

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-20/0201 vom 16. Mai 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Chemofast Injektionssystem EP 500 für Beton

Verbunddübel und Verbundspreizdübel zur Verankerung im Beton

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich

DEUTSCHLAND

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23

47877 Willich
DEUTSCHLAND

24 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-20/0201 vom 13. Juli 2020

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z128064.25 8.06.01-122/25

Seite 2 von 24 | 16. Mai 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 24 | 16. Mai 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Chemofast Injektionssystem EP 500 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel EP 500 und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen \emptyset 8 bis \emptyset 32.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung				
Charakteristischer Widerstand unter Zugbeanspruchung	Siehe Anhang				
(statische und quasi-statische Einwirkungen)	B 2, C 1, C 2, C 3 und C 5				
Charakteristischer Widerstand unter Querbeanspruchung	Siehe Anhang				
(statische und quasi-statische Einwirkungen)	C 1, C 4 und C 6				
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 7 und C 8				
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet				

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 24 | 16. Mai 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

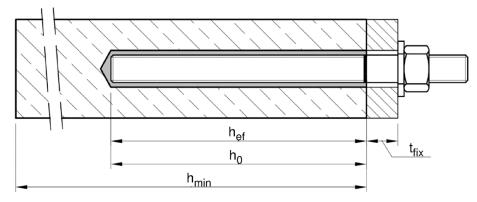
Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

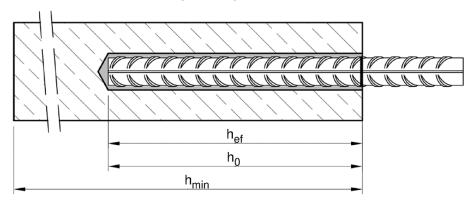
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 16. Mai 2025 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Stiller


