage in trockenem und feuchtem (wassergesättigt) Beton, alle Bohrverfahren (HD, HDB, DD + RT)

Temperaturbereich I:	$24^{\circ}\text{C}/40^{\circ}\text{C}$ $\tau_{\text{Rk,ucr}}$	[N/mm²]	12
Temperaturbereich II:	$50^{\circ}\text{C}/80^{\circ}\text{C}~\tau_{\text{Rk,ucr}}$	[N/mm²]	10
Temperaturbereich III:	72°C/120°C τ _{Rk,ucr}	[N/mm²]	8,5

Charakteristische Verbundtragfähigkeit in gerissenem Beton C20/25 für Montage in trockenem und feuchtem (wassergesättigt) Beton, alle Bohrverfahren (HD, HDB, DD + RT)

Temperaturbereich I:	$24^{\circ}\text{C}/40^{\circ}\text{C}$ $\tau_{\text{Rk,cr}}$	[N/mm²]	7
Temperaturbereich II:	$50^{\circ}\text{C}/80^{\circ}\text{C}$ $\tau_{\text{Rk,cr}}$	[N/mm²]	5,5
Temperaturbereich III:	72°C/120°C τ _{Rk cr}	[N/mm²]	5

Charakteristische Verbundtragfähigkeit in ungerissenem Beton C20/25 für Montage in wassergefülltem Bohrloch (kein Meerwasser), HD und HDB

Temperaturbereich I:	24°C/40°C $\tau_{Rk,ucr}$	[N/mm²]	11,4
Temperaturbereich II:	$50^{\circ}\text{C}/80^{\circ}\text{C}~\tau_{\text{Rk,ucr}}$	[N/mm²]	9,3
Temperaturbereich III:	72°C/120°C $\tau_{Rk,ucr}$	[N/mm²]	8,1

Charakteristische Verbundtragfähigkeit in gerissenem Beton C20/25 für Montage in wassergefülltem Bohrloch (kein Meerwasser), HD und HDB

Temperaturbereich I:	$24^{\circ}\text{C}/40^{\circ}\text{C}~\tau_{\text{Rk,cr}}$	[N/mm²]	6,5
Temperaturbereich II:	$50^{\circ}\text{C}/80^{\circ}\text{C}~\tau_{\text{Rk,cr}}$	[N/mm²]	5,2
Temperaturbereich III:	72°C/120°C τ _{Rk.cr}	[N/mm²]	4,5

Einflussfaktoren ψ auf Verbundtragfähigkeit τ_{Rk} in gerissenem und ungerissenem Beton

Einfluss der Betonfestigkeitsklasse: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$ Temperaturbereich I bis III: ψ_c [-1]

Temperaturbereich I bis III:	ψ_{c}	[-]	$(f_{ck}/20)^{0,1}$
Einfluss der Dauerlast			
Temperaturbereich I:	$24^{\circ}\text{C}/40^{\circ}\text{C} \ \psi^{0}_{\text{sus}}$	[-]	0,80
Temperaturbereich II:	50°C/80°C ψ^0_{sus}	[-]	0,89
Temperaturbereich III:	72°C/120°C ψ ⁰ sus	[-]	0,72
		•	

Leistung

Wesentliche Merkmale unter Zugbeanspruchung in Beton

Anhang C9

 $(f_{ck}/20)^{0,1}$

0,80

0,89

0,72

Tabelle C5: fortgesetzt

Hilti Zuganker HZA, HZA-R				M12	M16	M20	M24	M27	
Durchmesser des Betonstahl		d	[mm]	12	16	20	25	28	
Effektive Verankerungstiefe	HZA	h_{ef}	[mm]	$h_{nom} - 20$					
Literative verafikerungstiele	HZA-R	h _{ef}	[mm]	h _{nom} – 100					
Kombiniertes Versagen durch Herausziehen und Betonausbruch für eine Nutzungsdauer von 100 Jahren									
Charakteristische Verbundtrag feuchtem (wassergesättigt) Be						age in tro	ckenem u	nd	
Temperaturbereich I: 24	l°C/40°C τ _ε	Rk,ucr,100	[N/mm²]			12			
Temperaturbereich II: 50)°C/80°C τ _ε	Rk,ucr,100	[N/mm²]			10			
Temperaturbereich III: 72°	C/120°C τ _F	Rk,ucr,100	[N/mm²]			8,5			
Charakteristische Verbundtrag feuchtem (wassergesättigt) Be						e in trocke	enem und		
Temperaturbereich I: 24	4°C/40°C τ _ε	Rk,cr,100	[N/mm²]	7					
Temperaturbereich II: 50)°C/80°C τ _F	Rk,cr,100	[N/mm²]	5,5					
Temperaturbereich III: 72°	C/120°C τ _F	Rk,cr,100	[N/mm²]	5					
Charakteristische Verbundtrag Bohrloch (kein Meerwasser), h			ssenem Be	ton C20/25	für Mont	age in wa	ssergefüll	tem	
Temperaturbereich I: 24	l°C/40°C τ _ε	Rk,ucr,100	[N/mm²]			11,4			
Temperaturbereich II: 50)°C/80°C τ _F	Rk,ucr,100	[N/mm²]			9,3			
Temperaturbereich III: 72°	C/120°C τ _F	Rk,ucr,100	[N/mm²]			8,1			
Charakteristische Verbundtrag Bohrloch (kein Meerwasser), h			enem Betoi	n C20/25 fü	ir Montag	e in wasse	ergefülltei	m	
Temperaturbereich I: 24	l°C/40°C τ _ε	Rk,cr,100	[N/mm²]	6,5					
Temperaturbereich II: 50)°C/80°C τ _ε	Rk,cr,100	[N/mm²]	5,2					
Temperaturbereich III: 72°	C/120°C τ _F	Rk,cr,100	[N/mm²]			4,5			
Einflussfaktoren ψ auf Verbundtragfähigkeit $ au_{\sf Rk}$ in gerissenem und ungerissenem Beton									
Einfluss der Betonfestigkeitskl	asse: τ _{Rk} =	τ _{Rk,(C20/}	₍₂₅₎ · Ψ _c						
		- ' '	·						

Temperaturbereich III: 1) Leistung nicht bewertet.

