

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-20/0201 of 16 May 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Chemofast Injection system EP 500 for concrete
Product family to which the construction product belongs	Bonded fastener and bonded expansion fastener for use in concrete
Manufacturer	CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND
Manufacturing plant	CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND
This European Technical Assessment contains	24 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-02-0601, Edition 12/2023
This version replaces	ETA-20/0201 issued on 13 July 2020

Page 2 of 24 | 16 May 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 16 May 2025

Specific Part

1 Technical description of the product

The "Chemofast Injection System EP 500 for concrete" is a bonded anchor consisting of a cartridge with injection EP 500 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5		
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6		
Displacements under short-term and long-term loading	See Annex C 7 and C 8		
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No Performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 24 | 16 May 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

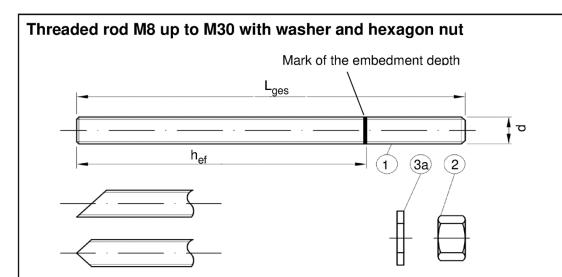
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 16 May 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Installation threaded rod M8 up to M30 prepositioned installation or push through installation (annular gap filled with mortar) h_{ęf} t_{fix} h₀ h_{min} Installation reinforcing bar Ø8 up to Ø32 71 71 71 7 7 7 7 7 7/ 7 h_{ef} h₀ h_{min} thickness of fixture h₀ nominal drill hole diameter t_{fix} = = h_{ef} effective anchorage depth = h_{min} minum thickness of member =

Chemofast Injection system EP 500 for concrete


Product description Installed condition

Annex A 1

Cartridge system	
Side-by-Side Cartridge: 440 ml, 500 ml up to 540 ml, 585 ml and 1400 ml Processing and safety instructions, sl number, manufacturer's information,	nelf life, charge quantity information
Static mixer PM-19E	
	Ø
Diston plug VS and mixer extension VI	
Piston plug VS and mixer extension VL	
Chemofast Injection system EP 500 for concrete	
Product description Injection system	Annex A 2

Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

For hot dip galvanized elements, the requirements with regards to the combination of nuts and rods according to EN ISO 10684:2004+AC:2009 Annex F shall be considered.

Chemofast Injection system EP 500 for concrete

Product description Threaded rod Annex A 3

Part	ble A1: Mate	erials							
	Designation	Material							
z h	nc plated ot-dip galvanised	el acc. to EN ISO 683-4:: ≥ 5 µm acc. to EN ISO ≥ 40 µm acc. to EN ISO ≥ 45 µm acc. to EN ISO	4042 1461	2:2022 or :2022 and EN ISO 10684:	2004+AC:2009 or				
		Property class	1700	Characteristic steel ultimate tensile strength	Characteristic ste yield strength	eel Elongation at fracture			
			4.6	f _{uk} = 400 N/mm ²	$f_{vk} = 240 \text{ N/mm}^2$	A ₅ > 8%			
1	Threaded rod			f _{uk} = 400 N/mm ²	$f_{vk} = 320 \text{ N/mm}^2$	A ₅ > 8%			
'	Inicaded fou		5.6	f _{uk} = 500 N/mm ²	$f_{vk} = 300 \text{ N/mm}^2$	A ₅ > 8%			
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	$f_{vk} = 400 \text{ N/mm}^2$	A ₅ > 8%			
				f _{uk} = 800 N/mm ²	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ > 8%			
		I	4	for anchor rod class 4.6 o					
2	Hexagon nut	acc. to EN ISO 898-2:2022	5	for anchor rod class 5.6 o	r 5.8				
			8	for anchor rod class 8.8					
3	Washer			alvanised or sherardized ISO 7089:2000, EN ISO 7	093.2000 ~ EN 19				
Stai	nless steel A4 (Ma	terial 1.4401 / 1.4404 / 1	.4571	/ 1.4567 or 1.4541, acc. tu / 1.4362 or 1.4578, acc. tu 1.4565, acc. to EN 10088	o EN 10088-1:202 -1:2023)	23)			
		Property class		Characteristic steel ultimate tensile strength	Characteristic ste yield strength	eel Elongation at fracture			
-	\mathbf{T}_{b} up a dia di up d $(1)^2$	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{vk} = 210 \text{ N/mm}^2$	A ₅ ≥ 8%			
1	1 Threaded rod ¹⁾²⁾		70		$f_{vk} = 450 \text{ N/mm}^2$	A ₅ > 8%			
	EN ISO 3506-1:2020	80	$f_{uk} = 800 \text{ N/mm}^2$	$f_{vk} = 600 \text{ N/mm}^2$	A ₅ > 8%				
			50	for anchor rod class 50	ук – соо ңилил				
2	Hexagon nut 1)2)	acc. to	70	for anchor rod class 50					
_		EN ISO 3506-1:2020	80	for anchor rod class 80					
		A4: Material 1.4401 / 1 HCR: Material 1.4529	.4404 or 1.4 <u>6, EN</u> xagon		78, acc. to EN 100 023	88-1:2023			

