



Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte



## **Europäische Technische Bewertung**

#### ETA-20/0729 vom 3. Februar 2025

#### **Allgemeiner Teil**

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS V Plus für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

158 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604-v01, Edition 03/2024

ETA-20/0729 vom 31. Oktober 2023

**DIBt** | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z1002802.24 8.06.04-178/23



Seite 2 von 158 | 3. Februar 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z1002802.24 8.06.04-178/23



Seite 3 von 158 | 3. Februar 2025

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS V Plus für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit fischer Injektionsmörtel FIS V Plus, FIS VS Plus Low Speed und FIS VW Plus High Speed, einer Injektions-Ankerhülse und einer Ankerstange mit Sechskantmutter und Unterlegscheibe oder einer Innengewinde-Ankerstange in den Größen M6 bis M16 besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

## 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                        | Leistung                                         |
|-----------------------------------------------------------------------------|--------------------------------------------------|
| Charakteristischer Widerstand für statische und quasistatische Einwirkungen | Siehe Anhang B4 bis B7, B21,<br>B22, C1 bis C123 |
| Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung  | Leistung nicht bewertet                          |

#### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal                                                                                    | Leistung                  |
|---------------------------------------------------------------------------------------------------------|---------------------------|
| Brandverhalten                                                                                          | Klasse A1                 |
| Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände | Sehe Anhang C124 bis C127 |

#### 3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

| Wesentliches Merkmal                                           | Leistung                |
|----------------------------------------------------------------|-------------------------|
| Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen | Leistung nicht bewertet |

#### 4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604-v01 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Z1002802.24 8.06.04-178/23



Seite 4 von 158 | 3. Februar 2025

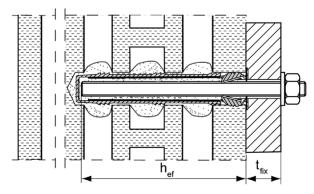
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

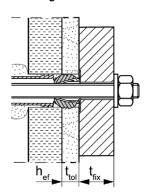
Ausgestellt in Berlin am 3. Februar 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt:

Baderschneider


Z1002802.24 8.06.04-178/23

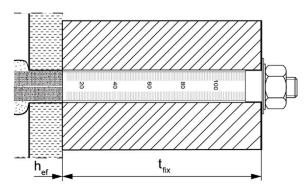



#### Einbauzustände Teil 1

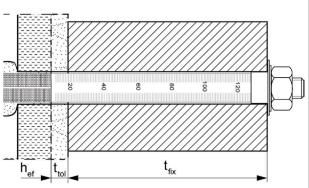
#### Ankerstangen mit Injektions-Ankerhülse FIS H K; Montage in Hohl-, Loch- und Vollsteinen

#### Vorsteckmontage:



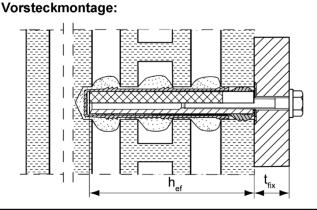

Montage mit Putzüberbrückung




Größe der Injektions-Ankerhülse: FIS H 12x50 K FIS H 16x85 K FIS H 20x85 K FIS H 20x200 K

FIS H 12x85 K FIS H 16x130 K FIS H 20x130 K

#### **Durchsteckmontage:**




#### Montage mit Putzüberbrückung



Größe der Injektions-Ankerhülse: FIS H 18x130/200 K FIS H 22x130/200 K

### Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K; Montage in Hohl-, Loch- und Vollsteinen



Abbildungen nicht maßstäblich

 $h_{ef}$  = Effektive Verankerungstiefe  $t_{tol}$  = Dicke der nichttragenden Schicht (z.B. Putz)

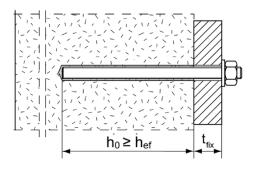
t<sub>fix</sub> = Dicke des Anbauteils

#### fischer Injektionssystem FIS V Plus für Mauerwerk

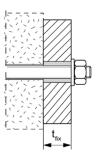
#### Produktbeschreibung

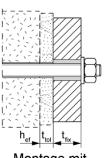
Einbauzustand Teil 1,

Ankerstange und Innengewindeanker mit Injektions-Ankerhülse


Anhang A1



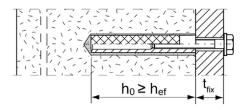

#### Einbauzustände Teil 2


#### Ankerstangen ohne Injektions-Ankerhülse FIS H K; Montage in Vollsteinen und Porenbeton

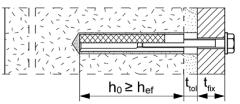
#### Vorsteckmontage:







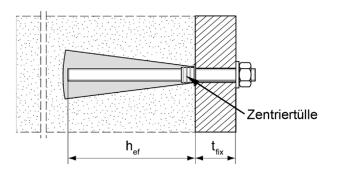




Montage mit Putzüberbrückung

#### Innengewindeanker FIS E ohne Injektions-Ankerhülse FIS H K; Montage in Vollsteinen und Porenbeton

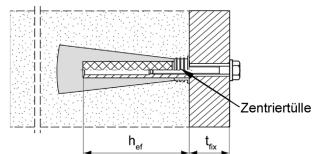
#### Vorsteckmontage:




#### Montage mit Putzüberbrückung



#### Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülsen FIS H K; Montage mit Zentriertülle in Porenbeton mit konischem Bohrloch (Montage mit Konusbohrer PBB)


#### Vorsteckmontage:

Ankerstangen M8, M10, M12



#### Vorsteckmontage:

Innengewindeanker FIS E 11x85 M6 / M8



#### Abbildungen nicht maßstäblich

h<sub>0</sub> = Bohrlochtiefe

ttol = Dicke der nichttragenden Schicht (z.B. Putz)

h<sub>ef</sub> = Effektive Verankerungstiefe

t<sub>fix</sub> = Dicke des Anbauteils

#### fischer Injektionssystem FIS V Plus für Mauerwerk

#### Produktbeschreibung

Einbauzustand Teil 2, Änkerstange und Innengewindeanker ohne Injektions-Ankerhülse / mit Zentriertülle Anhang A2



## Übersicht Systemkomponenten Teil 1 Mörtelkartusche (Shuttlekartusche) mit Verschlusskappe Größen: 360 ml, 825 ml Aufdruck: fischer FIS V Plus oder FIS VS Plus Low Speed oder FIS VW Plus High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Gefahrenhinweise, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Mörtelkartusche (Koaxialkartusche) mit Verschlusskappe Größen: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml Aufdruck: fischer FIS V Plus oder FIS VS Plus Low Speed oder FIS VW Plus High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Gefahrenhinweise, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Größe, Volumen aataalaataalaataalaataalaataalaataalaataalaataalaataalaataalaataalaataala Statikmischer FIS MR Plus für Injektionskartuschen ≤ 410 ml Statikmischer FIS JMR für Injektionskartusche 825 ml Verlängerungsschlauch Ø 9 für Statikmischer FIS MR Plus; Verlängerungsschlauch Ø 9 oder Ø 15 für Statikmischer FIS JMR Reinigungsbürste BS Ausbläser ABG Druckluft-Reinigungsgerät ABP Abbildungen nicht maßstäblich fischer Injektionssystem FIS V Plus für Mauerwerk Anhang A3 Produktbeschreibung Übersicht Systemkomponenten Teil 1: Kartusche / Statikmischer / Reinigungszubehör



| Übers          | icht Systemkomponenten Teil 2                                                                                                 |                                                   |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| fischer        | Ankerstange                                                                                                                   |                                                   |
| 2              | Größen: M6, M8, M10, M12, M16                                                                                                 |                                                   |
| Inneng         | ewindeanker FIS E                                                                                                             |                                                   |
| 5              | Größen: 11x85 M6 / M8<br>15x85 M10 / M12                                                                                      |                                                   |
| Injektio       | ns-Ankerhülse FIS H K                                                                                                         |                                                   |
| 7              | Größen: FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K                                                               |                                                   |
| 7              | Größen: FIS H 16x130 K<br>FIS H 20x130 K<br>FIS H 20x200 K                                                                    |                                                   |
| Injektio       | ons-Durchsteckankerhülse FIS H K                                                                                              |                                                   |
| 7              | F                                                                                                                             | Größen:<br>IS H 18x130/200 K<br>IS H 22x130/200 K |
| Unterle        | egscheibe                                                                                                                     |                                                   |
| 3              |                                                                                                                               |                                                   |
| Sechsl         | cantmutter                                                                                                                    |                                                   |
| 4              |                                                                                                                               |                                                   |
| Injekti        | onsadapter Zentriertülle PBZ                                                                                                  |                                                   |
|                | 7                                                                                                                             |                                                   |
| Konus          | bohrer PBB  (MANAMATATATATATATATATATATATATATATATATATA                                                                         |                                                   |
|                |                                                                                                                               |                                                   |
|                | Abbildu                                                                                                                       | ıngen nicht maßstäblich                           |
| fische         | er Injektionssystem FIS V Plus für Mauerwerk                                                                                  |                                                   |
| Produ<br>Übers | ktbeschreibung<br>cht Systemkomponenten Teil 2: Stahlteile, Injektions-Ankerhülsen, Konusbohrer,<br>onsadapter, Zentriertülle | Anhang A4                                         |



| Teil | Bezeichnung                                                                             | Werkstoffe                                                                                                                                                                                            |                                                                                                                                                                                                           |              |                                                                                                                                                                                             |  |  |
|------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Mörtelkartusche                                                                         |                                                                                                                                                                                                       | Mörtel, Härter, Füllstoffe                                                                                                                                                                                |              |                                                                                                                                                                                             |  |  |
|      |                                                                                         | Stahl                                                                                                                                                                                                 | Nichtrostender Stahl R                                                                                                                                                                                    | Hoch         | Hochkorrosionsbeständiger<br>Stahl HCR                                                                                                                                                      |  |  |
|      |                                                                                         | verzinkt                                                                                                                                                                                              | gemäß EN 10088-1:2023 der<br>Korrosionsbeständigkeits-<br>klasse CRC III nach<br>EN 1993-1-4:2006+A1:2015                                                                                                 | Korro        | 3 EN 10088-1:2023 de<br>osionsbeständigkeits -<br>lasse CRC V nach<br>993-1-42006+A1:2015                                                                                                   |  |  |
| 2    | Ankerstange                                                                             | Festigkeitsklasse 4.6; 4.8; 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt ≥ 5µm, ISO 4042:2022 oder feuerverzinkt EN ISO 10684:2004+AC:2009 f <sub>uk</sub> ≤ 1000 N/mm² A <sub>5</sub> > 8% Bruchdehnung | Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2023 f <sub>uk</sub> ≤ 1000 N/mm² A <sub>5</sub> > 8% Bruchdehnung | El<br>oder F | Festigkeitsklasse 50 oder 80 N ISO 3506-1:2020 Festigkeitsklasse 70 m $f_{yk}$ = 560 N/mm <sup>2</sup> 1.4565; 1.4529 EN 10088-1:2023 $f_{uk} \le 1000$ N/mm <sup>2</sup> > 8% Bruchdehnung |  |  |
| 3    | Unterlegscheibe<br>ISO 7089:2000                                                        | verzinkt ≥ 5µm,<br>ISO 4042:2022<br>oder feuerverzinkt<br>EN ISO 10684:2004+AC:2009                                                                                                                   | 1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1:2023                                                                                                                                  | ı            | 1.4565;1.4529<br>EN 10088-1:2023                                                                                                                                                            |  |  |
| 4    | Sechskant-<br>mutter                                                                    | Festigkeitsklasse 5 oder 8;<br>EN ISO 898-2:2022<br>verzinkt ≥ 5µm,<br>ISO 4042:2022<br>oder feuerverzinkt<br>EN ISO 10684:2004+AC:2009                                                               | Festigkeitsklasse 50, 70 oder<br>80<br>EN ISO 3506-2:2020<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1:2023                                                                     | E1           | keitsklasse 50, 70 ode<br>80<br>N ISO 3506-2:2020<br>1.4565; 1.4529<br>EN 10088-1:2023                                                                                                      |  |  |
| 5    | Innengewinde-<br>anker FIS E                                                            | Festigkeitsklasse 5.8<br>EN 10277-1:2018<br>verzinkt ≥ 5µm,<br>ISO 4042:2022                                                                                                                          | Festigkeitsklasse 70<br>EN ISO 3506-1:2020<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1:2023                                                                                    | E1           | estigkeitsklasse 70<br>N ISO 3506-1:2020<br>1.4565; 1.4529<br>EN 10088-1:2023                                                                                                               |  |  |
| 6    | Handelsübliche<br>Schraube oder<br>Gewindestange<br>für<br>Innengewinde-<br>anker FIS E | Festigkeitsklasse 4.6, 5.8<br>oder 8.8;<br>EN ISO 898-1:2013<br>verzinkt ≥ 5µm,<br>ISO 4042:2022                                                                                                      | Festigkeitsklasse 70<br>EN ISO 3506-1:2020<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362;<br>EN 10088-1:2023                                                                                    | E1           | estigkeitsklasse 70<br>N ISO 3506-1:2020<br>1.4565; 1.4529<br>EN 10088-1:2023                                                                                                               |  |  |
| 7    | Injektions-<br>Ankerhülse und<br>Zentriertülle                                          |                                                                                                                                                                                                       | PP / PE                                                                                                                                                                                                   |              |                                                                                                                                                                                             |  |  |
|      |                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                           |              |                                                                                                                                                                                             |  |  |
|      | her Injektionssy<br>duktbeschreibun                                                     |                                                                                                                                                                                                       | Anhang A5                                                                                                                                                                                                 |              |                                                                                                                                                                                             |  |  |