Temperature range I to III:

Einfluss der Dauerlast

Temperaturbereich I:

Temperaturbereich II:

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C10

[-]

[-]

[-]

[-]

 ψ_{c}

 $24^{\circ}\text{C}/40^{\circ}\text{C}~\psi^{0}_{\text{sus},100}$

 $50^{\circ}\text{C/80}^{\circ}\text{C}~\psi^{0}_{\text{sus},\text{100}}$

 $72^{\circ}\text{C}/120^{\circ}\text{C} \ \psi^{0}_{\text{sus},100}$

Tabelle C6: Wesentliche Merkmale für Hilti Zuganker HZA, HZA-R unter Querbeanspruchung in Beton

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Für eine Nutzungsdauer von 50 und 1	100 Jahre	en					
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HZA	$V^0_{Rk,s}$	[kN]	23	43	67	97	126
Charakteristischer Widerstand HZA-R	$V^0_{Rk,s}$	[kN]	31	55	86	124	1)
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}}^{2)}$	[-]			1,5		
Duktilitätsfaktor	k ₇	[-]			1,0		
Stahlversagen mit Hebelarm							
Charakteristischer Widerstand HZA	${\rm M^0}_{\rm Rk,s}$	[Nm]	72 183 357 617 915				
Charakteristischer Widerstand HZA-R	${\sf M^0}_{\sf Rk,s}$	[Nm]	97	234	457	790	1)
Duktilitätsfaktor	k ₇	[-]	1,0				
Betonausbruch auf der lastabgewand	ten Seite	9					
Faktor	k ₈	[-]	2,0				
Betonkantenbruch							
Wirksame Länge des Befestigungselements	l _f	[mm]	min (h _{nom} ; 12 · d _{nom}) min (h max(8 · 300				
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	12	16	20	24	27

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton	Anhang C11

²⁾ Sofern nationale Regelungen fehlen.

Wesentliche Merkmale für Betonstahl unter Zugbeanspruchung in Tabelle C7: Beton

	φ 8 φ 10 φ 12	144 14C						1
	T - T T	φ 14 φ 16	φ 20	φ 25	ф 26	ф 28	ф 30	ф 32
Für eine Nutzungsdauer von 50 und 100 Jahren								
Montagebeiwert für Montage in trockenem und feuchtem (wassergesättigt) Beton								
Hammerbohren γ _{inst} [-]			1,0					
Hammerbohren mit Hilti Hohlbohrer TE-CD oder TE-YD $\gamma_{\rm inst}$ [-]			1,0					
Diamantbohren mit aufrauen mit Hilti Aufrauwerkzeug TE-YRT ^{γ_{inst}} [-]	1)			1,	0			
Montagebeiwert für Montage in wassergefüllte Bo	Bohrlöscher (kein	Meerwass	ser)					
Hammerbohren γ _{inst} [-]			1,4					
Hammerbohren mit Hilti Hohlbohrer TE-CD oder TE-YD [-]			1,4					
Stahlversagen								
Charakteristischer Widerstand N _{Rk,s} [kN]	$A_s \cdot f_{uk}^{2)}$							
Charakteristischer Widerstand Betonstahl B500B nach DIN 488-1 N _{Rk,s} [kN] 2	27,1 42,4 61,1	83,1 108,6	169,6	265,1	286,7	332,5	381,7	434,3
Teilsicherheitsbeiwert $\gamma_{Ms,N}^{(3)}$ [-]		'	1,4					
Betonausbruch								
Faktor für ungerissenen Beton k _{ucr,N} [-]			11,0					
Faktor für gerissenen Beton k _{cr,N} [-]			7,7					
Randabstand c _{cr,N} [mm]	1,5 · h _{ef}							
Achsabstand s _{cr,N} [mm]	m] 3,0 · h _{ef}							
Versagen durch Spalten für ungerissenen Beto	on							
$h/h_{ef} \ge 2.0$	1,0·h _{ef}		/h _{ef}					
Randabstand $c_{cr,sp}$ [mm] für $2,0 > h / h_{ef} > 1,3$	7115n/n.513 //6h 18h							
h / h _{ef} ≤ 1,3	$2,26 \cdot h_{ef} \xrightarrow{1,0 \cdot h_{ef}} c_{c_{r,sp}}$					r,sp		
Achsabstand s _{cr,sp} [mm]			2 c _{cr,sp})				

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C12

f_{uk} entsprechend der Spezifikation des Betonstahls Sofern nationale Regelungen fehlen.

Tabelle C7: fortgesetzt

Tabelle C7: fortgesetzt												
Betonstahl		ф8	ф 10	φ 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Durchmesser des Betonstahl	l [mm]	8	10	12	14	16	20	25	26	28	30	32
Kombiniertes Versagen durch Hera für eine Nutzungsdauer von 50 Jah		Beto	naus	bruc	h							
Charakteristische Verbundtragfähigke feuchtem (wassergesättigt) Beton, alle							tage	in tro	ckene	em ur	nd	
Temperaturbereich I: 24°C/40°C τ_R	k _{k,ucr} [N/mm²]						12					
Temperaturbereich II: $50^{\circ}\text{C}/80^{\circ}\text{C}$ τ_{R}	k _{k,ucr} [N/mm²]						10					
Temperaturbereich III: 72°C/120°C $\tau_{Rk,ucr}$ [N/mm²] 8,5												
Charakteristische Verbundtragfähigke (wassergesättigt) Beton, alle Bohrverf					für M	onta	ge in	trocke	enem	und	feuch	tem
Temperaturbereich I: 24°C/40°C τ_R	k,cr [N/mm²]	1)	5,0					7,0				
Temperaturbereich II: 50°C/80°C τ _R	k,cr [N/mm²]	1)	4,0					5,5				
Temperaturbereich III: 72°C/120°C τ _R	k,cr [N/mm²]	1)	3,5					5,0				
Charakteristische Verbundtragfähigke Bohrloch (kein Meerwasser), HD und		em B	eton	C20/	25 für	Mon	tage	in wa	sserg	gefüllt	em	
Temperaturbereich I: 24°C/40°C τ _R	k _{k,ucr} [N/mm²]	1)					11,4					
Temperaturbereich II: 50°C/80°C τ_R	k _{k,ucr} [N/mm²]	1)					9,3					
Temperaturbereich III: 72°C/120°C τ_{R}	k _{k,ucr} [N/mm²]	1)					8,1					
Charakteristische Verbundtragfähigke (kein Meerwasser), HD und HDB	it in gerissenen	n Bet	on C2	20/25	für M	onta	ge in	wass	ergef	üllten	n Boh	rloch
Temperaturbereich I: 24°C/40°C τ _R	k,cr [N/mm²]	1)	4,6					6,5				
Temperaturbereich II: 50°C/80°C τ _R	k,cr [N/mm²]	1)	3,7					5,2				
Temperaturbereich III: 72°C/120°C τ _R	k,cr [N/mm²]	1)	3,2					4,5				
Einflussfaktoren ψ auf Verbundtrag	ıfähigkeit τ _{Rk} in	geri	ssen	em u	nd un	geris	sene	m Be	ton			
Einfluss der Betonfestigkeitsklasse: τ_{I}	$\tau_{Rk} = \tau_{Rk, (C20/25)} \cdot \tau_{Rk}$	Ψc										
Temperaturbereich I bis III: ψ	c [-]					(f	_{ck} /20)	0,1				
Einfluss der Dauerlast												
Temperaturbereich I: 24°C/40°C ψ	0 _{sus} [-]	[-] 0,80										
Temperaturbereich II: 50°C/80°C ψ	0 _{sus} [-]						0,89					
Temperaturbereich III: 72°C/120°C ψ	0 _{sus} [-]						0,72					