Re	inforcing bar (rebar): ø8 up to ø3	2	
	and pannanana	リルリリリリリリリリン	1111111111
	and ananananan	MANAAAAAA MAAAAA	AAAAAAA d
-		according to EN 1992-1-1:2004+AC:2010	
-	Rib height of the bar shall be in the rang (d: Nominal diameter of the bar; h _{rib} : Ril		
	(d. Nominal diameter of the bar, h _{rib} . th	s height of the bar)	
т _а	ble A2: Materials Rebar		
1a	ble A2. Materials hebai		
Part	Designation	Material	
Reb	ar	,	
		Bars and rebars from ring class B or C	
1	Reinforcing steel according to EN 1992-1-1:2004+AC:2010, Annex C	fyk und k according to NDP or NCI according to) EN 1992-1-1/NA
	EN 1932-1-1.2004+A0.2010, Alliex 0	$f_{uk} = f_{tk} = k \cdot f_{yk}$	
Ch	emofast Injection system EP 500 for c	oncrete	
Pro	duct description		Annex A 5
Rei	nforcing bar		
	erials reinforcing bar		

Specification of the intended use						
Fasteners subject to (Static and quasi-static load	ls):					
	Working life 50 ye	ears				
Base material	Uncracked concrete	Base material				
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 bis M30, ∅8 bis ∅32					
DD: Diamond drilling	No performance ass	sessed				
Temperature Range:	Temperature Range: I: -40° C to $+40^{\circ}$ C ¹⁾ II: -40° C to $+60^{\circ}$ C ²⁾ III: -40° C to $+70^{\circ}$ C ³⁾					
 ¹⁾ (max. long-term temperature +24°C and max. short-terr ²⁾ (max. long-term temperature +35°C and max. short-terr ³⁾ (max. long-term temperature +43°C and max. short-terr 	n temperature +60°C)					
Base materials:						
 Compacted, reinforced or unreinforced norma EN 206:2013 + A2:2021. Strength classes C20/25 to C50/60 according 	-	ng to				
Use conditions (Environmental conditions):						
 Structures subject to dry internal conditions (a For all other conditions according to EN 1993- class: Stainless steel Stahl A2 according to Ai Stainless steel Stahl A4 according to Ai High corrosion resistance steel HCR ai 	-1-4:2006 + A1:2015 corresponding to c nnex A 4, Table A1: CRC II nnex A 4, Table A1: CRC III					
Design:		v				
 Verifiable calculation notes and drawings are The position of the fastener is indicated on the reinforcement or to supports, etc.). 						
 Fasteners are designed under the responsibili The fasteners are designed in accordance to Edition February 2018 						
Installation:						
 Dry, wet concrete or flooded bore holes (not sea-water). Hole drilling by hammer (HD), hollow (HDB) or compressed air mode(CD). Overhead installation allowed. Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site 						
Chemofast Injection system EP 500 for concre	te					
Intended Use Specifications		Annex B 1				