#### Spezifizierung des Verwendungszwecks Teil 1

| Beanspruchung de                                    | er Verankerung                                                                                  | fischer Injekt                                                                              | onssystem                 | FIS V Plus für                 | r Mauerwerk                                                                                                                                                                          |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | tellung durch<br>erbohren                                                                       | alle Steine;<br>außer C28 bis C48, C75 bis C78                                              |                           |                                |                                                                                                                                                                                      |
|                                                     | tellung durch<br>ngbohren                                                                       | alle Steine                                                                                 |                           |                                |                                                                                                                                                                                      |
|                                                     | tellung durch<br>n mit Konusbohrer                                                              |                                                                                             | nur C118                  | bis C122                       |                                                                                                                                                                                      |
|                                                     | quasi-statische<br>g im Mauerwerk                                                               |                                                                                             | alle S                    | Steine                         |                                                                                                                                                                                      |
|                                                     | g unter Zug- und<br>spruchung                                                                   | C124 bis C127 (Gilt nur für die Bedingungen von trockener                                   |                           |                                | rockenem Mauerwerk)                                                                                                                                                                  |
| Montageart                                          | Vorsteck-<br>montage                                                                            | Ankerstange oder<br>Innengewindeanker<br>(in Vollstein und Porenbeton)                      |                           | Ank<br>Innei                   | ns-Ankerhülse mit<br>erstange oder<br>ngewindeanker<br>och- und Vollsteinen)<br>FIS H 12x50 K<br>FIS H 12x85 K<br>FIS H 16x85 K<br>FIS H 16x130 K<br>FIS H 20x85 K<br>FIS H 20x200 K |
| _                                                   | Durchsteck-<br>montage                                                                          | Ankerstange; Anwendung nur im zylindrischen Bohrloch (in Vollstein und                      |                           | Α                              | ns-Ankerhülse mit<br>Inkerstange<br>och- und Vollsteinen)<br>FIS H 18x130/200 K<br>FIS H 22x130/200 K                                                                                |
| Nutzungs-<br>bedingungen                            | Bedingung d/d<br>trocken/trocken<br>Bedingung w/d<br>nass/trocken<br>Bedingung w/w<br>nass/nass |                                                                                             | alle S                    | Steine                         |                                                                                                                                                                                      |
| Einbaurichtung                                      |                                                                                                 | D3 (horizont                                                                                | ale und vertil            | kale Montage r                 | nach unten)                                                                                                                                                                          |
| Einbautemperatur                                    |                                                                                                 | T <sub>i,m</sub>                                                                            | <sub>in</sub> = -10 °C bi | s T <sub>i,max</sub> = +40 °   | C                                                                                                                                                                                    |
| Gebrauchs-                                          | Temperatur-<br>bereich Tb                                                                       | -40 °C bis +80 °C                                                                           |                           | Kurzzeittempe<br>Langzeittempe |                                                                                                                                                                                      |
| temperaturbereich                                   | e Temperatur-<br>bereich Tc                                                                     | -40 °C bis +120 °C (maximale Kurzzeittemperatur +120 °C maximale Langzeittemperatur +72 °C) |                           |                                |                                                                                                                                                                                      |
| fischer Injektion  Verwendungszw  Spezifizierung Te | veck                                                                                            | Plus für Mauerwerk                                                                          |                           |                                | Anhang B1                                                                                                                                                                            |



#### Spezifizierung des Verwendungszweck Teil 2

#### Beanspruchung der Verankerung:

- · Statische oder quasi-statische Lasten
- Brandeinwirkung

#### Verankerungsgrund:

- Mauerwerk aus Vollsteinen (Nutzungskategorie b) und Mauerwerk aus Porenbeton (Nutzungskategorie d), entsprechend Anhang B13 / B14
- Mauerwerk aus Hohlblöcken und Lochsteinen (Nutzungskategorie c), entsprechend Anhang B13 / B14
- Für die minimale Bauteildicke gilt hef+30mm
- Mörtel mindestens Druckfestigkeitsklasse M2,5 gemäß EN 998-2:2016
- Für andere Steine in Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche (nicht für Steine unter Brandeinwirkung) nach EOTA Technical Report TR 053:2022-07 unter Berücksichtigung des β-Faktors nach Anhang C123, Tabelle C123.1 ermittelt werden.

Hinweis (gilt nur für Vollsteine und Porenbeton):

Die charakteristischen Tragfähigkeiten gelten auch für größere Steinformate, größere Druckfestigkeiten und größere Rohdichten der Mauersteine.

#### Temperaturbereiche:

- Tb: von 40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)
- Tc: von 40 °C bis +120 °C (max. Kurzzeit-Temperatur +120 °C und max. Langzeit-Temperatur +72 °C)

#### Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A5, Tabelle A.5.1

fischer Injektionssystem FIS V Plus für Mauerwerk

Verwendungszweck
Spezifizierung Teil 2

Anhang B2



#### Spezifizierung des Verwendungszweck Teil 3 fortgesetzt

#### Bemessung:

 Die Bemessung der Verankerung erfolgt in Übereinstimmung mit EOTA Technical Report TR 054:2023-12, Bemessungsmethode A unter der Verantwortung eines auf

Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:

dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Planers.

$$N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,I}$$

Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung  $N_{Rk,pb}$  oder das Herausdrücken eines Steines unter Querbeanspruchung  $V_{Rk,pb}$  siehe EOTA Technical Report TR 054:2023-12.

N<sub>Rk,s</sub>, V<sub>Rk,s</sub> und M<sup>0</sup><sub>Rk,s</sub> siehe Anhang C1-C3.

Faktoren für Baustellenversuche und Verschiebungen siehe Anhang C123.

• Unter Berücksichtigung des im Bereich der Verankerung vorhandenen Mauerwerks, den zu verankernden Lasten sowie der Weiterleitung dieser Lasten im Mauerwerk sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben.

#### Einbau:

- Bedingung d/d: Installation und Verwendung in trockenem Mauerwerk
- Bedingung w/w:- Installation und Verwendung in trockenem und nassem Mauerwerk
- Bedingung w/d: Installation in nassem Mauerwerk und Verwendung in trockenem Mauerwerk
- Bohrlocherstellung siehe Anhang C (Bohrverfahren)
- Im Fall von Fehlbohrungen sind diese mit Injektionsmörtel FIS V Plus zu vermörteln.
- Überbrückung von nichttragenden Schichten (z.B. Putz) in Vollsteinmauerwerk und bei zylindrischem Bohrloch möglich. Bei Lochsteinmauerwerk siehe Anhang B6, Tabelle B6.1.
- Einbau des Dübels durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Befestigungsschrauben oder Ankerstangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen für den fischer Innengewindeanker FIS E entsprechen.
- Aushärtezeiten siehe Anhang B8, Tabelle B8.2.
- Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

Materialabmessungen und mechanische Eigenschaften der Metallteile entsprechend den Angaben aus Anhang A5, Tabelle A5.1.

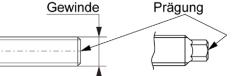
Bestätigung der Material- und mechanischen Eigenschaften der Metallteile durch ein Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden.

Markierung der Ankerstange mit der vorgesehenen Verankerungstiefe. Dies darf durch den Hersteller oder durch eine Person auf der Baustelle erfolgen.

fischer Injektionssystem FIS V Plus für Mauerwerk

Verwendungszweck
Spezifizierung Teil 3 fortgesetzt

Anhang B3




| Tabelle B4.1: | Montagekennwerte für Ankerstangen in Vollsteinen und Porenbeton ohne |
|---------------|----------------------------------------------------------------------|
|               | Injektions-Ankerhülse                                                |

| Ankerstange                                                              | Gewinde                                       | M6         | M8   | M10                 | M12   | M16 |
|--------------------------------------------------------------------------|-----------------------------------------------|------------|------|---------------------|-------|-----|
| Bohrernenndurchmesser                                                    | d₀[mm]                                        | 8          | 10   | 12                  | 14    | 18  |
| Effektive Verankerungstiefe hef <sup>1)</sup> in Porenbeton              | h <sub>0,min</sub> ≥ h <sub>ef,min</sub> [mm] |            |      | 100                 |       |     |
| (zyl. Bohrloch)                                                          | h <sub>0,max</sub> ≥ h <sub>ef,max</sub> [mm] |            |      | 200                 |       |     |
| Effektive Verankerungstiefe l                                            | h <sub>o</sub> [mm]                           |            |      | h <sub>ef</sub> + 5 |       |     |
| in Porenbeton<br>(konisches Bohrloch)                                    | h <sub>ef,1</sub> [mm]                        | -          | 75   |                     |       | _   |
|                                                                          | h <sub>ef,2</sub> [mm]                        |            |      |                     |       |     |
| Effektive Verankerungstiefe                                              | h <sub>ef,min</sub> [mm]                      | 50         |      |                     |       |     |
| h <sub>ef</sub> 1) in Vollziegel<br>(Bohrlochtiefe h₀≥ h <sub>ef</sub> ) | h <sub>ef,max</sub> [mm]                      | h-30, ≤200 |      |                     |       |     |
| Durchgangsloch                                                           | Vorsteck d <sub>f</sub> ≤[mm]                 | 7          | 9    | 12                  | 14    | 18  |
| im Anbauteil                                                             | Durchsteck d <sub>f</sub> ≤[mm]               | 9          | 11   | 14                  | 16    | 20  |
| Durchmesser der Stahlbürste                                              | d <sub>b</sub> ≥[mm]                          |            | Sie  | ehe Tabelle B       | 88.1  |     |
| Maximales Montagedrehmon                                                 | nent T <sub>inst</sub> [Nm]                   |            | Siel | ne Steinkenn        | werte |     |

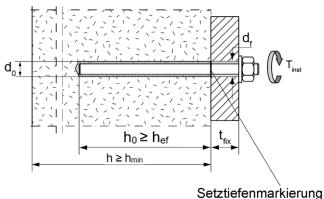
<sup>1)</sup>  $h_{ef,min} \le h_{ef} \le h_{ef,max}$  ist möglich.