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder

Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

 $\mathsf{t}_{\mathsf{fix}}$

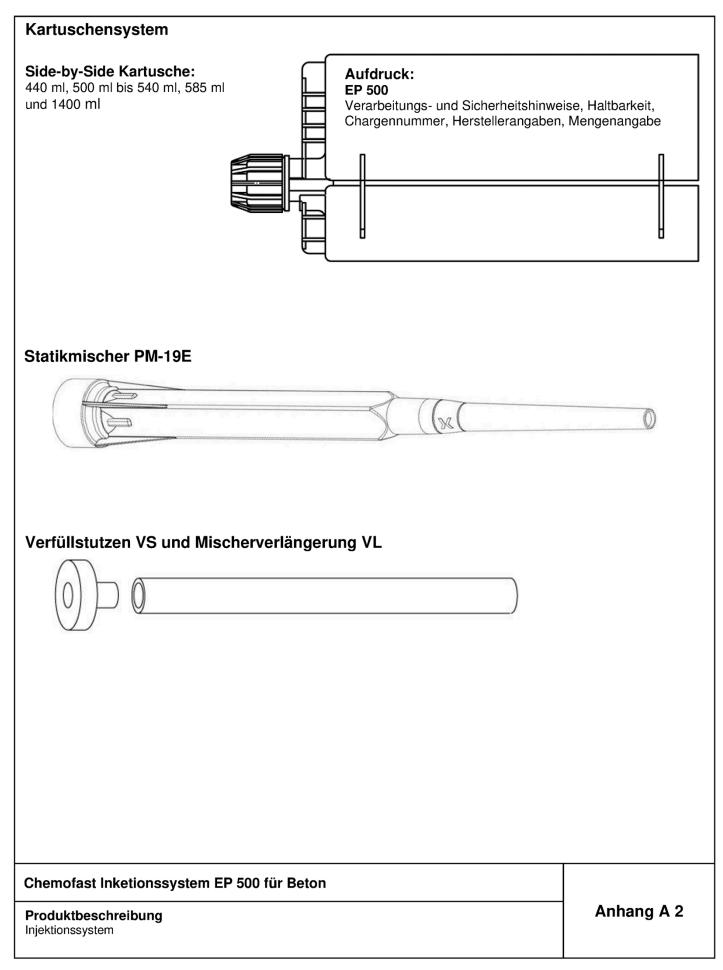
Dicke des Anbauteils

h_{ef}

Effektive Verankerungstiefe

 h_{\min}

= Mindestbauteildicke


h₀ = Bohrlochtiefe

Chemofast Inketionssystem EP 500 für Beton

Produktbeschreibung
Einbauzustand

Anhang A 1

Gewindestange M8 bis M30 mit Unterlegscheibe und Sechskantmutter

Markierung der Verankerungstiefe

Lges

hef

1 3a 2

Handelsübliche Gewindestange mit:

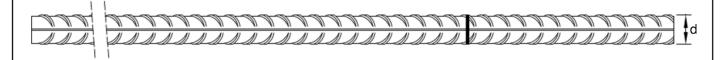
- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Dokument sollte aufbewahrt werden.
- Markierung der Setztiefe

Für feuerverzinkte Elemente sind die Anforderungen an die Kombination von Muttern und Gewindestangen gemäß EN ISO 10684:2004+AC:2009 Anhang F zu berücksichtigen.

Chemofast Inketionssystem EP 500 für Beton

Produktbeschreibung
Gewindestangen

Anhang A 3


Produktbeschreibung Werkstoffe Gewindestangen

eil	Benennung	Werkstoff							
- ga - fe	euerverzinkt ≥ 40 µm g	tahl gemäß EN ISO 683-4 emäß EN ISO 4042:2022 emäß EN ISO 1461:2022 emäß EN ISO 17668:2016	oder und E		,				
		Festigkeitsklasse	Charakteristische Charakt			ristische enze Bruchdehnung			
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	² A ₅ > 8%			
1	Gewindestange		4.8	f _{uk} = 400 N/mm ²	f _{vk} = 320 N/mm ²	² A ₅ > 8%			
'	dewindestange	gemäß		$f_{uk} = 500 \text{ N/mm}^2$	f _{vk} = 300 N/mm ²	² A ₅ > 8%			
		EN ISO 898-1:2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²				
			8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²				
			4	für Gewindestange	J 1''				
2	Sechskantmutter	gemäß EN ISO 898-2:2022	5	für Gewindestang					
		EN 150 696-2:2022	8	für Gewindestange	en der Klasse 8.8	3			
3	Unterlegscheibe	Stahl, galvanisch ver: (z.B.: EN ISO 887:20 EN ISO 7094:2000)							
lict	htrostender Stahl A2 (Werkstof htrostender Stahl A4 (Werkstof hkorrosionsbeständiger Stah	f 1.4401 / 1.4404 / 1.4571	/ 1.43	362 oder 1.4578, ge , gemäß EN 10088	emäß EN 10088- -1:2023)	1:2023)			
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristisch Streckgrenze	Bruchdehnung			
1	Gewindestange 1)2)		50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	$A_5 \ge 8\%$			
		gemäß EN ISO 3506-1:2020	70	$f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 450 N/mm²	$A_5 > 8\%$			
		214 100 0000 1:2020	80	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 600 \text{ N/mm}^2$	² A ₅ > 8%			
		gemäß	50						
2	Sechskantmutter ¹⁾²⁾	EN ISO 3506-1:2020	70	für Gewindestangen der Klasse 70 für Gewindestangen der Klasse 80					
3	Unterlegscheibe	A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000)	/ 1.44 29 ode	307 / 1.4311 / 1.456 304 / 1.4571 / 1.436 307 er 1.4565, EN 1008	67 oder 1.4541, E 62 oder 1.4578, E 8-1:2023	EN 10088-1:2023 EN 10088-1:2023			
	Festigkeitsklasse 70 oder 80 für G Festigkeitsklasse 80 nur für nichtro	· ·			ahl HCR				
 Ch	emofast Inketionssystem E	EP 500 für Beton							