Threaded rod					Ν	/18	M10	M12	M16	M20	M24	M27	M30
Diameter of element d			l = d _{nor}	n [mr	n]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter		d		n] [.]	10	12	14	18	22	28	30	35
Effective embedmer	at dopth		h _{ef,mi}	n [mr	n] (50	60	70	80	90	96	108	120
			h _{ef,ma}	x [mr	n] 1	60	200	240	320	400	480	540	600
Diameter of	Prepositio	ned installa	tion d _f :	≤ [mr	n]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push th	rough instal	lation d	l _f [mr	n] [.]	12	14	16	20	24	30	33	40
Maximum installation	n torque	r	nax T _{in}	st [Nr	n] ⁻	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness	of member		h _{mi}	n [mr	n]		+ 30 m 100 mn		I	h	ef + 2d ₀	ı	
Minimum spacing			s _{mi}	n [mr	n] 4	40	50	60	75	95	115	125	140
Minimum edge dista	nce		c _{mi}	_	n] (35	40	45	50	60	65	75	80
Reinforcing bar		on param		Ø 8 ¹⁾	Ø 10 ¹⁾	_ Ø 12	¹⁾ Ø1	_			Ø 25 ¹⁾		Ø3
Diameter of element		$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole dia	ameter	d ₀	[mm]	10 12	12 14		_	20	25	30 32			40
Effective embedmen	t depth	h _{ef,min}		60	60	70	75	80	90	96	100	112	128
		h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness o	of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm		$h_{ef} + 2d_0$						
Minimum spacing		s _{min}		40	50	60	70	75	95	120	120	130	150
Minimum edge distar ¹⁾ both nominal drill		с _{тіп}		35	40	45	50	50	60	70	70	75	85

Chemofast Injection system EP 500 for concrete

Intended Use

Annex B 2

Installation parameters

Table B3:	Parame	ter cleaning	g and s	setting	tools								
	rrrr			aaaaaad	appropriate.								
Threaded rod	Reinforcing bar	d ₀ Drill bit - Ø HD, HDB, CD	d Brus	^ь h - Ø	d _{b,min} min. Brush - Ø	Piston plug		n direction a piston plug	and use of				
[mm]	[mm]	[mm]		[mm]	[mm]		↓	\rightarrow					
M8	8	10	RB10	11,5	10,5			· · · · · ·					
M10	8 / 10	12	RB12	13,5	12,5	1	No plug required						
M12	10 / 12	14	RB14	15,5	14,5								
	12	16	RB16	17,5	16,5								
M16	14	18	RB18	20,0	18,5	VS18							
	16	20	RB20	22,0	20,5	VS20							
M20		22	RB22	24,0	22,5	VS22]						
	20	25	RB25	27,0	25,5	VS25		h _{ef} > 250 mm					
M24		28	RB28	30,0	28,5	VS28	h _{ef} >		all				
M27		30	RB30	31,8	30,5	VS30	250 mm						
	24 / 25		32		34,0	32,5	VS32]]			
M30	28	35	RB35	37,0	35,5	VS35]						
	32	40	RB40	43,5	40,5	VS40	1						
•	and installa			5	Expert I minimur	Hohlbohrer m negative	and a class pressure of	s of Heller D M hoover w 253 hPa and	ith a				
Hand pump (Volumen 75) 50 ml, h _o ≤ 10	d _s , d ₀ ≤ 20mm)	CARNORAT			essed air	50 m³/h (42 tool	<i>vs)</i> .					