#### fischer Ankerstangen M6, M8, M10, M12, M16

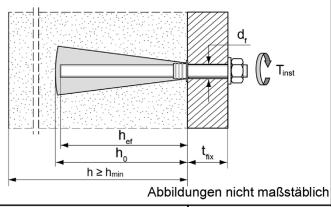


#### Prägung (an beliebiger Stelle) fischer Ankerstange:

| Stahl galvanisch verzinkt FK <sup>1)</sup> 8.8          | • oder + | Stahl feuerverzinkt FK <sup>1)</sup> 8.8    | • |
|---------------------------------------------------------|----------|---------------------------------------------|---|
| Hochkorrosionsbeständiger Stahl HCR FK <sup>1)</sup> 50 | •        | Hochkorrosionsbeständiger Stahl HCR FK1) 70 | _ |
| Hochkorrosionsbeständiger Stahl HCR FK <sup>1)</sup> 80 | (        | Nichtrostender Stahl R FK¹¹ 50              | ~ |
| Nichtrostender Stahl R FK <sup>1)</sup> 80              | *        |                                             |   |


Alternativ: Farbmarkierung nach DIN 976-1:2016;

Festigkeitsklasse 4.6 Markierung nach EN ISO 898-1: 2013


1) FK = Festigkeitsklasse

#### Einbauzustände:





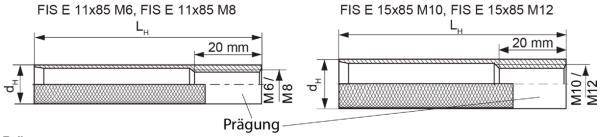
#### Ankerstange im konischen Bohrloch



fischer Injektionssystem FIS V Plus für Mauerwerk

#### Verwendungszweck

Montagekennwerte für Ankerstangen ohne Injektions-Ankerhülse

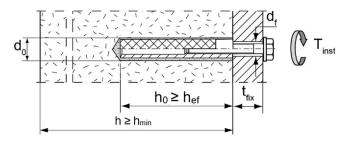

**Anhang B4** 



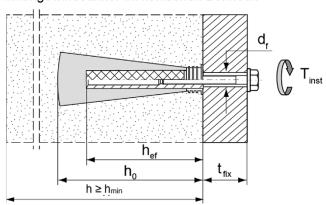
**Tabelle B5.1:** Montagekennwerte für Innengewindeanker FIS E in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse

| Innengewindeanker FIS E            | 11x85 M6                  | 11x85 M8             | 15x85 M10 | 15x85 M12  |    |  |    |  |    |
|------------------------------------|---------------------------|----------------------|-----------|------------|----|--|----|--|----|
| Ankerdurchmesser                   | d <sub>H</sub> [mm]       | 11 15                |           |            | 11 |  | 11 |  | 15 |
| Bohrernenndurchmesser              | d₀[mm]                    | 1                    | 4         | 18         |    |  |    |  |    |
| Ankerlänge                         | L⊣ [mm]                   | 85                   |           |            |    |  |    |  |    |
| Effektive Verankerungstiefe        | h₀ ≥ h <sub>ef</sub> [mm] | 85                   |           |            |    |  |    |  |    |
| Effektive Verankerungstiefe hef in | h₀[mm]                    | 1(                   | 00        | -          |    |  |    |  |    |
| Porenbeton (konisches Bohrloch)    | h <sub>ef</sub> [mm]      | 8                    | 5         |            |    |  |    |  |    |
| Durchmesser der Stahlbürste        | d <sub>b</sub> ≥[mm]      |                      | siehe Ta  | belle B8.1 |    |  |    |  |    |
| Maximales Montagedrehmoment        | T <sub>inst</sub> [Nm]    | siehe Steinkennwerte |           |            |    |  |    |  |    |
| Durchgangsloch im Anbauteil        | d <sub>f</sub> [mm]       | 7 9                  |           | 12         | 14 |  |    |  |    |
| Einschraubtiefe                    | I <sub>E,min</sub> [mm]   | 6 8                  |           | 10         | 12 |  |    |  |    |
| Elliscillaubliele                  | I <sub>E,max</sub> [mm]   | 60                   |           |            |    |  |    |  |    |

#### fischer Innengewindeanker FIS E




#### Prägung:


Größe, z.B. M8, nichtrostender Stahl: R, z.B. M8 R, hochkorrosionsbeständiger Stahl: HCR, z.B. M8 HCR

#### Einbauzustände:

Innengewindeanker im zylindrischen Bohrloch



#### Innengewindeanker im konischen Bohrloch



Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Plus für Mauerwerk

#### Verwendungszweck

Montagekennwerte für Innengewindeanker FIS E ohne Injektions-Ankerhülse

**Anhang B5** 



Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Tabelle B6.1: Injektions-Ankerhülsen (Vorsteckmontage)

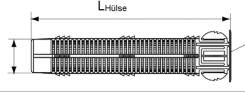
| Injektions-Ankerhülse FIS H K                                    | 12x50                    | 12x85 <sup>2)</sup>     | 16x85 | 16x130 <sup>2)</sup> | 20x85     | 20x130 <sup>2)</sup> | 20x200 <sup>2)</sup> |     |
|------------------------------------------------------------------|--------------------------|-------------------------|-------|----------------------|-----------|----------------------|----------------------|-----|
| Bohrernenndurchmesser<br>d <sub>0</sub> = D <sub>Hülse,nom</sub> | d₀[mm]                   | 12                      |       | 16                   |           | 20                   |                      |     |
| Bohrlochtiefe                                                    | h <sub>0</sub> [mm]      | 55                      | 90    | 90                   | 135       | 90                   | 135                  | 205 |
| Effektive Verankerungstiefe                                      | h <sub>ef,min</sub> [mm] | 50                      | 65    | 85                   | 110       | 85                   | 110                  | 180 |
|                                                                  | h <sub>ef,max</sub> [mm] | 50                      | 85    | 85                   | 130       | 85                   | 130                  | 200 |
| Ankergröße                                                       | [-]                      | M6 uı                   | nd M8 | M8 ur                | nd M10    | M                    | 112 und M            | 16  |
| Größe des Innengewindeankers FIS E                               |                          | -                       | -     | 11x85                | -         | 15x85                | -                    | -   |
| Durchmesser der Stahlbürste¹) d <sub>b</sub> ≥[mm]               |                          |                         |       | sieh                 | e Tabelle | B8.1                 |                      |     |
| Maximales Montagedrehmoment                                      | T <sub>inst</sub> [Nm]   | m] siehe Steinkennwerte |       |                      |           |                      |                      |     |

<sup>1)</sup> Nur für Vollsteine und massive Bereiche in Lochsteinen.

#### Injektions-Ankerhülsen

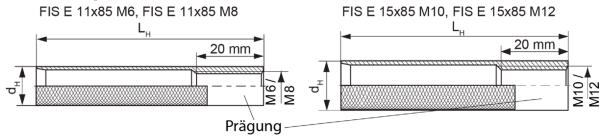
FIS H 12x50 K; FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K;

FIS H 20x85 K; FIS H 20x130 K; FIS H 20x200 K


#### Markierung:

Größe DHülse, nom x LHülse

(z.B.: 16x85)

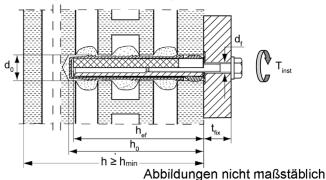







Markierung

#### fischer Innengewindeanker FISE




#### Einbauzustände:

Ankerstange mit Injektions-Ankerhülse



#### Innengewindeanker mit Injektions-Ankerhülse



fischer Injektionssystem FIS V Plus für Mauerwerk

#### Verwendungszweck

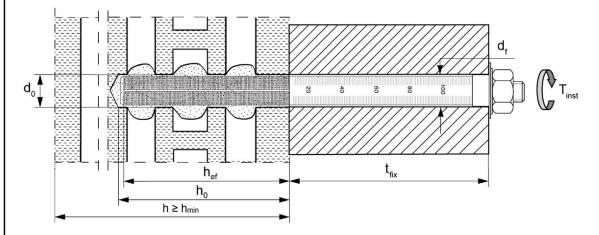
Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse (Vorsteckmontage)

**Anhang B6** 

<sup>&</sup>lt;sup>2)</sup> Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei Reduzierung der effektiven Verankerungstiefe hef,min müssen die Werte der nächst kürzeren Injektions-Ankerhülse des selben Durchmessers verwendet werden. Der kleinere charakteristische Wert ist maßgebend.



## **Tabelle B7.1:** Montagekennwerte für Ankerstangen mit Injektions-Ankerhülsen (Durchsteckmontage)


| Injektions-Ankerhülse FIS H K             |                             | 18x1 | 30/200               | 22x130/200 |
|-------------------------------------------|-----------------------------|------|----------------------|------------|
| Nominaler Hülsendurchmesser               | D <sub>Hülse,nom</sub> [mm] | 1    | 16                   | 20         |
| Bohrernenndurchmesser                     | d₀[mm]                      | 1    | 22                   |            |
| Bohrlochtiefe                             | h₀ [mm]                     |      | 135                  |            |
| Effektive Verankerungstiefe               | h <sub>ef</sub> [mm]        |      | ≥130                 |            |
| Durchmesser der Stahlbürste <sup>1)</sup> | d₀ ≥ [mm]                   |      | Siehe Tabelle B8.1   |            |
| Ankergröße                                | [-]                         | M10  | M12                  | M16        |
| Maximales Montagedrehmoment               | T <sub>inst</sub> [Nm]      |      | siehe Steinkennwerte | е          |
| Maximale Dicke des Anbauteils             | t <sub>fix,max</sub> [mm]   |      | 200                  |            |

<sup>&</sup>lt;sup>1)</sup> Nur für Vollsteine und massive Bereiche in Lochsteinen.