Betonstahl Ø8 bis Ø32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h_{rib} ≤ 0,07d betragen
 (d: Nenndurchmesser des Stabes; h_{rib}: Rippenhöhe des Stabes)

Table A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Chemofast Inketionssystem EP 500 für Beton	
Produktbeschreibung	Anhang A 5
Betonstahl	
Werkstoffe Betonstahl	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung (Statische und quasi-statische Lasten)

	Nutzungsdauer 50 Jahre					
Verankerungsgrund	ungerissener Beton	gerissener Beton				
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, ∅8 bis ∅32					
DD: Diamantbohren	Leistung nicht bewertet					
Temperaturbereich:	I: -40° C bis $+40^{\circ}$ C ¹ II: -40° C bis $+60^{\circ}$ C ² III: -40° C bis $+70^{\circ}$ C ³					

^{1) (}max. Langzeit-Temperatur +24 C und max. Kurzzeit-Temperatur +40 C)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A2:2021.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A2:2021.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) und Pressluftbohrer (CD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Chemofast Inketionssystem EP 500 für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +35 C und max. Kurzzeit-Temperatur +60 C)

^{3) (}max. Langzeit-Temperatur +43 C und max. Kurzzeit-Temperatur +70 C)

Tabelle B1: Montagekennwerte für Gewindestangen

Gewindestange	<u> </u>					M12	M16	M20	M24	M27	M30
Durchmesser Gewind	destange	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	sser	d ₀	[mm]	10	12	14	18	22	28	30	35
Effektive Verankerun	acticfo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellektive veralikerun	gstiele	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Bauteil	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmomen	Maximales Montagedrehmoment		[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Mindestbauteildicke		h _{min}	[mm]	h _{ef} + 30) mm ≥ 1	00 mm			$h_{\text{ef}} + 2d_0$		
Minimaler Achsabstand		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimaler Randabsta	Minimaler Randabstand		[mm]	35	40	45	50	60	65	75	80

¹⁾ Maximales Montagedrehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B2: Montagekennwerte für Betonstahl

Betonstahl			Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effektive	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h _{min}	[mm]	1	h _{ef} + 30 mm 100 mm				he	f + 2d ₀			
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ beide Bohrernenndurchmesser können verwendet werden

Chemofast Inketionssystem EP 500 für Beton	
Verwendungszweck Montagekennwerte	Anhang B 2

Tabelle B	Tabelle B3: Parameter für Reinigungs- und Installationszubehör												
				pannum)	Herris and								
Gewinde- stangen	Betonstahl	d ₀ Bohrer - Ø HD, HDB, CD	I	d _b d _{b,min} Verfüll- Bürsten - Ø Bürsten - Ø		Installationsrichtung und Anwendung von Verfüllstutzen							
[mm]	[mm]	[mm]		[mm]	[mm]		1		1				
M8	8	10	RB10	11,5	10,5								
M10	8 / 10	12	RB12	13,5	12,5	1/4	بنمالت استاما		ما ا ما				
M12	10 / 12	14	RB14	15,5	14,5	l re	in venuisii	ıtzen notwer	laig				
	12	16	RB16	17,5	16,5								
M16	14	18	RB18	20,0	18,5	VS18							
	16	20	RB20	22,0	20,5	VS20							
M20		22	RB22	24,0	22,5	VS22							
	20	25	RB25	27,0	25,5	VS25	h . >	h .>					
M24		28	RB28	30,0	28,5	VS28	h _{ef} > 250 mm	h _{ef} >	alle				
M27		30	RB30	31,8	30,5	VS30		250 mm					
	24 / 25	32	RB32	34,0	32,5	VS32							
M30	28	35	RB35	37,0	35,5	VS35							
	32	40	RB40	43,5	40,5	VS40							

Reinigungs- und Installationszubehör

HDB - Hohlbohrersystem

Handpumpe

(Volumen 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20$ mm)

Bürste RB

Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer Durchflussmenge von Minimum 150 m³/h (42 l/s).