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C13

Tabelle C7: fortgesetzt

Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Durchmesser des Betonstahl	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Kombiniertes Versagen durch He für eine Nutzungsdauer von 100 .		hen und l	Beto	nausl	brucl	n							
Charakteristische Verbundtragfähig feuchtem (wassergesättigt) Beton, a								tage i	in tro	ckene	em un	ıd	
Temperaturbereich I: 24°C/40°C	τ _{Rk,ucr,100}	[N/mm²]						12					
Temperaturbereich II: 50°C/80°C	τ _{Rk,ucr,100}	[N/mm²]						10					
Temperaturbereich III: 72°C/120°C	τ _{Rk,ucr,100}	[N/mm²]						8,5					
Charakteristische Verbundtragfähig (wassergesättigt) Beton, alle Bohrv						für M	ontag	ge in t	trocke	enem	und 1	feuch	tem
Temperaturbereich I: 24°C/40°C	$\tau_{Rk,cr,100}$	[N/mm²]	1)	5,0					7,0				
Temperaturbereich II: 50°C/80°C	τ _{Rk,cr,100}	[N/mm²]	1)	4,0					5,5				
Temperaturbereich III: 72°C/120°C	τ _{Rk,cr,100}	[N/mm²]	1)	3,5					5,0				
Charakteristische Verbundtragfähig Bohrloch (kein Meerwasser), HD ur		ngerissen	em B	eton (C20/2	25 für	Mon	tage i	in wa	sserg	jefüllt	em	
Temperaturbereich I: 24°C/40°C	τ _{Rk,100.ucr}	[N/mm²]	1)					11,4					
Temperaturbereich II: 50°C/80°C	τ _{Rk,100.ucr}	[N/mm²]	1)					9,3					
Temperaturbereich III: 72°C/120°C	τ _{Rk,100.ucr}	[N/mm²]	1)					8,1					
Charakteristische Verbundtragfähig (kein Meerwasser), HD und HDB	keit in ge	erissenem	Beto	on C2	0/25	für M	ontag	ge in v	wass	ergef	ülltem	Boh	rlocl
Temperaturbereich I: 24°C/40°C	τ _{Rk,cr,100}	[N/mm²]	1)	4,6					6,5				
Temperaturbereich II: 50°C/80°C	τ _{Rk,cr,100}	[N/mm²]	1)	3,7					5,2				
Temperaturbereich III: 72°C/120°C	τ _{Rk,cr,100}	[N/mm²]	1)	3,2					4,5				
Einflussfaktoren ψ auf Verbundtr	agfähig	keit $ au_{Rk}$ in	geri	ssene	em ur	nd un	geris	sene	m Be	ton			
Einfluss der Betonfestigkeitsklasse:	$\tau_{Rk} = \tau_{R}$	k,(C20/25) ・ Ҷ	/ _c										
Temperaturbereich I bis III:	Ψc	[-]					(f _c	_{ck} /20) ⁰	0,1				
Einfluss der Dauerlast		'											
Temperaturbereich I: 24°C/40°C	ψ^0 sus,100	[-]	[-] 0,80										
Temperaturbereich II: 50°C/80°C	ψ^0 sus,100	[-]						0,89					
Temperaturbereich III: 72°C/120°C	Ψ^0 sus,100	[-]						0,72					

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C14

Tabelle C8: Wesentliche Merkmale für Betonstahl unter Querbeanspruchung in Beton

Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Für eine Nutzungsdauer von 5	0 und	100 Ja	hren	1	•			•		•	•		
Stahlversagen ohne Hebelarm													
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]					0,	5 · A	· f _{uk} 1))			
Charakteristischer Widerstand Betonstahl B500B nach DIN 488-1	$V^0_{Rk,s}$	[kN]	13,6 21,2 30,5 41,6 54,3 84,8 132,5 143,4 166,3 190,9						190,9	217,1			
Teilsicherheitsbeiwert	γMs,V 2)	[-]	1,5										
Duktilitätsfaktor	k ₇	[-]						1,	0				
Stahlversagen mit Hebelarm													
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]					1,	2 · W	el · f _{uk}	1)			
Charakteristischer Widerstand Betonstahl B500B nach DIN 488-1	M ⁰ _{Rk,}	s[Nm]	32,6	63,6	109,9	174,6	260,6	508,9	994,0	1118,1	1396,5	1717,7	2084,6
Duktilitätsfaktor	k ₇	[-]			•			1,	0		•		
Betonausbruch auf der lastabo	gewan	dten S	Seite										
Faktor	k ₈	[-]						2,0					
Betonkantenbruch													
Wirksame Länge des Befestigungselements	l _f	[mm]		min	(h _{ef} ;	12 · d	I _{nom})		min	(h _{nom} ; ı	max(8	· d _{nom} ;	300))
Außendurchmesser des Befestigungselements	d_{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ f_{uk} entsprechend der Spezifikation des Betonstahls.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton	Anhang C15

²⁾ Sofern nationale Regelungen fehlen.