Brush RB

Piston Plug VS Chemofast Injection system EP 500 for concrete Annex B 3

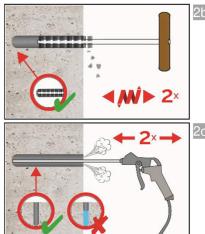
Cleaning and setting tools

Intended Use

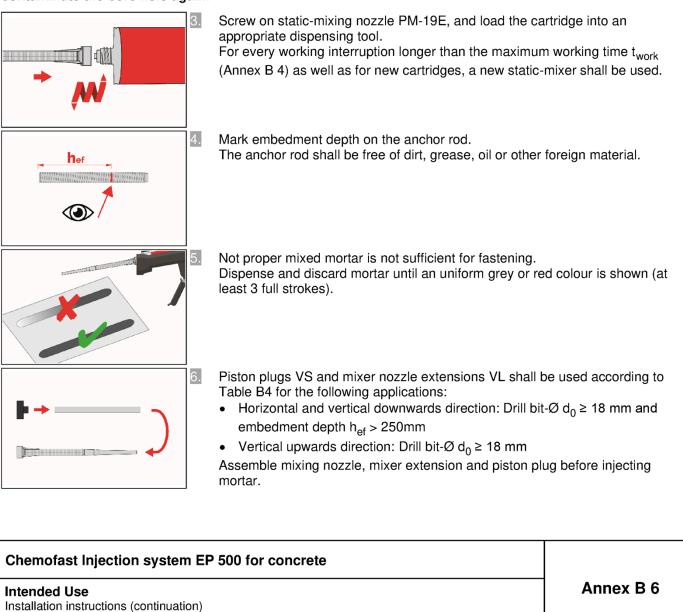
Table B4:	Workin	g and curing	time	
Tempera	ature in bas	e material	Maximum working time	Minimum curing time ¹⁾
	Т		t _{work}	t _{cure}
+ 5°C	to	+ 9°C	80 min	60 h
+ 10°C	to	+ 14 °C	60 min	48 h
+ 15°C	to	+ 19°C	40 min	24 h
+ 20 °C	to	+ 24 °C	30 min	12 h
+ 25 °C	to	+ 34 °C	12 min	10 h
+ 35 °C	to	+ 39 °C	8 min	7 h
	+ 40 °C		8 min	4 h
Car	tridge tempe	erature	+5°C to	+40°C

 The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

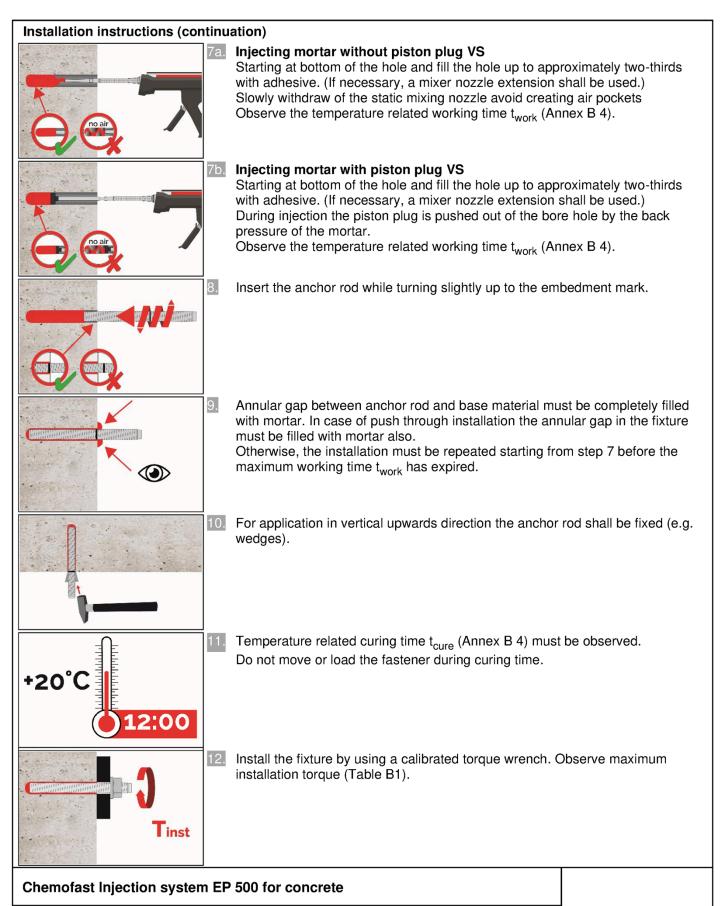
Chemofast Injection system EP 500 for concrete