Druckluftpistole

(min 6 bar)

Verfüllstutzen VS

Bürstenverlängerung RBL

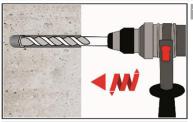
Chemofast Inketionssystem EP 500 für Beton

Verwendungszweck

Parameter Bürsten, Verfüllstzuten, maximale Verankerungstiefe und Mischerverlängerung

Anhang B 3

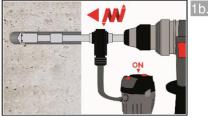
Tabelle B4:	Verarl	peitungs- und	Aushärtezeiten	
Temperatur	im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
	Т		t _{work}	t _{cure}
+ 5°C	bis	+ 9°C	80 min	60 h
+ 10°C	bis	+ 14 °C	60 min	48 h
+ 15°C	bis	+ 19°C	40 min	24 h
+ 20 °C	bis	+ 24 °C	30 min	12 h
+ 25 °C	bis	+ 34 °C	12 min	10 h
+ 35 °C	bis	+ 39 °C	8 min	7 h
	+ 40 °C		8 min	4 h
Kartı	schentemp	peratur	+5°C bis	+40°C


¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Chemofast Inketionssystem EP 500 für Beton	
Verwendungszweck Reinigungs- und Installationszubehör Verarbeitungs- und Aushärtezeiten	Anhang B 4

Setzanweisung

Bohrloch erstellen


Hammerbohren (HD) / Druckluftbohren (CD)

Bohrloch für die erforderliche Verankerungstiefe erstellen.

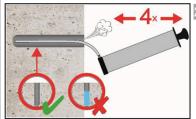
Bohrerdurchmesser gemäß Tabelle B1 oder B2.

Fehlbohrungen sind zu vermörteln.

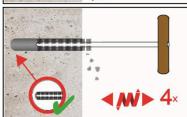
Weiter mit Schritt 2.

Hammerbohren mit Hohlbohrer (HDB) (siehe Anhang B 4)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1 oder B2. Das Hohlbohrersystem entfernt den Staub und reinigt das Bohrloch.


Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

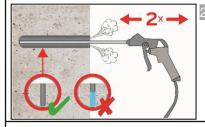
Weiter mit Schritt 3.


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Handpumpen-Reinigung (MAC)


für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ (nur in ungerissenem Beton)

Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.


Bohrloch mindestens 4x mit Bürste RB gemäß Tabelle B3 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBLverwenden) ausbürsten.

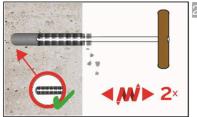
Abschließend erneut Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

Druckluft-Reinigung (CAC):

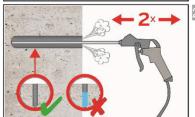
Alle Bohrlochdurchmesser in gerissenem und ungerissenem Beton

Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

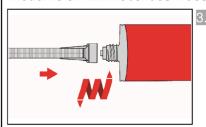
Chemofast Inketionssystem EP 500 für Beton


Verwendungszweck

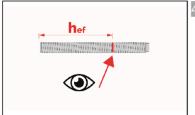
Setzanweisung


Anhang B 5

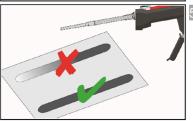
Setzanweisung (Fortsetzung)



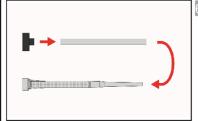
Bohrloch mindestens 2x mit Bürste RB gemäß Tabelle B3 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.


Abschließend Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.



Statikmischer PM-19E, aufschrauben und Kartusche in geeignetes Auspressgerät einlegen.


Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 4) und bei neuen Kartuschen, neuen Statikmischer verwenden.