Tabelle C9: Verschiebungen unter Zugbeanspruchung

Gewindestange	entspreche	end Anhang A	M8	M10	M12	M16	M20	M24	M27	M30			
Ungerissener Beto	n Tempera	turbereich I : 24°C / 40°0	C		•			•	•				
Mara abiah usa	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08			
Verschiebung $\delta_{N\infty}$		[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16			
Ungerissener Beto	С		•			•	•						
Vorashishung	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12			
Verschiebung	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16			
Ungerissener Beto	n Tempera	turbereich III : 72°C / 12	0°C										
Vorashishung	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16			
Verschiebung	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17			
Gerissener Beton	Temperatur	bereich I : 24°C / 40°C											
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,07										
verscrilebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,16										
Gerissener Beton	Temperatur	bereich II: 50°C / 80°C											
Vorachichung	δ_{N0}	$[mm/(N/mm^2)]$				0,	10						
Verschiebung $\frac{\delta_{N\infty}}{\delta_{N\infty}} \qquad \qquad [mm/(N/mm^2)]$						0,	22						
Gerissener Beton		bereich III : 72°C / 120°0	C										
Verschiebung	δ_{N0} [mm/(N/mm ²)]				0,13								
verscritebung	$\delta_{N^{\infty}}$	[mm/(N/mm²)]				0,	29						

Tabelle C10: Verschiebungen unter Querbeanspruchung

Gewindestange entsprechend Anhang A		M8	M10	M12	M16	M20	M24	M27	M30	
) (a ra abiabu na r	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Verschiebung	$\delta_{V_{\infty}}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Verschiebungen Gewindestange, HAS-U, HIT-V und AM 8.8	Anhang C16

Tabelle C11: Verschiebungen unter Zugbeanspruchung

HIS-(R)N			M8	M10	M12	M16	M20
Ungerissener Beto	n Temp	eraturbereich I : 24°	°C / 40°C		•		
\/orachichung	δ_{N0}	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14
Ungerissener Beto	n Temp	eraturbereich II : 50	°C / 80°C				
\/orachichung	δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15
Ungerissener Beto	n Temp	eraturbereich III : 72	2°C / 120°C				
Vorachichung	δ_{N0}	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15
Gerissener Beton	Temper	aturbereich I : 24°C	:/40°C				
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,11		
verscrilebung	$\delta_{N\infty}$	[mm/(N/mm²)]			0,16		
Gerissener Beton	Tempera	aturbereich II : 50°C	:/80°C				
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,15		
verscriieburig	$\delta_{N\infty}$	[mm/(N/mm²)]			0,22		
Gerissener Beton	Tempera	aturbereich III : 72°C	C / 120°C				
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,20		
verscriebung	$\delta_{N\infty}$	[mm/(N/mm²)]	<u> </u>		0,29		

Tabelle C12: Verschiebungen unter Querbeanspruchung

HIS-(R)N			M8	M10	M12	M16	M20
Varashishung	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Verschiebung	$\delta_{V^{\infty}}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Leistung
Verschiebungen HIS-(R)N

Anhang C17

Tabelle C13: Verschiebungen unter Zugbeanspruchung

Hilti Zuganker HZA, HZA-R	₹		M12	M16	M20	M24	M27
Ungerissener Beton Tempera	aturbereich	1: 24°C / 40°C		•			
Vorachichung	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08
Verschiebung	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15
Ungerissener Beton Tempera	aturbereich	II: 50°C / 80°C					•
Vorachichung	δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15
Ungerissener Beton Tempera	aturbereich	III : 72°C / 120°C					
Vorachichung	δ_{N0}	$[mm/(N/mm^2)]$	0,06	0,08	0,10	0,12	0,14
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16
Gerissener Beton Temperatu	rbereich I	: 24°C / 40°C					
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,11		
verscrieburig	δ_{N^∞}	[mm/(N/mm²)]			0,16		
Gerissener Beton Temperatu	rbereich II	: 50°C / 80°C					
Vorachichung	δ_{N0}	[mm/(N/mm²)]			0,15		
Verschiebung	$\delta_{N^{\infty}}$	[mm/(N/mm²)]			0,22		
Gerissener Beton Temperatu	rbereich II	I : 72°C / 120°C					
Vorschiebung	δ_{N0}	[mm/(N/mm²)]			0,20		
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]			0,29		

Tabelle C14: Verschiebungen unter Querbeanspruchung

Hilti Zuganker HZA, HZA-R $\frac{\delta_{\text{V0}}}{\text{Verschiebung}}$			M12	M16	M20	M24	M27
Varachich up s	δ_{V0}	[mm/kN]	0,05	0,04	0,04	0,03	0,03
verscriteburig	$\delta_{V^{\infty}}$	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Verschiebungen HZA und HZA-R	Anhang C18

Tabelle C15: Verschiebungen unter Zugbeanspruchung

					_					1		1	l .
Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Ungerissener Beton	Tempe	raturbereich I : 24	4°C / 4	0°C									
\/orachiahung	δ_{N0}	$[mm/(N/mm^2)]$	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17
Ungerissener Beton	Tempe	raturbereich II : 5	0°C / 8	30°C									
	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12
	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17
Ungerissener Beton	;												
\/avaabiaba	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18
Gerissener Beton Te	mpera	turbereich I : 24°0	C / 40°	С									
Varashishung	δ_{N0}	[mm/(N/mm²)]						0,11					
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]						0,16					
Gerissener Beton Te	mpera	turbereich II : 50°	C / 80°	°C									
Varashishung	δ_{N0}	[mm/(N/mm²)]						0,15					
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]						0,22					
Gerissener Beton Te	mpera	turbereich III : 72°	°C / 12	20°C									
Vorashishung	δ_{N0}	[mm/(N/mm²)]						0,20					
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]						0,29					

Tabelle C16: Verschiebungen unter Querbeanspruchung

Betonstahl			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Varashishung	δ_{V0}	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Verschiebung -	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Verschiebungen Betonstahl	Anhang C19

Wesentliche Merkmale unter seismischer Beanspruchung

Tabelle C17: Wesentliche Merkmale für Gewindestangenentsprechend Anhang A unter Zugbeanspruchung für Seismische Leistungskategorie C1

Gewindestange entspi	rechend Anhang	Α		M10	M12	M16	M20	M24	M27	M30
Für eine Nutzungsdau	er von 50 und 10	00 Jahrer	า	•		'				•
Stahlversagen										
Charakteristischer Wide	erstand	$N_{\text{Rk,s,C1}}$	[kN]				$N_{Rk,s}$			
Kombiniertes Versage	n durch Herausz	ziehen ur	nd Betona	usbru	ch, Nu	tzungs	dauer	50 Jah	re	
Charakteristische Verbufeuchtem (wassergesätt							in troc	kenem	und	
Temperaturbereich I:	24 °C / 40 °C	$\tau_{Rk,C1}$	[N/mm ²]	5,2			7	,0		
Temperaturbereich II:	50 °C / 80 °C	τ _{Rk,C1}	[N/mm ²]	3,9			5	,7		
Temperaturbereich III:	72 °C / 120 °C	τ _{Rk,C1}	[N/mm ²]	3,5			4	,8		
Kombiniertes Versage	n durch Herausz	ziehen ur	nd Betona	usbru	ch, Nu	tzungs	dauer	100 Ja	hre	
Charakteristische Verbufeuchtem (wassergesätt							in troc	kenem	und	
Temperaturbereich I:	24 °C / 40 °C	τ _{Rk,100,C}	₁ [N/mm ²]	4,5			6	,3		
Temperaturbereich II:	50 °C / 80 °C	τ _{Rk,100,C}	1 [N/mm²]	3,7			5	,2		
Temperaturbereich III:	72 °C / 120 °C	τ _{Rk,100,C}	1 [N/mm²]	3,1			4	,4		
Einflussfaktoren ψ auf	Verbundtragfäh	igkeit $ au_{ extsf{R}}$	$_{ extsf{k}, extsf{C1}}$ und $ au_{ extsf{R}}$	k,100,C1 i	im geri	ssener	Beton	1		
Einfluss der Betonfestig	keitsklasse: τ _{Rk} =	τ _{Rk,(C20/25})· Ψc							
Temperaturbereich I bis	III:	Ψc	[-]				1,0			