# Injektions-Ankerhülsen FIS H 18x130/200 K; FIS H 22x130/200 K DHoise h, t t fix

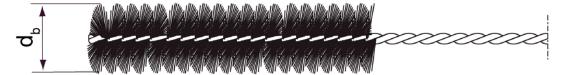
#### Einbauzustände:

Ankerstange mit Injektions-Ankerhülse



Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Plus für Mauerwerk


#### Verwendungszweck

Montagekennwerte für Ankerstangen mit Injektions-Ankerhülsen (Durchsteckmontage)

**Anhang B7** 



| Tabelle B8.1: Kennwerte der Reinigungsbürste BS (Stahlbürste mit Stahlborsten) |               |            |           |           |          |     |    |    |    |  |  |
|--------------------------------------------------------------------------------|---------------|------------|-----------|-----------|----------|-----|----|----|----|--|--|
| Die Größe der Reinigu                                                          | ngsbürste bez | zieht sich | auf den B | ohrernenn | durchmes | ser |    |    |    |  |  |
| Bohrdurchmesser d <sub>0</sub> [mm] 8 10 12 14 16 18 20 22                     |               |            |           |           |          |     |    |    |    |  |  |
| Rürstendurchmesser                                                             | d. [mm]       | ٥          | 11        | 1/        | 16       | 20  | 20 | 25 | 25 |  |  |



Nur für Vollsteine und Porenbeton oder massive Bereiche bei Lochziegel und Hohlblocksteinen

Tabelle B8.2: Maximale Verarbeitungszeiten und minimale Aushärtezeiten (Die Temperatur im Mauerwerk darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

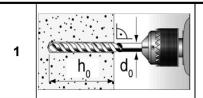
| Temperatur im             | Maxima                    | lle Verarbeitun<br>t <sub>work</sub> | gszeit <sup>2)</sup>     | Minimale Aushärtezeit <sup>1), 2)</sup><br>t <sub>cure</sub> |            |                          |  |
|---------------------------|---------------------------|--------------------------------------|--------------------------|--------------------------------------------------------------|------------|--------------------------|--|
| Verankerungsgrund<br>[°C] | FIS VW Plus<br>High Speed | FIS V Plus                           | FIS VS Plus<br>Low Speed | FIS VW Plus<br>High Speed                                    | FIS V Plus | FIS VS Plus<br>Low Speed |  |
| -10 bis -5                | -                         | -                                    | -                        | 12 h                                                         | -          | -                        |  |
| > -5 bis 0                | 5 min                     | -                                    | -                        | 3 h                                                          | 24 h       | -                        |  |
| > 0 bis 5                 | 5 min                     | 13 min                               | -                        | 3 h                                                          | 3 h        | 6 h                      |  |
| > 5 bis 10                | 3 min                     | 9 min                                | 20 min                   | 50 min                                                       | 90 min     | 3 h                      |  |
| > 10 bis 20               | 1 min                     | 5 min                                | 10 min                   | 30 min                                                       | 60 min     | 2 h                      |  |
| > 20 bis 30               | -                         | 4 min                                | 6 min                    | -                                                            | 45 min     | 60 min                   |  |
| > 30 bis 40               | -                         | 2 min                                | 4 min                    | -                                                            | 35 min     | 30 min                   |  |

<sup>1)</sup> In nassen Steinen muss die Aushärtezeit verdoppelt werden.

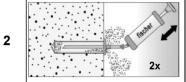
Abbildungen nicht maßstäblich

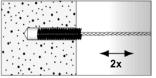
fischer Injektionssystem FIS V Plus für Mauerwerk

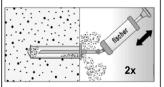
Verwendungszweck
Reinigungsbürste (Stahlbürste)
Maximale Verarbeitungszeiten und minimale Aushärtezeiten


Anhang B8

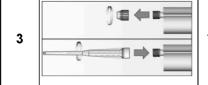
<sup>&</sup>lt;sup>2)</sup> Minimale Kartuschentemperatur +5°C.





#### Montageanleitung Teil 1


Montage in Vollsteinen und Porenbeton (ohne Injektions-Ankerhülsen)




Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines) Bohrlochtiefe  $h_0$  und Bohrdurchmesser  $d_0$  siehe **Tabelle B4.1**; **B5.1**.

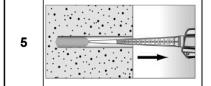




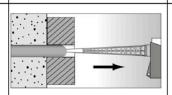


Bohrloch zweimal ausblasen, zweimal ausbürsten, und nochmal zweimal ausblasen.

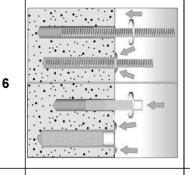



Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).




Kartusche in ein geeignetes Auspressgerät legen.

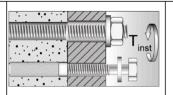



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.



Ca. 2/3 des Bohrlochs vom Grund her mit Mörtel verfüllen <sup>1)</sup>. Lufteinschlüsse vermeiden.




Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen.



Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker FIS E von Hand unter leichten Drehbewegungen einschieben. Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund austreten.



Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B8.2** 



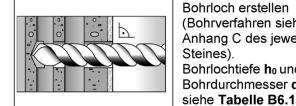
Montage des Anbauteils, T<sub>inst</sub> siehe Steinkennwerte in Anhang C.

fischer Injektionssystem FIS V Plus für Mauerwerk

Verwendungszweck

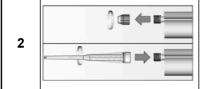
Montageanleitung (ohne Injektions-Ankerhülsen) Teil 1

**Anhang B9** 


Z203833.24

<sup>1)</sup> Genaue Füllmengen siehe Montageanleitung des Herstellers.




#### Montageanweisung Teil 2

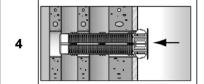
Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse (Vorsteckmontage)



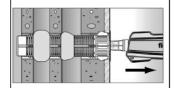
Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines). Bohrlochtiefe ho und Bohrdurchmesser do

Bei der Montage von Injektions-Ankerhülsen in Vollsteinen oder massiven Bereichen von Lochsteinen ist das Bohrloch durch Ausblasen und Bürsten zu reinigen.

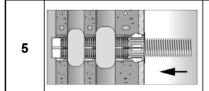



Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).




Kartusche in ein geeignetes Auspressgerät legen.



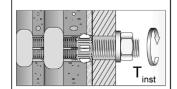

Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.



Die Injektions-Ankerhülse bündig mit der Oberfläche des Mauerwerks oder Putzes in das Bohrloch stecken.



Die Injektions-Ankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen<sup>1)</sup>.




Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker FIS E von Hand unter leichten Drehbewegungen bis zum Erreichen der Setztiefenmarkierung (Ankerstange) bzw. oberflächenbündig (Innengewindeanker) einschieben.



6

Nicht berühren. Minimale Aushärtezeit siehe Tabelle B8.2

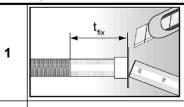


Montage des Anbauteils. max Tinst siehe Steinkennwerte Anhang C.

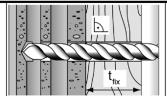
fischer Injektionssystem FIS V Plus für Mauerwerk

Verwendungszweck

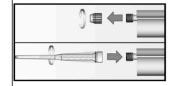
Montageanleitung (mit Injektions-Ankerhülsen) Teil 2


Anhang B10

<sup>1)</sup> Genaue Füllmengen siehe Montageanleitung des Herstellers.




#### Montageanweisung Teil 3


Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse (Durchsteckmontage)

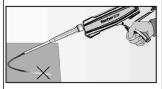


Den verschiebbaren Kragen auf die Dicke des Anbauteils einstellen und den Überstand abschneiden.

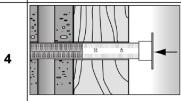


Bohrung durch das Anbauteil hindurch erstellen. Bohrlochtiefe = (h<sub>0</sub> + t<sub>fix</sub>). und Bohrdurchmesser d<sub>0</sub> siehe **Tabelle B7.1**.

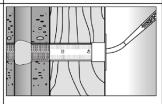



2

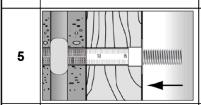
6


Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).




Kartusche in ein geeignetes Auspressgerät legen.

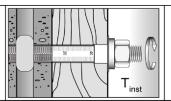



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.



Die Injektions-Ankerhülse bündig mit der Oberfläche des Anbauteils in das Bohrloch stecken.




Die Injektions-Ankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen<sup>1)</sup>. Bei tiefen Bohrlöchern Verlängerungsschlauch verwenden.



Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange von Hand unter leichten Drehbewegungen bis zum Erreichen der Setztiefenmarkierung (Ankerstange) bzw. oberflächenbündig (Innengewindeanker) einschieben.



Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B8.2**.



Montage des Anbauteils. max T<sub>inst</sub> siehe Steinkennwerte der **Anhänge C**.

fischer Injektionssystem FIS V Plus für Mauerwerk

Verwendungszweck

Montageanleitung (mit Injektions-Ankerhülsen) Teil 3

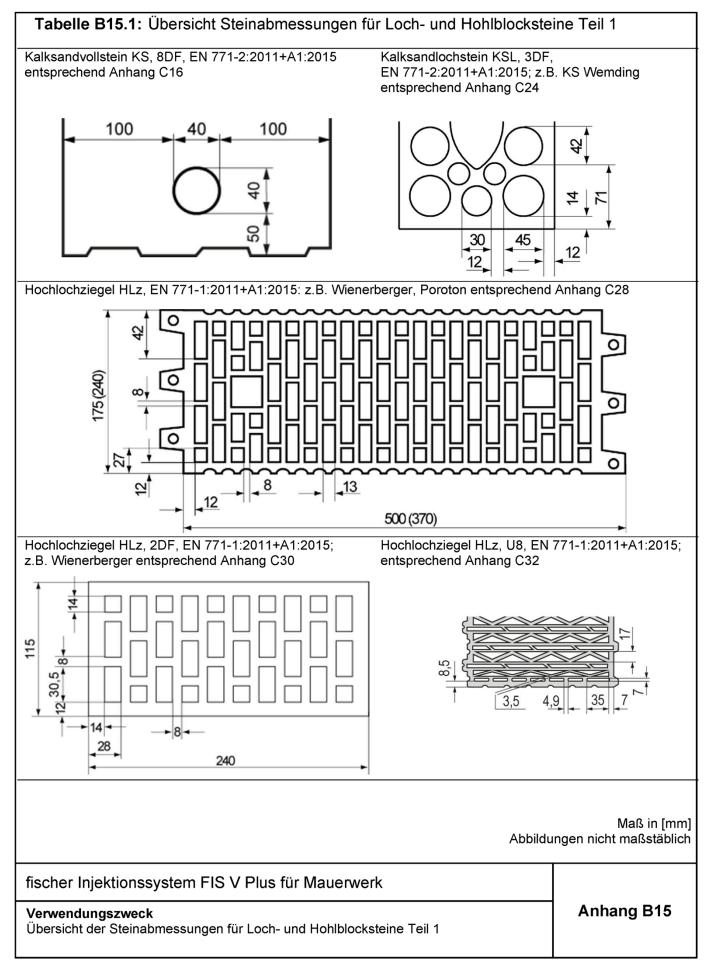
**Anhang B11** 

<sup>1)</sup> Genaue Füllmengen siehe Montageanleitung des Herstellers.