Intended Use Working time and curing time Annex B 4

Installation instructions	
Drilling of the bore hole	
1a. Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole for the required embedment depth Drill bit diameter according to Table B1 or B2. Proceed In case of aborted drill hole, the drill hole shall be filled	
 Hammer drilling with Hollow drill bit (HDB) (see Annex Drill a hole for the required embedment depth Drill bit Table B1 or B2. The hollow drill bit system removes the bore hole during drilling (all conditions). Proceed with Step 3. In case of aborted drill hole, the drill hole shall be filled 	diameter according to e dust and cleans the with mortar.
Attention! Standing water in the bore hole must be re	moved before cleaning
Manual Air Cleaning (MAC) for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only	<u>(!)</u>
2a. Blow the bore hole clean minimum 4x from the bottom (Annex B 4).	or back by hand pump
 2b. Brush the bore hole minimum 4x with brush RB accord entire embedment depth in a twisting motion (if necess extension RBL). 	
Finally blow the bore hole clean minimum 4x from the pump (Annex B 4).	bottom or back by hand
Compressed Air Cleaning (CAC): All diameter in cracked and uncracked concrete	
 Blow the bore hole clean minimum of 2x with compress (Annex B 4) over the entire embedment depth until ret noticeable dust. (If necessary, an extension shall be until extension shall be until extension) 	urn air stream is free of
Chemofast Injection system EP 500 for concrete	
Intended Use Installation instructions	Annex B 5



Installation instructions (continuation)



- 2b. Brush the bore hole minimum 2x with brush RB according to Table B3 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)
 - Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Intended Use Installation instructions (continuation) Annex B 7

Tł	nreaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561
CI	naracteristic tension resistance, Steel failu	ure ¹⁾									
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	naracteristic tension resistance, Partial fac	ctor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	γMs,N	[-]				1,6	6			
CI	naracteristic shear resistance, Steel failur	e ¹⁾		_							
_	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
5	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
lever a		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
		M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Wit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	naracteristic shear resistance, Partial facto	or ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γMs,V	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γMs,V	[-]				1,3	3			
) Values are only valid for the given stress area	,	es in bra	ackets are	valid for	unders	ized thr	eaded r	nds with	smaller	

Chemofast Injection system EP 500 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Chemofast Injection system EP 500 for concrete

Performances Characteristic values of tension loads under static and quasi-static action Annex C 2

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure		N				<u> </u>	1	T-/			
Characteristic tension res	sistance	N _{Rk,s}	[kN]			A _s • † _l		ee Tab			
Partial factor		γ _{Ms,N}	[-]				see Ta	able C1			
Combined pull-out and											
Characteristic bond resis	tance in uncracked	d concrete C20)/25								
L: 24°C/40°C H: 35°C/60°C HI: 43°C/70°C	Dry, wet concrete and			15	15	15	14	14	13	13	13
e Lil: 35°C/60°C III: 35°C/60°C III: 43°C/70°C	flooded bore hole	^τ Rk,ucr	[N/mm ²]	10	10	10	9,5 6 5	9,5 6 5	9,0	9,0	9,0
			_	7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Characteristic bond resis	tance in cracked c	oncrete C20/2	5								
• n n n n n n n n n n n n n n n n n n n	Dry, wet concrete and			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
nim perati range II: 32°C/00°C	flooded bore hole	^τ Rk,cr	[N/mm ²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
·				3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
Reduction factor ψ^0_{sus} in	cracked and uncr	acked concrete	e C20/25								
entre effective li 24°C/40°C	Dry, wet concrete and							60			
L: 24°C/40°C amber and a II: 35°C/60°C III: 43°C/70°C	flooded bore hole	Ψ^0 sus	[-]					60			
•								60			
Increasing factors for cor		Ψc	[-]					20) ^{0,1}			
Characteristic bond resis on the concrete strength			$\tau_{\rm Rk,ucr} =$					cr(C20/			
Concrete cone failure			τ _{Rk,cr} =			Ψα	Rk,c	r(C20/2	-0)		
Relevant parameter							see Ta	ble C2			
Splitting											
Relevant parameter							see Ta	able C2			
Installation factor		1									
for dry and wet concrete hole	or flooded bore	γinst	[-]				1	,4			
Chemofast Injection	system EP 500	for concrete)								