Tabelle C18: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Querbeanspruchung für seismische Leistungskategorie C1

Gewindestange entsprechend Anhang	A		M10	M12	M16	M20	M24	M27	M30
Für eine Nutzungsdauer von 50 und 100) Jahren								
Faktor für Ringspalt ohne Hilti Verfüll-Set	et $lpha_{\sf gap}$ [-] 0,5								
Faktor für Ringspalt mit Hilti Verfüll-Set	$lpha_{\sf gap}$	[-]			1,0			1)
Stahlversagen ohne Hebelarm									
Charakteristischer Widerstand HAS 5.8, HAS-U 5.8, HIT-V 5.8	$V_{Rk,s,C1}$	[kN]	0,60 · N _{Rk,s}						
Charakteristischer Widerstand HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,C1}$	[kN]			0,	50 · N _R	k,s		
Charakteristischer Widerstand HAS A4, HAS-U A4, HIT-V-R HAS-U HCR, HIT-V-HCR	$V_{Rk,s,C1}$	[kN]	N] 0,50 · N _{Rk,s}						
Charakteristischer Widerstand handelsübliche Gewindestangen	$V_{Rk,s,C1}$	[kN]			0,	35 · N _R	k,s		

1) Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zug- und Querbeanspruchung für seismische Leistungskategorie C1	Anhang C20

Tabelle C19: Wesentliche Merkmale für Hilti Zuganker HZA, HZA-R unter Zugbeanspruchung für seismische Leistungskategorie C1

Hilti Zuganker HZA, HZ	ZA-R			M12	M16	M20	M24	M27				
Für eine Nutzungsdau	er von 50 und	100 Jahren	1			•	•	•				
Stahlversagen												
Charakteristischer Widerstand HZA N _{Rk,s,C1} [kN] N _{Rk,s}												
Charakteristischer Widers	stand HZA-R	$N_{Rk,s,C1}$	[kN]		N _F	Rk,s		1)				
Teilsicherheitsbeiwert		γ _{Ms,N,C1} ²⁾	[-]			1,4						
Kombiniertes Versagen durch Herausziehen und Betonausbruch												
Durchmesser des Betons	stahl	d	[mm]	12	16	20	25	28				
Charakteristische Verbun für Montage in trockene				ılle Bohr	verfahre	n (HD, H	IDB, DD	+ RT)				
Temperaturbereich I:	24°C / 40°C	$\tau_{Rk,C1} = \tau_{Rk,100,C}$	1 [N/mm²]			6,1						
Temperaturbereich II:	50°C / 80°C	$\tau_{Rk,C1} = \tau_{Rk,100,C}$	1 [N/mm²]			4,8						
Temperaturbereich III:	72°C / 120°C	$\tau_{Rk,C1} = \tau_{Rk,100,C}$	1 [N/mm²]			4,4						
Einflussfaktoren ψ auf	Verbundtragt	ähigkeit τ _{Rk,C1} u	nd τ _{Rk,100,C1}	im geris	senen E	Beton						
Einfluss der Betonfestigl	keitsklasse: τ _R	$_{k} = \tau_{Rk,(C20/25)} \cdot \psi_{c}$										
Temperaturbereich I bis	III:	Ψc	[-]			1,0						

¹⁾ Leistung nicht bewertet.

Tabelle C20: Wesentliche Merkmale für Hilti Zuganker HZA, HZA-R unter Querbeanspruchung für seismische Leistungskategorie C1

Hilti Zuganker HZA, HZA-R			M12	M16	M20	M24	M27
Für eine Nutzungsdauer von 50 und	l 100 Jahren			•	•		
Faktor für Ringspalt ohne Hilti Verfüll-Se	et α _{gap}	[-]			0,5		
Faktor für Ringspalt mit Hilti Verfüll-Set	$\alpha_{\sf gap}$	[-]		1	,0		1)
Stahlversagen ohne Hebelarm							•
Charakteristischer Widerstand HZA	$V_{Rk,s,C1}$	[kN]			$V^0_{Rk,s}$		
Charakteristischer Widerstand HZA-R V _{Rk,s,C1}		[kN]	$V^0_{Rk,s}$				1)
Teilsicherheitsbeiwert	γ _{Ms,V,C1} ²⁾	[-]					

¹⁾ Leistung nicht bewertet.

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zug- und Querbeanspruchung für seismische Leistungskategorie C1	Anhang C21

²⁾ Sofern nationale Regelungen fehlen.

²⁾ Sofern nationale Regelungen fehlen.

Tabelle C21: Wesentliche Merkmale für Betonstahl unter Zugbeanspruchung für seismische Leistungskategorie C1

Betonstahl				ሐ 10	ሐ 12	ሐ 14	ሐ 16	ሐ 20	ሐ 25	ф 26	ሐ 28	ሐ 30	ሐ 32
Für eine Nutzungsdauer vo	n 50 u	nd 100	Jahren	ψ 10	Ψ 12	Ψ 1-	ψ 10	Ψ 20	Ψ 20	Ψ 20	Ψ 20	φυσ	Ψ 32
Stahlversagen													
Charakteristischer Widerstand N _{Rk,s,C1} [kN] N _{Rk,s}													
Charakteristischer Widerstan Betonstahl B500B nach DIN		$N_{Rk,s,C}$	₁ [kN]					N _F	Rk,s				
Kombiniertes Versagen du	rch He	rauszie	ehen und	Beto	nausl	bruch	1						
Durchmesser des Betonstahl		d	[mm]	10	12	14	16	20	25	26	28	30	32
Charakteristische Verbund feuchtem (wassergesättigt) E									ntage	in tro	ckene	em un	d
Temperaturbereich I: 24°C/40°C	$_{Rk,C1} = \tau$	Rk,100,C1	[N/mm²]	4,4					6,1				
Temperaturbereich II: 50°C/80°C	$_{Rk,C1} = \tau$	Rk,100,C1	[N/mm²]	3,5					4,8				
Temperaturbereich III: 72°C/120°C	$R_{k,C1} = \tau$	Rk,100,C1	[N/mm²]	3					4,4				
Einflussfaktoren ψ auf Verk	oundtra	agfähig	jkeit $ au_{Rk,C}$	und	τ _{Rk,100}	_{),C1} im	geris	sene	n Bet	on			
Einfluss der Betonfestigkeitsl	klasse:	$\tau_{Rk} = \tau$	Rk,(C20/25) *	Ψc									
Temperaturbereich I bis III:		Ψc	[-]					1	,0				