| 1 | h <sub>0</sub> = 80 mm | Bohrlochtiefe (siehe Anha<br>Dazu die Klemmschraub                                                | Den verschiebbaren Bohreranschlag auf die gewünschte<br>Bohrlochtiefe (siehe Anhang B4, <b>Tabelle B4.1</b> ) einstellen.<br>Dazu die Klemmschraube lösen, den Anschlag verschieben und mit der<br>Klemmschraube wieder festziehen. |                                                                                                                                                                      |  |  |  |  |
|---|------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2 |                        |                                                                                                   | Zylindrisches Bohrloch erstellen bis der Anschlag auf dem Baustoff anliegt.<br>(Bohrverfahren siehe Anhang C des jeweiligen Steines).                                                                                               |                                                                                                                                                                      |  |  |  |  |
| 3 |                        |                                                                                                   | Die eingeschaltete Bohrmaschine verschwenken, um einen konischen<br>Hinterschnitt im Baustoff zu erzeugen.                                                                                                                          |                                                                                                                                                                      |  |  |  |  |
| 4 | 4x                     | Das Bohrloch viermal au                                                                           | Das Bohrloch viermal ausblasen.                                                                                                                                                                                                     |                                                                                                                                                                      |  |  |  |  |
| 5 |                        |                                                                                                   | Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).                                                                                                               |                                                                                                                                                                      |  |  |  |  |
| 6 | fischer EX *           | Kartusche in ein<br>geeignetes Auspress-<br>gerät legen.                                          | X                                                                                                                                                                                                                                   | Einen etwa 10 cm langen<br>Strang auspressen, bis<br>der Mörtel gut durch-<br>mischt ist. Nicht grau ge-<br>färbter Mörtel härtet nicht<br>aus und ist zu verwerfen. |  |  |  |  |
| 7 |                        | Die Zentrierhülse in das<br>Bohrloch und die<br>Injektionshilfe auf den<br>Statikmischer stecken. |                                                                                                                                                                                                                                     | Das Bohrloch mit<br>Injektionsmörtel verfüllen.                                                                                                                      |  |  |  |  |
| 8 |                        |                                                                                                   | Nur saubere und ölfreie Stal<br>Ankerstange mit Setztiefenn<br>Ankerstange oder den Innen<br>Hand unter leichten Drehbev<br>Nach dem Erreichen der Set<br>Überschussmörtel aus dem                                                  | narkierung versehen. Die<br>igewindeanker FIS E von<br>wegungen einschieben.<br>iztiefenmarkierung muss                                                              |  |  |  |  |
| 9 |                        | Nicht berühren.<br>Minimale Aushärtezeit<br>siehe Tabelle <b>B8.2</b> .                           |                                                                                                                                                                                                                                     | Montage des Anbauteils.<br>max T <sub>inst</sub> siehe<br>Steinkennwerte der<br><b>Anhänge C</b> .                                                                   |  |  |  |  |
|   |                        |                                                                                                   |                                                                                                                                                                                                                                     |                                                                                                                                                                      |  |  |  |  |
|   | ner Injektionssystem F | IS V Plus für Mauerwe                                                                             | rk                                                                                                                                                                                                                                  | Anhang B12                                                                                                                                                           |  |  |  |  |




| Steinart / Bezeichnung Steinabmess [mm] |     |                | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Haupt-<br>herkunfts-<br>land | Rohdichte ρ<br>[kg/dm³] | Anhang   |
|-----------------------------------------|-----|----------------|----------------------------------------|------------------------------|-------------------------|----------|
|                                         |     |                | Vollziegel Mz                          |                              |                         |          |
|                                         | NF  | ≥240x115x71    | 15 / 25 / 35                           | Deutschland                  | ≥1,8                    | C4 – C7  |
|                                         | 2DF | ≥240x115x113   | 12,5 / 20                              | Deutschland                  | ≥1,8                    | C8 / C9  |
| Vollziegel Mz                           |     | ≥ 245x118x54   | 12,5 / 25                              | Italien                      | ≥1,8                    | C10 / C1 |
|                                         |     | ≥ 230x108x55   | 12,5 / 25                              | Dänemark                     | ≥1,8                    | C12 / C1 |
|                                         |     | Kalksandvollst | tein KS / Kalksandlochs                | tein KSL                     |                         |          |
|                                         | NF  | ≥240x115x71    | 15 / 25 / 35                           | Deutschland                  | ≥2,0                    | C14 / C1 |
| Kalksandvollstein KS                    |     | ≥ 250x240x240  |                                        | Deutschland                  | ≥2,0                    | C16 / C1 |
|                                         |     | ≥ 997x214x538  | ,                                      | Niederlande                  | ≥1,8 & ≥2,2             | C18 / C1 |
|                                         |     | ≥ 240x115x113  | 12,5 / 25                              | Deutschland                  | ≥1,8                    | C20 – C2 |
| Kalksandlochstein KSL                   | 3DF | 240x175x113    | 10 / 12,5 / 15 / 20 / 25               | Deutschland                  | ≥1,4                    | C24 – C2 |
|                                         |     | н              | lochlochziegel HLz                     |                              | ·                       |          |
|                                         |     | 370x240x237    | 5 / 7,5 / 10 / 12,5 / 15               | Deutschland                  | ≥1,0                    | C28 / C2 |
|                                         |     | 500x175x237    | , ,                                    | Deutschland                  | ≥1,0                    | C28 / C2 |
|                                         | 2DF | 240x115x113    | , ,                                    | Deutschland                  | ≥1,4                    | C30 / C3 |
|                                         |     | 248x365x248    | 5 / 7,5 / 10                           | Deutschland                  | ≥0,6                    | C32 – C3 |
|                                         |     | 248x365x249    | 10 / 12,5 / 15                         | Deutschland                  | ≥0,7                    | C36 – C3 |
|                                         |     | 248x365x249    | 5/8                                    | Deutschland                  | ≥0,5                    | C40 – C4 |
|                                         |     | 248x425x248    | 5 / 8 / 10                             | Deutschland                  | ≥0,8                    | C44 – C4 |
|                                         |     | 248x425x248    | 5 / 7,5 / 10                           | Deutschland                  | ≥0,8                    | C48 – C5 |
|                                         |     | 500x200x315    | 5 / 7,5 / 10                           | Deutschland                  | ≥0,6                    | C52 – C5 |
|                                         |     | 500x200x300    | 5 / 7,5 / 10 / 12,5                    | Frankreich                   | ≥0,7                    | C56 – C5 |
| Hochlochziegel HLz                      |     | 500x200x315    | 2,5 / 5 / 7,5 / 10                     | Frankreich                   | ≥0,7                    | C60 – C6 |
|                                         |     | 560x200x275    | 5 / 8 / 10                             | Frankreich                   | ≥0,7                    | C64 / C6 |
|                                         |     | 255x120x118    | 2,5 / 5 / 8 / 10 / 12,5 / 15           | Italien                      | ≥1,0                    | C66 - C6 |
|                                         |     | 275x130x94     | 7,5 / 10 / 15 / 20 / 25                | Spanien                      | ≥0,8                    | C69 / C7 |
|                                         |     | 220x190x290    | 7,5 / 10 / 12,5                        | Portugal                     | ≥0,7                    | C72 – C7 |
|                                         |     | 253x300x240    | 2,5 / 5 / 8                            | Österreich                   | ≥0,8                    | C76 – C7 |
|                                         |     | 250x440x250    | 8 / 10 / 12,5                          | Österreich                   | ≥0,7                    | C80 – C8 |
|                                         |     | 230x108x55     | 2,5 / 5 / 8 / 10                       | Dänemark                     | ≥1,4                    | C84 / C8 |
|                                         |     | 365x248x245    | 10                                     | Österreich                   | ≥0,6                    | C86 / C8 |
|                                         |     | 240x175x113    | 12,5                                   | Deutschland                  | ≥0,9                    | C90 / C9 |

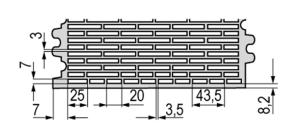


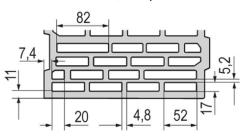
| Tabelle B14.1: Übe               | rsicht der bewert      | eten Steine Teil                       | 2                            |                         |             |
|----------------------------------|------------------------|----------------------------------------|------------------------------|-------------------------|-------------|
| Steinart /<br>Bezeichnung        | Steinabmessung<br>[mm] | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Haupt-<br>herkunfts-<br>land | Rohdichte ρ<br>[kg/dm³] | Anhang      |
|                                  |                        | Langlochziegel                         | LLz                          |                         |             |
| Langlachziagal I I z             | 248x78x250             | 2,5 / 5 / 8                            | Italien                      | ≥0,7                    | C94 / C95   |
| Langlochziegel LLz               | 128x88x275             | 2,5                                    | Spanien                      | ≥0,8                    | C96 / C97   |
|                                  | Hoh                    | ilblock aus Leichtl                    | oeton Hbl                    |                         |             |
| Hohlblock aus<br>Leichtbeton Hbl | 362x240x240            | 2,5 / 5                                | Deutschland                  | ≥1,0                    | C98 – C101  |
|                                  | 500x200x200            | 2,5 / 5 / 8                            | Frankreich                   | ≥1,0                    | C102 / C103 |
| Leichtbeton Hbi                  | 440x215x215            | 5 / 8 / 10 / 12,5                      | Irland                       | ≥1,2                    | C104 - C107 |
|                                  | Vol                    | Iblock aus Leicht                      | eton Vbl                     |                         |             |
|                                  | ≥ 372x300x254          | 2,5                                    | Deutschland                  | ≥0,6                    | C108 / C109 |
| Vollblock aus                    | ≥ 250x240x239          | 5 / 8 / 10                             | Deutschland                  | ≥1,6                    | C110 - C113 |
| Leichtbeton VbI                  | ≥ 440x100x215          | 5 / 8 / 10 / 12,5                      | Irland                       | ≥2,0                    | C114 / C115 |
|                                  | ≥ 440x95x215           | 7,5 / 10 / 12,5 / 15                   | England                      | ≥2,0                    | C116 / C117 |
|                                  |                        | Porenbeton                             |                              |                         |             |
| PP2 / AAC                        | -                      | 2,5                                    | Deutschland                  | 0,35                    | C118 - C122 |
| PP4 / AAC                        | -                      | 5                                      | Deutschland                  | 0,5                     | C118 – C122 |
| PP6 / AAC                        | -                      | 8                                      | Deutschland                  | 0,65                    | C118 – C122 |

| fischer Injektionssystem FIS V Plus für Mauerwerk          |            |
|------------------------------------------------------------|------------|
| Verwendungszweck<br>Übersicht der bewerteten Steine Teil 2 | Anhang B14 |



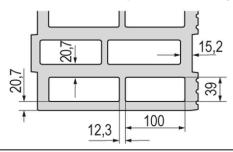


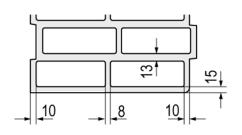




#### Tabelle B16.1: Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 2

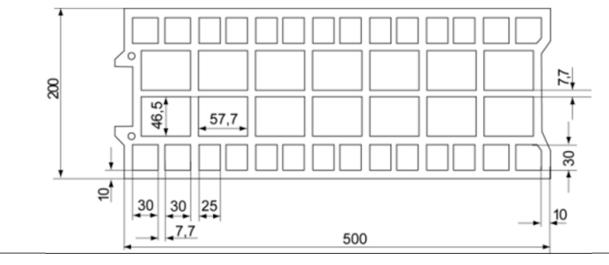
Hochlochziegel HLz, T10, T11,

EN 771-1:2011+A1:2015; entsprechend Anhang C36


Hochlochziegel HLz, T7 PF, Perlite gefüllt, EN 771-1:2011+A1:2015; entsprechend Anhang C40







Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt, EN 771-1:2011+A1:2015; entsprechend Anhang C44

Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015; entsprechend Anhang C48

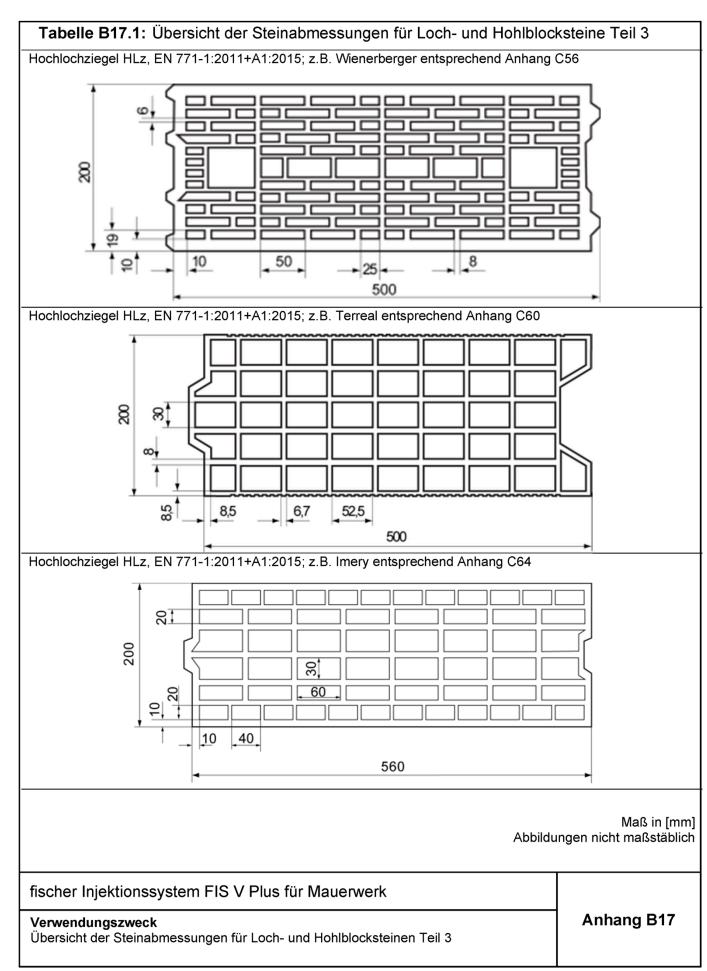




Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Bouyer Leroux; entsprechend Anhang C52