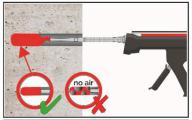
Verankerungstiefe auf der Ankerstange markieren. Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue oder rote Mischfarbe eingestellt hat (mindestens 3 volle Hübe)

Verfüllstutzen VS und Mischerverlängerung VL sind gem. Tabelle B3 für die folgenden Anwendungen zu verwenden:

- In horizontaler und vertikaler Richtung nach unten: Bohrer-Ø d₀ ≥ 18 mm und Setztiefe h_{ef} > 250mm
- In vertikaler Richtung nach oben: Bohrer-Ø d₀ ≥ 18 mm
 Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.

Chemofast Inketionssystem EP 500 für Beton


Verwendungszweck

Setzanweisung (Fortsetzung)

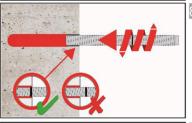
Anhang B 6

Setzanweisung (Fortsetzung)

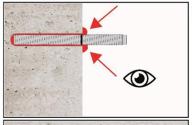
Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung verwenden) her ca. zu 2/3 mit Mörtel befüllen.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.

Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 4) beachten.

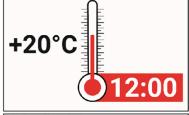


Injizieren mit Verfüllstutzen VS:


Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch ca. zu 2/3 mit Mörtel befüllen.

Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt.

Temperaturabhängige Verarbeitungszeiten twork (Anhang B 4) beachten.


Ankerstange mit leichten Drehbewegungen bis zur Markierung einführen .

Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit twork ab Schritt 7 wiederholen.

Bei Anwendungen in vertikaler Richtung nach oben ist die Ankerstange zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit tcure (Anhang B 4) muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten.

Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Tabelle B1) beachten.

Chemofast Inketionssystem EP 500 für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 7

Т	abelle C1:	Charakteristische Werte Stahlquertragfähigkeit vo			_	_	eit un	d				
Ge	ewindestange				M8	M10	M12	M16	M20	M24	M27	M30
Sp	annungsquersc	hnitt	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cr	narakteristisch	e Zugtragfähigkeit, Stahlversagei	n ¹⁾			'						
Sta	ahl, Festigkeitsk	lasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sta	ahl, Festigkeitsk	lasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Sta	ahl, Festigkeitsk	asse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Nic	chtrostender Sta	ahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cr	narakteristisch	e Zugtragfähigkeit, Teilsicherheit	•	rt ²⁾								
Sta	ahl, Festigkeitsk	lasse 4.6 und 5.6	γ _{Ms,N}	[-]				2,0				
Sta	ahl, Festigkeitsk	lasse 4.8, 5.8 und 8.8	γ _{Ms,N}	[-]				1,5				
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	γ _{Ms,N}	[-]	2,86							
Nichtrostender Stahl A2, A4 und HCR, Klasse 70				[-]	1,87							
Nic	Nichtrostender Stahl A2, A4 und HCR, Klasse 70 $\gamma_{Ms,N}$ [-] 1,87 Nichtrostender Stahl A4 und HCR, Klasse 80 $\gamma_{Ms,N}$ [-] 1,6											
Cr	narakteristisch	e Quertragfähigkeit, Stahlversage	en 1)									
_	Stahl, Festigke	eitsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
larn	Stahl, Festigke	eitsklasse 5.6 und 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Hebelarm	Stahl, Festigke	eitsklasse 8.8	V° _{Rk.s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ť	Nichtrostender	Stahl A2, A4 und HCR, Klasse 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Ohne	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	V° _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)
	Nichtrostender	Stahl A4 und HCR, Klasse 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigke	itsklasse 4.6 und 4.8	M ^⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
ırm	Stahl, Festigke	itsklasse 5.6 und 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigke	itsklasse 8.8	M⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
	Nichtrostender	Stahl A2, A4 und HCR, Klasse 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
ΜĬ	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Nichtrostender	Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
		e Quertragfähigkeit, Teilsicherhe	itsbeiw	ert ²⁾								
Sta	ahl, Festigkeitsk	lasse 4.6 und 5.6	γ _{Ms,V}	[-]				1,67	7			
Sta	ahl, Festigkeitsk	lasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,25	5			
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	γ _{Ms,V}	[-]				2,38	3			
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]				1,56	3			
Nic	chtrostender Sta	ahl A4 und HCR, Klasse 80	γ _{Ms,V}	[-]				1,33	3			
41												