Tabelle C22: Wesentliche Merkmale für Betonstahl unter Querbeanspruchung für seismische Leistungskategorie C1

Betonstahl			ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Für eine Nutzungsdauer von 50 und 100 Jahren												
Faktor für Ringspalt ohne Hilti Verfüll-Set α_{gap} [-] 0,5												
Stahlversagen ohne Hebelarm												
Charakteristischer Widerstand	$V_{Rk,s,C1}$	[kN]					0,35	· N _{Rk,s}	i			
Charakteristischer Widerstand für Betonstahl B500B nach DIN 488-1	$V_{Rk,s,C1}$	[kN]	14,8	21,4	29,1	38,0	59,4	92,8	100,3	116,4	133,6	152,0

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zug- und Querbeanspruchung für seismische Leistungskategorie C1	Anhang C22

Tabelle C23: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Zugbeanspruchung für seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A		M12	M16	M20	M24
Für eine Nutzungsdauer von 50 Jahren und 100 Jahren			•		•
Stahlversagen					
Charakteristischer Widerstand HAS (8.8, 8.8 HDG, A4) HAS-U (-8.8, -8.8 HDG, A4, HCR), HIT-V (-8.8, -8.8 F, -,R, HCR) , AM (8.8, 8.8 HDG) Gewindestange (8.8 und CRC II, CRC III, und CRC V, Tab A1)	,s,C2 [kN]		N _F	Rk,s	
Kombiniertes Versagen durch Herausziehen und Betonausbru	ch				
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/29 feuchtem (wassergesättigt) Beton, in hammergebohrten Bohrlöcher Hilti Hohlbohrer TE-CD oder TE-YD		_			n mit
Temperaturbereich I: 24 °C / 40 °C $\tau_{Rk,C2} = \tau_{Rk,100,C2}$	[N/mm ²]	2,7	4,6	4,6	3,5
Temperaturbereich II: 50 °C / 80 °C $\tau_{Rk,C2} = \tau_{Rk,100,C2}$	[N/mm ²]	2,3	3,9	3,9	2,9
Temperaturbereich III: 72 °C / 120 °C $\tau_{Rk,C2} = \tau_{Rk,100,C2}$	[N/mm ²]	2,0	3,3	3,3	2,5
Einflussfaktoren ψ auf Verbundtragfähigkeit $ au_{\text{Rk,C2}}$ und $ au_{\text{Rk,100,C2}}$ i	im gerisse	enen Be	ton		
Einfluss der Betonfestigkeitsklasse: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$					
Temperaturbereich I bis III: ψ _c	[-]		1,	,0	

Tabelle C24: Wesentliche Merkmale für Gewindestangen entsprechend Anhang A unter Querbeanspruchung für seismische Leistungskategorie C2

Gewindestange entsprechend Anhang A			M12	M16	M20	M24	
Für eine Nutzungsdauer von 50 Jahren und 100 Jahren							
Faktor für Ringspalt ohne Hilti Verfüll-Set	$lpha_{\sf gap}$	[-]	0,5				
Faktor für Ringspalt mit Hilti Verfüll-Set	$\alpha_{\sf gap}$	[-]	1,0				
Stahlversagen ohne Hebelarm mit Hilti Verfüll-Set							
Charakteristischer Widerstand							
HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	28	46	77	103	
Stahlversagen ohne Hebelarm ohne Hilti Verfüll-Set							
Charakteristischer Widerstand							
HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,C2}$	[kN]	24	40	71	90	
HAS A4, HAS-U A4, HIT-V-R	$V_{Rk,s,C2}$	[kN]	21	35	62	79	
HAS-U-HCR, HIT-V-HCR	$V_{Rk,s,C2}$	[kN]	24	40	71	79	
HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	$V_{Rk,s,C2}$	[kN]	18	30	46	66	
Gewindestange, feuerverzinkt 8.8	$V_{Rk,s,C2}$	[kN]	13	21	32	46	
Gewindestange, galvanisch verzinkt 8.8	$V_{Rk,s,C2}$	[kN]	17	28	50	63	
Gewindestange CRC II und CRC III (Tabelle A1)	$V_{Rk,s,C2}$	[kN]	15	25	43	55	
Gewindestange CRC V (Tabelle A1)	$V_{Rk,s,C2}$	[kN]	17	28	50	55	

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Wesentliche Merkmale unter Zug- und Querbeanspruchung für seismische Leistungskategorie C2	Anhang C23

Tabelle C25: Verschiebungen unter Zugbeanspruchung für seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A		M12	M16	M20	M24
Verschiebung DLS, HAS(8.8, 8.8 HDG, A4) HAS-U (-8.8, -8.8 HDG, A4, HCR), HIT-V (-8.8, -8.8 F, -,R, HCR), AM (8.8, 8.8 HDG), Gewindestange (8.8 und CRC II, CRC III und CRC V, Tabelle A1)	δ _{N,C2(50%)} [mm]	0,3	0,4	0,5	0,4
Verschiebung ULS, HAS-U (-8.8, -8.8 HDG, A4, HCR), HIT-V (-8.8, -8.8 F, -,R, HCR), AM (8.8, 8.8 HDG), Gewindestange (8.8 und CRC II, CRC III und CRC V, Tabelle A1)	δ _{N,C2(100%)} [mm]	1,2	1,1	0,7	0,9

Tabelle C26: Verschiebungen unter Querbeanspruchung für seismische Leistungskategorie C2