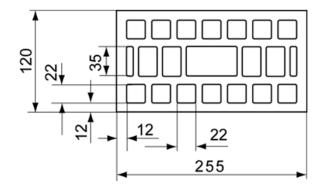
Maß in [mm] Abbildungen nicht maßstäblich


fischer Injektionssystem FIS V Plus für Mauerwerk

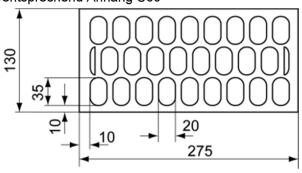
Verwendungszweck

Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 2

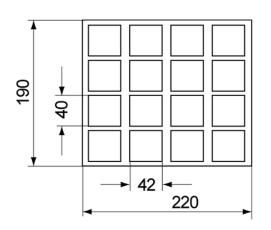
**Anhang B16** 



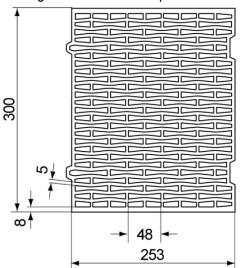


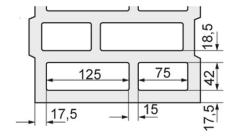

#### Tabelle B18.1: Übersicht der Steinabmessungen für Loch- und Hohlblocksteinen Teil 4


Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Wienerberger entsprechend Anhang C66

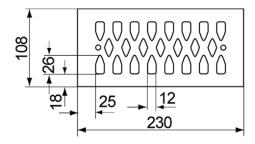



Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Cermanica Farreny S.A. entsprechend Anhang C69




Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Perceram entsprechend Anhang C72




Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Ziegelwerk Brenna entsprechend Anhang C76



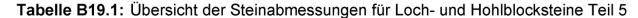
Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015 entsprechend Anhang C80



Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Wienerberger entsprechend Anhang C84



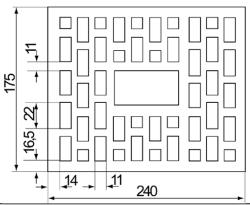
Maß in [mm] Abbildungen nicht maßstäblich


fischer Injektionssystem FIS V Plus für Mauerwerk

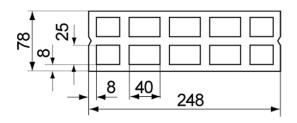
#### Verwendungszweck

Übersicht der Steinabmessungen für Loch- und Hohlblocksteinen Teil 4

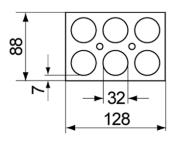
**Anhang B18** 



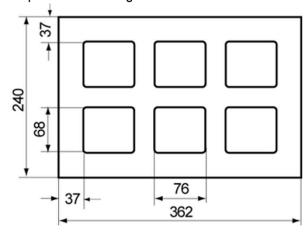




Hochlochziegel HLz; Mineralwolle gefüllt, EN 771-1:2011+A1:2015; entsprechend Anhang C86



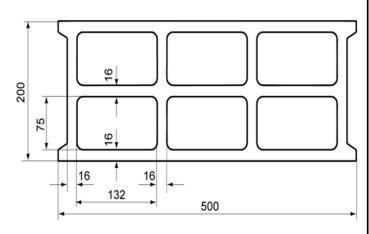

Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Wienerberger entsprechend Anhang C90




Langlochziegel LLz, EN 771-1:2011+A1:2015; entsprechend Anhang C94



Langlochziegel LLz, EN 771-1:2011+A1:2015; z.B. Cermanica Farreny S.A entsprechend Anhang C96




Hohlblock aus Leichtbeton Hbl, EN 771-1:2011+A1:2015; entsprechend Anhang C98

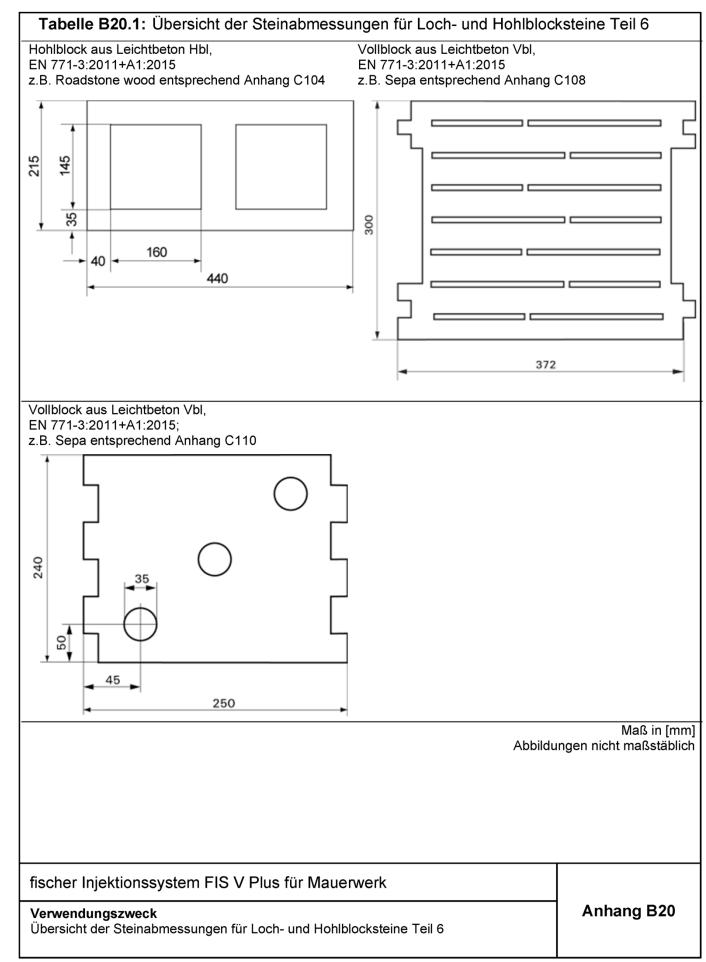


Hohlblockstein aus Leichtbeton Hbl, EN 771-1:2011+A1:2015;

z.B. Sepa entsprechend Anhang C102



Maß in [mm] Abbildungen nicht maßstäblich


fischer Injektionssystem FIS V Plus für Mauerwerk

#### Verwendungszweck

Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 5

**Anhang B19** 







## 

 $s_{min}$  II = Minimaler Achsabstand parallel zur horizontalen Lagerfuge

 $s_{min}$  = Minimaler Achsabstand senkrecht zur horizontalen Lagerfuge

s<sub>cr</sub> II = Charakteristischer Achsabstand parallel zur horizontalen Lagerfuge

 $s_{cr}^{\perp}$  = Charakteristischer Achsabstand senkrecht zur horizontalen Lagerfuge

 $c_{cr} = c_{min}$  = Randabstand

 $\alpha_{g,N}$  ( $s_{min}$  II) = Gruppenfaktor bei Zuglast, Dübelanordnung parallel horizontalen zur Lagerfuge

 $\alpha_{\text{g,V}}\left(s_{\text{min}}\,\text{II}\right) \hspace{0.5cm} = \hspace{0.5cm} \text{Gruppenfaktor bei Querlast, D\"{u}belanordnung parallel zur horizontalen Lagerfuge}$ 

 $\alpha_{g,N}(s_{min}^{\perp})$  = Gruppenfaktor bei Zuglast, Dübelanordnung senkrecht zur horizontalen Lagerfuge

 $\alpha_{g,V}(s_{min} \perp)$  = Gruppenfaktor bei Querlast, Dübelanordnung senkrecht zur horizontalen Lagerfuge

Abbildungen nicht maßstäblich

| fischer Injektionssystem FIS V Plus für Mauerwerk |            |
|---------------------------------------------------|------------|
| Verwendungszweck<br>Rand- und Achsabstände Teil 1 | Anhang B21 |



#### Rand- und Achsabstände, Teil 2

Für 
$$s \ge s_{cr}$$
  $\alpha_g = 2$ 

Für s<sub>min</sub> ≤ s < s<sub>cr</sub> α<sub>g</sub> entsprechend Montagekennwerte der Steine gemäß Anhang C

#### Gruppe von 2 Ankern

$$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
;  $V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$ 

#### Gruppe von 4 Ankern

$$N^{g}_{Rk} = \alpha_{g,N} (s_{min}II) \cdot \alpha_{g,N} (s_{min} \perp) \cdot N_{Rk}$$
;

$$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} (s_{min}II) \cdot \alpha_{g,V} (s_{min}^{\perp}) \cdot V_{Rk}$$

mit  $N_{Rk}$  und  $\alpha_{g,N}$  in Abhängigkeit von  $s_{min}II$  oder  $s_{min}II$  gemäß Anhang C

mit V<sub>Rk</sub> und α<sub>g,V</sub> in Abhängigkeit von s<sub>min</sub>II oder s<sub>min</sub>L gemäß Anhang C

fischer Injektionssystem FIS V Plus für Mauerwerk

Verwendungszweck

Rand- und Achsabstände; Teil 2

**Anhang B22** 



Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

| Anke                             | rstange / Standar             | d-Gewindes      | tange     | •     | M6         | M8 <sup>3)</sup> | M10 <sup>3)</sup>         | M12   | M16   |  |  |
|----------------------------------|-------------------------------|-----------------|-----------|-------|------------|------------------|---------------------------|-------|-------|--|--|
| Char                             | akteristischer Wid            | derstand geg    | jen St    | ahlve | rsagen unt | er Zugbeansp     | ruchung                   |       |       |  |  |
|                                  |                               |                 | 4.6       |       | 8,0        | 14,6(13,2)       | 23,2(21,4)                | 33,7  | 62,8  |  |  |
| and                              | Ctable variable               |                 | 4.8       |       | 8,0        | 14,6(13,2)       | 23,2(21,4)                | 33,7  | 62,8  |  |  |
| ırst                             | Stahl verzinkt                |                 | 5.8       |       | 10,0       | 18,3(16,6)       | 29,0(26,8)                | 42,1  | 78,5  |  |  |
| Stahl verzinkt                   | Festigkeits-                  | 8.8             | ri. N I I | 16,0  | 29,2(26,5) | 46,4(42,8)       | 67,4                      | 125,6 |       |  |  |
| ıkt.<br>N⊓                       | Nichtrostender<br>Stahl R und | klasse          | 50        | [kN]  | 10,0       | 18,3             | 29,0                      | 42,1  | 78,5  |  |  |
| Charakt.                         | Hochkorrosions-               |                 | 70        |       | 14,0       | 25,6             | 40,6                      | 59,0  | 109,9 |  |  |
| O                                | beständiger<br>Stahl HCR      |                 | 80        |       | 16,0       | 29,2             | 46,4                      | 67,4  | 125,6 |  |  |
| Teilsi                           | cherheitsbeiwert              | e <sup>1)</sup> |           |       |            |                  |                           |       |       |  |  |
|                                  |                               |                 | 4.6       |       | 2,00       |                  |                           |       |       |  |  |
| ۷er                              | Ctable varrialst              |                 | 4.8       |       | 1,50       |                  |                           |       |       |  |  |
| bei                              | Stahl verzinkt                |                 | 5.8       |       | 1,50       |                  |                           |       |       |  |  |
| eits                             |                               | Festigkeits-    | 8.8       | .,    |            |                  | 1,50                      |       |       |  |  |
| Teilsicherheitsbeiwert<br>Yms, N | Nichtrostender<br>Stahl R und | klasse          | 50 [-]    |       |            |                  | 2,86                      |       |       |  |  |
| eilsic                           | Hochkorrosions-               |                 | 70        |       |            |                  | 1,50 <sup>2)</sup> / 1,87 |       |       |  |  |
| ř                                | beständiger<br>Stahl HCR      |                 | 80        |       |            |                  | 1,60                      |       |       |  |  |

<sup>1)</sup> Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

<sup>2)</sup> Nur für fischer FIS A aus hochkorrosionsbeständigem Stahl HCR

<sup>&</sup>lt;sup>3)</sup> Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.