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Dübelvariante nicht in ETA enthalten

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Charakteristische Werte der Stahltragfähigkeit und Stahlquerzugtragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasistatischer Belastung

Dübelgröße				Alle Dübelarten und -größen
Betonausbruch				
ungerissener Beto	on	k _{ucr,N}	[-]	11,0
gerissener Beton		k _{cr,N}	[-]	7,7
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}
Spalten				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Randabstand	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Achsabstand	·	s _{cr,sp}	[mm]	2 c _{cr,sp}

Chemofast Inketionssystem EP 500 für Beto	n
---	---

Leistungen

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 2

Gewindestange				M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen			ı									
Charakteristische Zugtra	gfähigkeit	N _{Rk,s}	[kN]			$A_s \cdot f_{uk}$	(oder si	ehe Tab	elle C1)			
Teilsicherheitsbeiwert		$\gamma_{Ms,N}$	[-]				siehe Ta	belle C	1			
Kombiniertes Versagen												
Charakteristische Verbun	ndtragfähigkeit	im ungeris	senen Beto	n C20/2	25							
I: 24°C/40°C tro	ckener und uchter Beton,			15	15	15	14	14	13	13	13	
<u>ੋ</u> ਹੁੰ Ⅱ: 35°C/60°C so	wie assergefülltes	^τ Rk,ucr	[N/mm ²]	10	10	10	9,5	9,5	9,0	9,0	9,0	
111.40 0/70 0	hrloch			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	
Charakteristische Verbun	ndtragfähigkeit	im gerisse	nen Beton (020/25								
Li 24°C/40°C tro	ockener und uchter Beton,	[₹] Rk,cr	[N/mm²]	7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0	
্টু টু II: 35°C/60°C so	wie assergefülltes			5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5	
⊞:43°C/70°C	ohrloch			3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0	
Reduktionsfaktor ψ^0_{sus} ir	n gerissenen ι	und ungeris	ssenen Beto	n C20/2	25							
់	I: 24°C/40°C trockener und				0,60							
ভূ ভূ Ⅱ: 35°C/60°C so	uchter Beton, wie assergefülltes	Ψ ⁰ sus	[-]	0,60								
HI:43°C/70°C BC	hrloch			0,60								
Erhöhungsfaktor für Beto	n	Ψ_{C}	[-]				(f _{ck} / 2	20) ^{0,1}				
Charakteristische			τ _{Rk,ucr} =			Ψ	/ _c • τ _{Rk,ucr} (C20/25)					
Verbundtragfähigkeit in A von der Betonfestigkeitsk			τ _{Rk,cr} =	ψ _c • τ _{Rk,cr} (C20/25)								
Betonausbruch	ilabbo		1 111,01				,					
Relevante Parameter							siehe Ta	belle C	2			
Spalten												
Relevante Parameter							siehe Ta	belle C	2			
Montagebeiwert			'									
für trockenen und feuchte oder wassergefülltes Boh		γinst	[-]				1	,4				

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 3

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ Rk,s	[kN]		0	0,6 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ Rk,s	[kN]		0),5 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	1		
Duktilitätsfaktor	k ₇	[-]					1,0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	,2 · W _{el}	· f _{uk} (od	er siehe	Tabelle	C1)	
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	21		
Betonausbruch auf der lastabgewandt	en Seite									
Faktor	k ₈	[-]				2	2,0			
Montagebeiwert	γinst	[-]	1,0							
Betonkantenbruch										
Effektive Dübellänge	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm							
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagebeiwert	γinst	[-]					1,0			