Gewindestangen entsprechend Anhang A		M12	M16	M20	M24
Einbau mit Hilti Verfüll-Set					
Verschiebung DLS, HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	δ _{V,C2(50%)} [mm]	0,6	1,2	1,4	1,1
Verschiebung ULS, HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	δ _{V,C2(100%)} [mm]	3,1	3,2	3,8	2,6
Einbau ohne Verfüll-Set					
Verschiebung DLS, HAS (8.8, A4) HAS-U (-8.8, A4, HCR), HIT-V (-8.8, -R, HCR), AM 8.8, Gewindestange (galvanisch verzinkt 8.8 und CRC II, CRC III und CRC V, Tabelle A1)	δ _{V,C2(50%)} [mm]	1,9	3,2	2,5	3,5
Verschiebung DLS, HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8, Gewindestange feuerverzinkt 8.8	δ _{V,C2(50%)} [mm]	2,2	2,3	3,8	3,7
Verschiebung ULS, HAS (-8.8, A4), HAS-U (-8.8, A4, HCR), HIT-V (-8.8, -R, HCR), AM 8.8, Gewindestange (galvanisch verzinkt 8.8 und CRC II, CRC III und CRC V, Tabelle A1)	$\delta_{\text{V,C2(100\%)}}$ [mm]	4,4	9,2	7,1	10,2
Verschiebung ULS, HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8, Gewindestange feuerverzinkt 8.8	δ _{V,C2(100%)} [mm]	4,1	4,3	9,1	8,4

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Verschiebungen unter Zug- und Querbeanspruchung für seismische Leistungskategorie C2	Anhang C24

Wesentliche Merkmale unter Brandbeanspruchung

Charakteristischer Widerstand gegen kombiniertes Versagen durch Herausziehen und Betonausbruch unter Brandbeanspruchung in Beton C20/25 bis C50/60 für Gewindestangen und Betonstahl für alle Bohrverfahren

Die charakteristische Verbundtragfähigkeit $\tau_{Rk,fl}(\theta)$ unter Brandbeanspruchung muss mit der folgenden Gleichung berechnet werden:

$$\tau_{Rk,fi}(\theta) = k_{fi,p}(\theta) \cdot \tau_{Rk,cr,C20/25}$$
 $\tau_{Rk,fi,100}(\theta) = k_{fi,p}(\theta) \cdot \tau_{Rk,cr,100,C20/25}$

Temperaturabminderungsfaktor für Gewindestangen

mit: $\theta \le 392 \, ^{\circ}\text{C}: \, k_{fi,p}(\theta) = 1,01 \, \cdot \, e^{(-0,013 \, \cdot \, \Theta)} \le 1,0$

und $\theta > \theta_{\text{max}}$: $k_{\text{fi,p}}(\theta) = 0.0$

 $\theta_{\text{max}} = 392 \, ^{\circ}\text{C}$

Temperaturabminderungsfaktor für Betonstahl

mit: $\theta \le 271 \,^{\circ}\text{C}$: $k_{\text{fi,p}}(\theta) = 1,244 \,^{\circ}\text{e}^{(-0,014 \,^{\circ}\Theta)} \le 1,0$

und $\theta > \theta_{\text{max}}$: $k_{\text{fi,p}}(\theta) = 0.0$

 $\theta_{\text{max}} = \text{271 °C}$

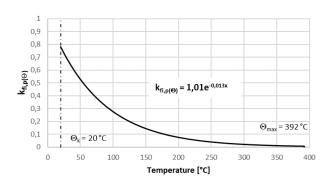
 $\tau_{\text{Rk,fl}}(\theta)$ = Charakteristische Verbundtragfähigkeit für gerissenen Beton unter

Brandbeanspruchung bei einer vorgegebenen Temperatur

 $k_{fi,p}(\theta)$ = Abminderungsfaktor für die Verbundtragfähigkeit unter

Brandbeanspruchung

 $\tau_{Rk,cr,C20/25}$ = Charakteristische Verbundtragfähigkeit in gerissenem Beton


C20/25 für eine Nutzungsdauer von 50 Jahren nach Tabelle C1

 $\tau_{Rk,cr,100,C20/25}$ = Charakteristische Verbundtragfähigkeit in gerissenem Beton

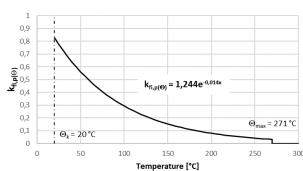

C20/25 für eine Nutzungsdauer von 100 Jahren nach Tabelle C1

Bild C1: Temperaturabminderungsfaktor $k_{fi,p}(\theta)$

Temperaturabminderungsfaktor für Gewindestangen

Temperaturabminderungsfaktor für Betonstahl

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3

Leistung

Charakteristische Verbundtragfähigkeit unter Brandbeanspruchung

Anhang C25

Tabelle C27: Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung für Gewindestangen im Brandfall

Gewindestangen entsprechend Anhang A		M8	M10	M12	M16	M20	M24	M27	M30	
HAS 5.8, HAS-U 5.8, HIT-V 5.8, AM 8.8	$N_{Rk,s,fi(30)}$		1,04	1,80	2,80	5,22	8,15	11,74	15,27	18,67
HAS 5.8 HDG, HAS-U 5.8 HDG, HIT-V-F 5.8, AM-HDG 5.8	$N_{Rk,s,fi(60)}$	- FIZNII	0,81	1,36	2,05	3,83	5,98	8,62	11,21	13,70
HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	N _{Rk,s,fi(90)}	-[kN]- -	0,58	0,91	1,31	2,44	3,81	5,49	7,14	8,73
HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	N _{Rk,s,fi(120)}		0,47	0,69	0,93	1,74	2,72	3,92	5,10	6,24
	$N_{Rk,s,fi(30)}$		2,70	4,93	7,93	14,77	23,06	33,23	43,20	52,81
HAS A4, HAS-U A4, HIT-V-R HAS-U-HCR, HIT-V-HCR	N _{Rk,s,fi(60)}	-[kN]	1,93	3,49	5,56	10,37	16,18	23,31	30,31	37,05
CITO V (Tabelle AT)	N _{Rk,s,fi(90)}	- [IXI V]	1,17	2,04	3,20	5,96	9,30	13,40	17,42	21,29
	$N_{\text{Rk,s,fi(120)}}$		0,79	1,32	2,01	3,75	5,86	8,44	10,98	13,42

Tabelle C28: Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung für Betonstahl im Brandfall

Betonstahl entsprechend Anhang A		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Betonstahl	$N_{Rk,s,fi(30)}$	0,5	1,2	2,3	3,1	4,0	6,3	9,8	10,6	12,3	14,1	16,1
	N _{Rk,s,fi(60)}	0,5	1,0	1,7	2,3	3,0	4,7	7,4	8,0	9,2	10,6	12,1
	$N_{Rk,s,fi(90)}$ [kN]	0,4	0,8	1,5	2,0	2,6	4,1	6,4	6,9	8,0	9,2	10,5
	N _{Rk,s,fi(120)}	0,3	0,6	1,1	1,5	2,0	3,1	4,9	5,3	6,2	7,1	8,0