**Tabelle C2.1:** Charakteristischer **Widerstand** gegen **Stahlversagen** unter Querbeanspruchung von **fischer Ankerstangen** und **Standard-Gewindestangen** 

| Anke                                                | rstange / Standar              | rd-Gewindes      | tange  | )      | M6         | M8 <sup>3)</sup> | M10 <sup>3)</sup>         | M12   | M16   |
|-----------------------------------------------------|--------------------------------|------------------|--------|--------|------------|------------------|---------------------------|-------|-------|
| Char                                                | akteristischer Wid             | derstand geg     | gen St | tahlve | rsagen unt | er Querbeans     | pruchung                  |       |       |
| ohne                                                | Hebelarm                       |                  |        |        |            |                  |                           |       |       |
|                                                     |                                |                  | 4.6    |        | 4,8        | 8,7(7,9)         | 13,9(12,8)                | 20,2  | 37,6  |
|                                                     | Ctable comings                 |                  | 4.8    | ] [    | 4,8        | 8,7(7,9)         | 13,9(12,8)                | 20,2  | 37,6  |
|                                                     | Stani verzinkt                 |                  | 5.8    |        | 6,0        | 10,9(9,9)        | 17,4(16,0)                | 25,2  | 47,1  |
|                                                     |                                | Festigkeits-     | 8.8    | [kN]   | 8,0        | 14,6(13,2)       | 23,2(21,4)                | 33,7  | 62,8  |
|                                                     | Nichtrostender<br>Stahl R und  | klasse           | 50     | [KIN]  | 5,0        | 9,1              | 14,5                      | 21,0  | 39,2  |
| hara                                                | Hochkorrosions-                |                  | 70     |        | 7,0        | 12,8             | 20,3                      | 29,5  | 54,9  |
| <u> </u>                                            | beständiger<br>Stahl HCR       |                  | 80     |        | 8,0        | 14,6             | 23,2                      | 33,7  | 62,8  |
| mit H                                               | ebelarm                        |                  |        |        |            |                  |                           |       |       |
| Charakt. Widerstand<br>M <sup>0</sup> Rk,s<br>⊙ ⊤ ∽ | Stahl verzinkt                 | _Festigkeits-    | 4.6    |        | 6,1        | 14,9(12,9)       | 29,9(26,5)                | 52,3  | 132,9 |
|                                                     |                                |                  | 4.8    | [Nm]   | 6,1        | 14,9(12,9)       | 29,9(26,5)                | 52,3  | 132,9 |
|                                                     |                                |                  | 5.8    |        | 7,6        | 18,7(16,1)       | 37,3(33,2)                | 65,4  | 166,2 |
|                                                     |                                |                  | 8.8    |        | 12,2       | 29,9(25,9)       | 59,8(53,1)                | 104,6 | 265,9 |
| akt. v<br>M <sup>o</sup>                            | Nichtrostender<br>Stahl R und  | klasse           | 50     |        | 7,6        | 18,7             | 37,3                      | 65,4  | 166,2 |
| Shara                                               | Hochkorrosions-<br>beständiger |                  | 70     |        | 10,6       | 26,2             | 52,3                      | 91,5  | 232,6 |
|                                                     | Stahl HCR                      |                  | 80     |        | 12,2       | 29,9             | 59,8                      | 104,6 | 265,9 |
| Teilsi                                              | cherheitsbeiwert               | :e <sup>1)</sup> |        |        |            |                  |                           |       |       |
| +                                                   |                                |                  | 4.6    |        |            |                  | 1,67                      |       |       |
| Μer                                                 | Stahl verzinkt                 |                  | 4.8    |        |            |                  | 1,25                      |       |       |
| ibei                                                | Starii verzirikt               |                  | 5.8    |        |            |                  | 1,25                      |       |       |
| rheitsk<br>‱,v                                      |                                | Festigkeits-     | 8.8    | [-]    |            |                  | 1,25                      |       |       |
| chert<br>™                                          | Nichtrostender<br>Stahl R und  | klasse           | 50     | [-]    |            |                  | 2,38                      |       |       |
| Teilsicherheitsbeiwert<br>‱.v                       | Hochkorrosions-<br>beständiger |                  | 70     |        |            |                  | 1,25 <sup>2)</sup> / 1,56 |       |       |
| ⊢                                                   | Stahl HCR                      |                  | 80     |        |            |                  | 1,33                      |       |       |

<sup>1)</sup> Falls keine abweichenden nationalen Regelungen existieren

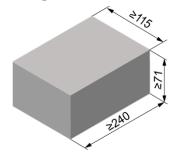
fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

<sup>&</sup>lt;sup>2)</sup> Nur für fischer FIS A aus hochkorrosionsbeständigem Stahl HCR

<sup>&</sup>lt;sup>3)</sup> Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.




| Tabelle C3.1: | Charakteristischer Widerstand gegen Stahlversagen unter Zug- und Querbe- |
|---------------|--------------------------------------------------------------------------|
|               | anspruchung des Innengewindeankers FIS E                                 |

| fischer Innengewii                              | ndeanker FIS E                           |                 |                 | М6   | М8            | M10              | M12          |  |
|-------------------------------------------------|------------------------------------------|-----------------|-----------------|------|---------------|------------------|--------------|--|
| Charakteristischer<br>des Innengewinde          |                                          |                 |                 |      | ugbeanspruch  | ung; resultiende | Widerstände  |  |
|                                                 | Festigkeits-<br>klasse                   | 4.6             |                 | 8,0  | 14,6          | 23,2             | 33,7         |  |
| Charakteristischer<br>Widerstand N <sub>F</sub> | Festigkeits-<br>N <sub>Rk,s</sub> klasse | 5.8             | [kN]            | 10,0 | 18,3          | 29,0             | 42,1         |  |
|                                                 | Festigkeits-                             |                 |                 | 14,0 | 25,6          | 40,6             | 59,0         |  |
| Teilsicherheitsbeiv                             | klasse 70                                | HCR             |                 | 14,0 | 25,6          | 40,6             | 59,0         |  |
| Tensionemensber                                 | Festigkeits-<br>klasse                   | 4.6             |                 |      | 2             | ,00              |              |  |
| Teilsicherheits-<br>beiwerte                    | Festigkeits-<br>Klasse                   | 5.8             | [-]             | 1,50 |               |                  |              |  |
|                                                 | Festigkeits-<br>klasse 70                | $\frac{R}{HCR}$ | ,               |      |               | ,87<br>,87       |              |  |
| Charakteristischer<br>des Innengewinde          |                                          |                 |                 |      | uerbeanspruch | nung; resultiend | e Widerständ |  |
| ohne Hebelarm                                   |                                          |                 |                 |      |               |                  |              |  |
|                                                 | Festigkeits-<br>klasse                   | 4.6             | 4.6<br>5.8 [kN] | 4,8  | 8,7           | 13,9             | 20,2         |  |
| Charakteristischer<br>Widerstand                | V <sub>Rk,s</sub> Festigkeits-           | 5.8             |                 | 9    | 9             | 15               | 21           |  |
|                                                 | Festigkeits-                             | R               |                 | 7,0  | 12,8          | 20,3             | 29,5         |  |
| :4                                              | klasse 70                                | HCR             |                 | 7,0  | 12,8          | 20,3             | 29,5         |  |
| mit Hebelarm Charakteristi-                     | Festigkeits-<br>klasse                   | 4.6             |                 | 6,1  | 14,9          | 29,9             | 52,3         |  |
| scher<br>Widerstand M                           | Festigkeits-<br>klasse                   | 5.8             | [Nm]            | 7,6  | 18,7          | 37,3             | 65,4         |  |
|                                                 | Festigkeits-                             | R               |                 | 10,6 | 26,2          | 52,3             | 91,5         |  |
|                                                 | klasse 70                                | HCR             |                 | 10,6 | 26,2          | 52,3             | 91,5         |  |
| Teilsicherheitsbei                              |                                          |                 |                 |      |               |                  |              |  |
|                                                 | Festigkeits-<br>klasse                   | 4.6             |                 |      | 1             | ,67              |              |  |
| Teilsicherheits-<br>beiwert                     | Festigkeits-<br>ls,V klasse              | 5.8             | [-]             |      | 1             | ,25              |              |  |
| beiwert γ <sub>N</sub>                          | Ridose                                   |                 |                 |      | 1             | ,56              |              |  |
| ^^                                              | Festigkeits-<br>klasse 70                | R<br>HCR        |                 |      |               | ,56<br>,56       |              |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                                          |           |
|----------------------------------------------------------------------------------------------------------------------------|-----------|
| Leistung Charakteristischer Widerstand gegen Stahlversagen unter Zug- und Querbean- spruchung des Innengewindeankers FIS E | Anhang C3 |



#### Vollziegel Mz, NF, EN 771-1:2011+A1:2015



| Hersteller                                                          | z.B. Wienerberger     |                                      |          |        |  |  |
|---------------------------------------------------------------------|-----------------------|--------------------------------------|----------|--------|--|--|
| Nennmaße                                                            | [mm]                  | Länge L                              | Breite B | Höhe H |  |  |
| Nemmaise                                                            | [mm]                  | ≥ 240                                | ≥ 115    | ≥ 71   |  |  |
| Rohdichte ρ                                                         | [kg/dm <sup>3</sup> ] | ≥ 1,8                                |          |        |  |  |
| mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ]  | 15 / 12 oder 25 / 20 oder<br>35 / 28 |          |        |  |  |
| Norm oder Anhang                                                    |                       | EN 771-1:2011+A1:2015                |          |        |  |  |