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 4

Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen			20	2 10	~ !_	<i>2</i> 14	2 10	2 -0	~ 1	2 20	2 20	201
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms.N}	[-]						4 2)				
Kombiniertes Versagen durch Herauszie			sbruc	:h			.,					
Charakteristische Verbundtragfähigkeit im												
늘 CI: 24°C/40°C trockener und			14	14	14	12	12	12	12	11	11	11
trockener und feuchter Beton, sowie wassergefülltes III: 43°C/70°C II	^τ Rk,ucr	[N/mm ²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
Bohrloch			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Charakteristische Verbundtragfähigkeit im	gerissene	en Beton C	20/25	j								
불 대: 24°C/40°C trockener und	[₹] Rk,cr	[N/mm²]	6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
trockener und feuchter Beton, sowie wassergefülltes III: 43°C/70°C III: 43°C/70°C Bohrloch			4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
Bohrloch			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduktionsfaktor ψ^0_{Sus} im gerissenen und	ungeriss	enen Beto	n C20	/25								
늘 _ I: 24°C/40°C trockener und	0°C trockener und				0,60							
trockener und feuchter Beton, sowie wassergefülltes III: 43°C/70°C II	ψ ⁰ sus	[-]	0,60									
Bohrloch			0,60									
Erhöhungsfaktor für Beton	Ψc	[-]					(f _{ck} / 2	20) ^{0,1}				
Charakteristische Verbundtragfähigkeit in		τ _{Rk,ucr} =	Ψ _C • τ _{Rk,ucr} (C20/25)									
Abhängigkeit von der		τ _{Rk,cr} =	ψ _c • τ _{Rk,cr} (C20/25)									
Betonfestigkeitsklasse Betonausbruch		T IX,CI					T IIV,C	,ı `				
Relevante Parameter			siehe Tabelle C2									
Spalten												
Relevante Parameter						sie	ehe Ta	belle (C2			
Montagebeiwert												
für trockenen und feuchten Beton oder wassergefülltes Bohrloch $\gamma_{\rm inst}$ [-]				1,4								
1) f _{IJk} ist den Spezifikationen des Betonstahl	s zu entne	ehmen										

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 5

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm		•							•			
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]	$0.50 \cdot A_s \cdot f_{uk}^{2)}$									
Stahlspannungsquerschnitt A _s		[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾									
Duktilitätsfaktor	k ₇	[-]	1,0									
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} 1)									
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,52)									
Betonausbruch auf der lastabge	ewandten S	eite										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	γ _{inst}	[-]					1	,0				
Betonkantenbruch												
Effektive Dübellänge	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mn)mm)			
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Montagebeiwert	γinst	[-]	1,0									

²⁾ Sofern andere nationalen Regelungen fehlen

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 6

Gewindestange			М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton C	20/25 unter sta	tischer und quas	si-statis	cher Bel	astung					
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
24°C/40°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperaturbereich II: 35°C/60°C	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Temperaturbereich III: 43°C/70°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077
Gerissener Beton C20	/25 unter statis	cher und quasi-s	statisch	er Belas	tung					
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
24°C/40°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
35°C/60°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121
43°C/70°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau; \hspace{1cm} \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-Faktor}\cdot \tau;$

Tabelle C8: Verschiebung unter Querbeanspruchung¹⁾

Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30			
Gerissener und ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle	δ _{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V;$

V: einwirkende Querlast

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-Faktor}\cdot\text{V};$

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 7

Tabelle C9: Verschiebung unter Zugebanspruchung¹)												
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung												
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
I: 24°C/40°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
II: 35°C/60°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
III: 43°C/70°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Gerissener Beton C	20/25 unter	statischer und	quasi-	statisc	ner Bel	astung						
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
I: 24°C/40°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
II: 35°C/60°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
III: 43°C/70°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C10: Verschiebung unter Querbeanspruchung 1)

Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Gerissener und ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung												
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V_{\infty}}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta v_0 = \delta v_0\text{-Faktor} \cdot V;$

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

Chemofast Inketionssystem EP 500 für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 8