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Feuerwiderstand gegen Stahlversagen unter Zugbeanspruchung	Anhang C26

Tabelle C29: Charakteristischer Widerstand gegen kegelförmigen Betonausbruch unter Zugbeanspruchung für Gewindestangen im Brandfall

Gewindestangen entsprechend	l Anhan	ıg A	M8	M10	M12	M16	M20	M24	M27	M30	
	N ⁰ _{Rk,c,fi}	(30)									
HAS 5.8 HDG, HAS-U 5.8 HDG, HIT-V-F 5.8, AM-HDG 5.8											
HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	N ⁰ _{Rk,c,fi(}	(60)	$h_{ef}/200 \cdot N_{Rk,c}^0 \le N_{Rk,c}^0$								
HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8		[kN]									
HAS A4, HAS-U A4, HIT-V-R	N ⁰ _{Rk,c,fi}	(90)									
HAS-U-HCR, HIT-V-HCR											
Gewindestangen CRC III und CRC V (Tabelle A1)	$N^0_{Rk,c,fi}$	(120)			0,8· h	_{ef} /200 ·	N ⁰ _{Rk,c} ≤	N ⁰ _{Rk,c}			
Betonstahl											
Charakteristischer Achsabstand	S _{cr,N,fi}	₁ [mm]				4.	h _{ef}				
Charakteristischer Randabstand	C _{cr,N,fi}	[]				2.	h _{ef}				

Tabelle C30: Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung ohne Hebelarm für Gewindestangen im Brandfall

Gewindestangen entsprechend Anhang A		M8	M10	M12	M16	M20	M24	M27	M30	
	V Rk,s,fi(30)		1,04	1,80	2,80	5,22	8,15	11,74	15,27	18,67
HAS 5.8 HDG, HAS-U 5.8 HDG, HIT-V-F 5.8, AM-HDG 5.8	$V_{\text{Rk,s,fi(60)}}$	-[kN]- -	0,81	1,36	2,05	3,83	5,98	8,62	11,21	13,70
HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,fi(90)}$		0,58	0,91	1,31	2,44	3,81	5,49	7,14	8,73
HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	$V_{Rk,s,fi(120)}$		0,47	0,69	0,93	1,74	2,72	3,92	5,10	6,24
	V _{Rk,s,fi(30)}	_ _[kN]-	2,70	4,93	7,93	14,77	23,06	33,23	43,20	52,81
Gewindestangen CRC III und CRC V (Tabelle A1)	$V_{Rk,s,fi(60)}$		1,93	3,49	5,56	10,37	16,18	23,31	30,31	37,05
	$V_{Rk,s,fi(90)}$		1,17	2,04	3,20	5,96	9,30	13,40	17,42	21,29
	$V_{Rk,s,fi(120)}$		0,79	1,32	2,01	3,75	5,86	8,44	10,98	13,42

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Feuerwiderstand gegen Stahlversagen unter Zug- und Querbeanspruchung	Anhang C27

Tabelle C31: Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung ohne Hebelarm für Betonstahl im Brandfall

Betonstahl entsprechend Anhang A		ф 8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Betonstahl	$V_{Rk,s,fi(30)}$	0,5	1,2	2,3	3,1	4,0	6,3	9,8	10,6	12,3	14,1	16,1
	V _{Rk,s,fi(60)}	0,5	1,0	1,7	2,3	3,0	4,7	7,4	8,0	9,2	10,6	12,1
	$V_{Rk,s,fi(90)}$ [kN]	0,4	0,8	1,5	2,0	2,6	4,1	6,4	6,9	8,0	9,2	10,5
	$V_{Rk,s,fi(120)}$	0,3	0,6	1,1	1,5	2,0	3,1	4,9	5,3	6,2	7,1	8,0

Tabelle C32: Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung mit Hebelarm für Gewindestangen im Brandfall

Gewindestangen entsprechend Anhang A			M8	M10	M12	M16	M20	M24	M27	M30
HAS 5.8, HAS-U 5.8, HIT-V 5.8, AM 8.8	M ⁰ _{Rk,s,fi(30)}		1,07	2,33	4,36	11,08	21,60	37,36	55,40	74,85
HAS 5.8 HDG, HAS-U 5.8 HDG, HIT-V-F 5.8, AM-HDG 5.8	$M^0_{Rk,s,fi(60)}$	[Nm]- 	0,83	1,75	3,19	8,13	15,85	27,41	40,65	54,92
HAS 8.8, HAS-U 8.8, HIT-V 8.8, AM 8.8	M ⁰ _{Rk,s,fi(90)}		0,60	1,18	2,03	5,18	10,10	17,46	25,90	34,99
HAS 8.8 HDG, HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	M ⁰ _{Rk,s,fi(120)}		0,48	0,89	1,45	3,70	7,22	12,49	18,52	25,03
	M ⁰ _{Rk,s,fi(30)}	[Nm]-	2,76	6,35	12,33	31,34	61,10	105,6	156,6	211,7
HAS A4, HAS-U A4, HIT-V-R HAS-U-HCR, HIT-V-HCR	$M^0_{Rk,s,fi(60)}$		1,98	4,49	8,65	21,99	42,87	74,14	109,9	148,5
Gewindestangen CRC III und CRC V (Tabelle A1)	M ⁰ _{Rk,s,fi(90)}		1,20	2,64	4,97	12,64	24,64	42,61	63,19	85,38
,	$M^0_{Rk,s,fi(120)}$		0,80	1,71	3,13	7,96	15,52	26,85	39,81	53,80

Tabelle C33: Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung mit Hebelarm für Betonstahl im Brandfall

Betonstahl entsprechend Anhang A		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Betonstahl	M ⁰ _{Rk,s,fi(30)}	0,5	1,8	4,1	6,5	9,7	18,8	36,8	41,4	51,7	63,6	77,2
	M ⁰ _{Rk,s,fi(60)}	0,5	1,5	3,1	4,8	7,2	14,1	27,6	31,1	38,8	47,7	57,9
	$M^0_{Rk,s,fi(90)}$ [Nm]	0,4	1,2	2,6	4,2	6,3	12,3	23,9	26,9	33,6	41,4	50,2
	M ⁰ _{Rk,s,fi(120)}	0,3	0,9	2,0	3,2	4,8	9,4	18,4	20,7	25,9	31,8	38,6

Injektionssystem Hilti HIT-HY 200-A V3 und HIT-HY 200-R V3	
Leistung Feuerwiderstand gegen Stahlversagen unter Querbeanspruchung	Anhang C28