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Ductility factor	k 7	[-]					1,0			
Steel failure with lever arm	-1									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} • f _{uk}	(or see	Table C	;1)	
Elastic section modulus	W _{el}	[mm ³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	۱ _f	[mm]		r	nin(h _{ef} ; 1	2 · d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

Chemofast Injection system EP 500 for concrete

Performances

Characteristic values of shear loads under static and quasi-static action (Threaded rod)

Annex C 4

Table C5:	: Cha	racteristic v	alues of t	ension	load	s un	der s	tatic	and	quas	si-sta	tic a	ction	
Reinforcing I	bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure												1		
Characteristic	tension r	resistance	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Cross section	area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor			γ _{Ms,N}	[-]					1,	42)				
Combined pu	ull-out an	d concrete failu	ire											
Characteristic	bond res	sistance in uncra	cked concre	te C20/25										
1: 24	°C/40°C	Dry, wet			14	14	14	12	12	12	12	11	11	11
Lemperature Temperature II: 35 III: 35 III: 43	$\frac{1: 24^{\circ}C/40^{\circ}C}{11: 35^{\circ}C/60^{\circ}C}$ $\frac{1: 35^{\circ}C/60^{\circ}C}{111: 43^{\circ}C/70^{\circ}C}$ $\frac{1: 24^{\circ}C/40^{\circ}C}{111: 35^{\circ}C/60^{\circ}C}$ $\frac{1: 24^{\circ}C/40^{\circ}C}{111: 43^{\circ}C/70^{\circ}C}$ $\frac{1: 24^{\circ}C/70^{\circ}C}{111: 43^{\circ}C/70^{\circ}C}$ $\frac{1: 24^{\circ}C/40^{\circ}C}{111: 43^{\circ}C/70^{\circ}C}$	flooded bore	^τ Rk,ucr	[N/mm ²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
<mark>⊕</mark> III:43	°C/70°C	nole			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Characteristic	bond res	sistance in crack	ed concrete	C20/25										
	°C/40°C				6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
Lemberature Temberature II: 35 III: 43	°C/60°C	concrete and flooded bore	^τ Rk,cr	[N/mm ²]	4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
· · · · · · · · · · · · · · · · · · ·					2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduction fac	tor ψ^0_{sus}	in cracked and u	uncracked co	oncrete C2	20/25									
	$24^{\circ}C/40^{\circ}C$ Dry, wet concrete flooded b $35^{\circ}C/60^{\circ}C$ Dry, wet concrete flooded b $43^{\circ}C/70^{\circ}C$ hole $actor \psi^{0}_{sus}$ in crackee $24^{\circ}C/40^{\circ}C$ Dry, wet concrete								0,	60				
Lemberature II: 24 ⁶ II: 35 ⁶ III: 43 ⁶	°C/60°C	concrete and flooded bore	Ψ^0 sus	[-]					0,	60				
بة III:43	°C/70°C	hole								60				
Increasing fac			Ψc	[-]						20) ^{0,1}				
Characteristic depending on				τ _{Rk,ucr} =				$\psi_{\textbf{C}}$	^τ Rk,u	_{cr} (C20	/25)			
class		fete strength		τ _{Rk,cr} =				Ψ_{c}	• ^τ Rk,c	_{cr} (C20/	25)			
Concrete cor		•												
Relevant para	ameter								see Ta	able C2	2			
Splitting														
Relevant para									see la	able C2	2			
Installation fat		e or flooded												
bore hole	erconcret		γinst	[-]					1	,4				
¹⁾ f _{uk} shall be	e taken fro	m the specification	ons of reinford	ing bars										
²⁾ In absence	e of nationa	al regulation												
Chomofoot	t Inicotio	n ovotom ED	500 for oor	aarata										
	i injectio	on system EP									-		• -	
Performanc		ftonoion la sala	dov stati	- : - : - :	tio = - '	ior					A	nne	x C 5	
(Reinforcing b		f tension loads ur	ider static and	u quasi-sta	uc act	ion								

Table C6: Characteristic v	alues of	shear	load	s un	der	statio	c and	d qua	asi-s	tatic a	ction	
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,5	• A _s •	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	^γ Ms,V	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm												
Characteristic bending moment	M ⁰ Rk,s	[Nm]					1.2	• W _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure												
Effective length of fastener	_f	[mm]			min(h _e	_{ef} ; 12 ∙	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]						1,0				
 ¹⁾ f_{uk} shall be taken from the specificatio ²⁾ in absence of national regulation 	ns of reinfo	rcing bars										
Chemofast Injection system EP	500 for co	oncrete								۸	nex C	e
Performances Characteristic values of shear loads und (Reinforcing bar)	er static and	l quasi-st	atic ac	tion						AIII		0

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	under static an	d quasi-static act	ion		1		1			
Temperature range	l: δ _{N0} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
24°C/40°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,04
Temperature range	II: δ _{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,05
35°C/60°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,07
Temperature range I	II: δ _{N0} -factor	[mm/(N/mm ²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,06
43°C/70°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,07
Cracked concrete ur	nder static and c	uasi-static actio	n							
Temperature range	I: δ _{N0} -factor	[mm/(N/mm ²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,08
24°C/40°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,17
Temperature range	II: δ _{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
່35°C/60°Cັ	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Temperature range I		[mm/(N/mm ²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,12
43°C/70°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Threaded rod Uncracked and crac	ked concrete un	der static and qu				M16	M20	M24	M27	M30
Uncracked and crac	ked concrete un δ_{V0} -factor	der static and qu				0,04	0,04	M24	M27	0,03
Uncracked and crac All temperature ranges	δ_{V0} -factor $\delta_{V\infty}$ -factor	[mm/kN]	0,06	ic action) 					
Uncracked and crac All temperature ranges	δ_{V0} -factor $\delta_{V\infty}$ -factor isplacement	[mm/kN]	0,06	ic action 0,06	0,05	0,04	0,04	0,03	0,03	0,03

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concr	rete under sta	atic and quasi-s	tatic ac	tion		1	1			1		I
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range I: 24°C/40°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 35°C/60°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 43°C/70°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concrete	e under statio	c and quasi-sta	tic actio	'n								
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 24°C/40°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,11
range II: 35°C/60°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,26
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
range III: 43°C/70°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286
1) Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C10:	·τ; ·τ;		tion bond shear			on						
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$ $Table C10:$	·τ; ·τ;	τ: ac	shear	load ¹⁾	·		Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-}\text{factor} \\ \delta_{\text{N\infty}} &= \delta_{\text{N\infty}}\text{-}\text{factor} \end{split}$	τ; τ; Displacem racked conc	τ: ac nents under stati rete under stati	shear Ø 8 9 c and qu	load ¹⁾ Ø 10	Ø 12 atic acti	Ø 14 ion	L		I	I		
$\delta_{N0} = \delta_{N0} - factor$ $\delta_{N\infty} = \delta_{N\infty} - factor$ Table C10: Reinforcing bar Uncracked and c All temperature	τ; τ; Displacem racked conc δ _{V0} -factor	τ: ac nents under s rete under stati [mm/kN]	shear Ø 8 9 c and qu 0,06	load ¹⁾ Ø 10 9 uasi-sta 0,05	Ø 12 atic acti 0,05	Ø 14 ion 0,04	0,04	0,04	0,03	0,03	0,03	0,03
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$ Table C10: Reinforcing bar Uncracked and c	τ; τ; Displacem racked conc $δ_{V0}$ -factor $δ_{V\infty}$ -factor	τ: ac nents under stati rete under stati [mm/kN] [mm/kN]	shear Ø 8 9 c and qu 0,06	load ¹⁾ Ø 10 9 uasi-sta 0,05	Ø 12 atic acti	Ø 14 ion	L		I	I		
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$ Table C10: Reinforcing bar Uncracked and c All temperature ranges	τ; τ; Displacem racked conc $δ_{V0}$ -factor $δ_{V\infty}$ -factor ne displaceme · V;	τ: ac nents under stati rete under stati [mm/kN] [mm/kN] nt	shear Ø 8 9 c and qu 0,06	load ¹⁾ Ø 10 9 uasi-sta 0,05 0,08	Ø 12 atic acti 0,05	Ø 14 ion 0,04	0,04	0,04	0,03	0,03	0,03	0,03