Tabelle C4.1: Installationsparameter für Randabstand c=100mm

| Ankerstange                            | M6                                         | M8              | M10         | M12       | T -      |     |         |     |     |            |  |
|----------------------------------------|--------------------------------------------|-----------------|-------------|-----------|----------|-----|---------|-----|-----|------------|--|
| Innengewindeanker FIS E                |                                            |                 | -           | -         | -        | -   | M6 11x8 | M8  | M10 | M12<br><85 |  |
| Ankerstangen                           | und Innengewindea                          | nker FIS E ohne | Injektions- | Ankerhüls | <u> </u> |     | 1180    | 99  | 10) | (05        |  |
|                                        |                                            |                 | 50          | 50        | 50       | 50  |         |     |     |            |  |
| Effektive<br>Verankerungsti            | h <sub>ef</sub>                            | [mm]            | 80          | 80        | 80       | 80  |         |     |     |            |  |
| Verankerungsti                         | CIC                                        |                 | 200         | 200       | 200      | 200 | 7       |     |     |            |  |
| Max. Montage-<br>drehmoment            |                                            |                 |             |           |          | 4   | 10      |     |     |            |  |
| Allgemeine Ins                         | stallationsparameter                       |                 |             |           |          |     | '       |     |     |            |  |
| Randabstand                            | C <sub>min</sub> = C <sub>cr</sub>         |                 | 100<br>150  |           |          |     |         | 100 |     |            |  |
| Randabstand h                          | lef=200 C <sub>min</sub> = C <sub>cr</sub> | ]               |             |           |          |     |         | _2) |     |            |  |
|                                        | S <sub>min</sub> II, <sub>N</sub>          |                 | 60          |           |          |     |         | 60  |     |            |  |
|                                        | hef=200 s <sub>min</sub> II,1              | [mm]            |             | _2)       |          |     |         |     |     |            |  |
| Achs-<br>abstand                       | s <sub>min</sub> II,                       | 7               |             | 240       |          |     |         |     |     |            |  |
| abotana .                              | s <sub>cr</sub> I                          | I               | 240         |           |          |     | 240     |     |     |            |  |
| S <sub>cr</sub> ⊥ = S <sub>min</sub> ⊥ |                                            | _               | 75          |           |          |     |         | 75  |     |            |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C4.2: Gruppenfaktoren

| Ankerstange |                                                                     |      | М6  | M6 M8 M10 |           |     | T - |     | - |  |  |  |  |
|-------------|---------------------------------------------------------------------|------|-----|-----------|-----------|-----|-----|-----|---|--|--|--|--|
| Innengewind |                                                                     |      |     |           | M6        | M8  | M10 | M12 |   |  |  |  |  |
| Innengewind | -                                                                   | -    | -   | -         | 11x85 15x |     |     | κ85 |   |  |  |  |  |
| Randabstand | Cmin                                                                | [mm] |     |           | ,         | 100 |     |     |   |  |  |  |  |
|             | (S <sub>min</sub> II)                                               |      |     |           |           | 1,5 |     |     |   |  |  |  |  |
|             | α <sub>g,V</sub> (s <sub>min</sub> II)                              |      | 2,0 |           |           |     |     |     |   |  |  |  |  |
|             | h <sub>ef</sub> =200 α <sub>g,N</sub> (s <sub>min</sub> II)         |      | 1,5 |           |           |     |     |     |   |  |  |  |  |
| Gruppen-    | h <sub>ef</sub> =200 α <sub>g,V</sub> ( <b>s</b> <sub>min</sub> II) |      |     |           | :         | 2,0 |     |     |   |  |  |  |  |
| faktoren    | α <sub>g,N</sub> (S <sub>min</sub> ⊥)                               | [-]  | 2,0 |           |           |     |     |     |   |  |  |  |  |
|             | α <sub>g,V</sub> (S <sub>min</sub> ⊥)                               |      | 2,0 |           |           |     |     |     |   |  |  |  |  |
|             | $h_{ef}$ =200 $\alpha_{g,N}$ ( $s_{min} \perp$ )                    |      | 2,0 |           |           |     |     |     |   |  |  |  |  |
|             | h <sub>ef</sub> =200 α <sub>g,V</sub> ( <b>s</b> <sub>min</sub> ⊥)  |      |     | 2,0       |           |     |     |     |   |  |  |  |  |

| fischer Injektionssystem | FIS V Plus für Mauerwerk |
|--------------------------|--------------------------|
|                          |                          |

#### Leistung

Vollziegel Mz NF, Abmessungen, Installationsparameter für Randabstand c=100mm, Gruppenfaktoren

**Anhang C4** 

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>2)</sup> Leistung nicht bewertet.



#### Vollziegel Mz, NF, EN 771-1:211+A1:2015

**Tabelle C5.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung für Randabstand c=100mm

| Ankerstange                                                                                                                                         |                    |          | M6  | M8  |     | M10   |         | M12 - |         |                      | -    |   |     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----|-----|-----|-------|---------|-------|---------|----------------------|------|---|-----|--|
| Innengewindeanker                                                                                                                                   |                    |          |     |     | _   |       |         | M8    | M10     | M12                  |      |   |     |  |
| FIS E                                                                                                                                               |                    |          |     |     |     | 11x85 |         | 15x85 |         |                      |      |   |     |  |
| N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,b,c</sub> = N <sub>Rk,p,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                    |          |     |     |     |       |         |       |         |                      |      |   |     |  |
| mittlere Druckfestigkeit /                                                                                                                          | Nut                | z-       |     |     |     | Effek | tive Ve | ranke | rungsti | iefe h <sub>ef</sub> | [mm] |   |     |  |
| Mindestdruckfestigkeit<br>Einzelstein 1)                                                                                                            | ung<br>bedi<br>gun | in-      | ≥50 | ≥50 | 50  | 80    | 200     | 50    | 80      | 200                  |      | 8 | 85  |  |
| 15 / 12 N/mm²                                                                                                                                       | w/w v              | w/d      | 2,5 | 2,5 | 2,0 | 3,0   | 7,5     | 2,0   | 3,5     | 5,0                  | 3,5  |   |     |  |
| 15 / 12 N/MM-                                                                                                                                       | d/d                | b        | 4,0 | 4,0 | 3,5 | 5,0   | 12,0    | 3,0   | 5,5     | 8,0                  | 5    |   | 5,5 |  |
| 25 / 20 N/mm²                                                                                                                                       | w/w v              | w/d      | 3,5 | 3,5 | 3,0 | 4,5   | 11,0    | 3,0   | 5,0     | 7,0                  |      |   | 5,0 |  |
|                                                                                                                                                     | d/c                | <u> </u> | 5.5 | 5.5 | 5.0 | 7.0   | 12.0    | 4.5   | 8.0     | 11.5                 |      | 8 | 3.0 |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C5.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung für Randabstand c=100mm

| Ankerstange                                                                                                                   |                         | M6                                   | M8  | M    | 10   | M12  |      |         |    |   |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-----|------|------|------|------|---------|----|---|--|
| Innengewindeanker                                                                                                             |                         |                                      |     | M6   | M8   | M10  | M12  |         |    |   |  |
| FIS E                                                                                                                         |                         |                                      |     |      | •    | 11x8 | 5    | 15x85   |    |   |  |
| V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |                         |                                      |     |      |      |      |      |         |    |   |  |
| mittlere Druckfestigkeit /                                                                                                    | Nutz-                   | Effektive Verankerungstiefe hef [mm] |     |      |      |      |      |         |    |   |  |
| Mindestdruckfestigkeit<br>Einzelstein 1)                                                                                      | ungs-<br>bedin-<br>gung | ≥50                                  | ≥50 | ≥50  | 200  | ≥50  | 200  |         | 8  | 5 |  |
| 15 / 12 N/mm²                                                                                                                 | w/w w/d                 | 2,5                                  | 2,5 | 4,0  | 8,5  | 4,0  | 11,5 | 1,5 2,5 |    |   |  |
|                                                                                                                               | d/d                     | _, -                                 | _,, | ., . | 5,5  | .,•  | 2,0  |         |    |   |  |
| 25 / 20 N/mm <sup>2</sup>                                                                                                     | w/w w/d                 | 4,0                                  | 4,0 | 6,0  | 12,0 | 5,5  | 12,0 |         | 4, | n |  |
| 25 / 20 14/11111                                                                                                              | d/d                     | 7,0                                  | 7,0 | 0,0  | 12,0 | 3,3  | 12,0 |         |    |   |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                                          |           |
|----------------------------------------------------------------------------------------------------------------------------|-----------|
| Leistung Vollziegel Mz NF, Charakteristischer Widerstand unter Zugbeanspruchung und Querbeanspruchung, Randabstand c=100mm | Anhang C5 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).



| Ankerstange Innengewindear Ankerstangen u Effektive Verankerungstief        | nker FIS E                                                                                                                                                                                                                                                                     |               | M6          | M8       | M10       | M12                                               | M16      | -  | •  |     | -               |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------|-----------|---------------------------------------------------|----------|----|----|-----|-----------------|
|                                                                             |                                                                                                                                                                                                                                                                                |               | -           | -        | -         | -                                                 | -        | M6 |    | M10 | M12<br>x85      |
| Effektive                                                                   | and Innengewing                                                                                                                                                                                                                                                                | leanker FIS I | E ohne Inje | ektions- | Ankerhüls | e                                                 |          |    |    |     |                 |
|                                                                             |                                                                                                                                                                                                                                                                                |               | 50          | 50       | 50        | 50                                                | 50       |    |    |     |                 |
| verankerungslier                                                            | h <sub>ef</sub>                                                                                                                                                                                                                                                                | [mm]          | 100         | 100      | 100       | 100                                               | 100      | 1  |    | 85  |                 |
|                                                                             |                                                                                                                                                                                                                                                                                |               | 200         | 200      | 200       | 200                                               | 200      |    |    |     |                 |
| Max. Montage-<br>drehmoment                                                 | max T <sub>inst</sub>                                                                                                                                                                                                                                                          | [Nm]          | 4           |          | 10        |                                                   |          | 4  |    | 10  |                 |
| Allgemeine Insta                                                            | allationsparame                                                                                                                                                                                                                                                                | ter           |             |          |           |                                                   |          |    |    |     |                 |
| Randabstand                                                                 | $c_{min} = c_{cr}$                                                                                                                                                                                                                                                             |               |             |          |           | 60                                                |          |    |    |     |                 |
| Randabstand hef                                                             |                                                                                                                                                                                                                                                                                | 1             |             |          |           | 60                                                |          |    |    |     |                 |
|                                                                             | Smin II,N                                                                                                                                                                                                                                                                      | -1            |             |          |           | 80                                                |          |    |    |     |                 |
|                                                                             | h <sub>ef</sub> =200 s <sub>min</sub> II, <sub>N</sub>                                                                                                                                                                                                                         | ⊣ [mm]        |             |          |           | 80                                                |          |    |    |     |                 |
| Achs-<br>abstand                                                            | S <sub>min</sub> II, v                                                                                                                                                                                                                                                         | 1             |             |          |           | 80<br>2v.b                                        |          |    |    |     |                 |
|                                                                             | S <sub>cr</sub> I                                                                                                                                                                                                                                                              | 1             |             |          |           | 3x h <sub>ef</sub>                                |          |    |    |     |                 |
|                                                                             | S <sub>min</sub> ⊥                                                                                                                                                                                                                                                             | <u>:</u><br>  |             |          |           | 3x h <sub>ef</sub>                                |          |    |    |     |                 |
|                                                                             | <b>S</b> cr⊥                                                                                                                                                                                                                                                                   | .l            | I           |          |           | JX Het                                            |          |    |    |     |                 |
| Hammerbohren r                                                              |                                                                                                                                                                                                                                                                                |               |             |          |           |                                                   |          |    |    |     |                 |
| Hammerbohren r                                                              |                                                                                                                                                                                                                                                                                |               | M6          | M8       | M10       | M12                                               | M16      | _  |    |     | _               |
| Ankerstange                                                                 | Gruppenfakt                                                                                                                                                                                                                                                                    |               | M6 -        | M8<br>-  | M10<br>-  | M12                                               | M16      | М6 |    |     | -<br>M1:        |
| Hammerbohren r Tabelle C6.2: Ankerstange                                    | Gruppenfakt                                                                                                                                                                                                                                                                    |               | M6 -        | M8<br>-  | M10<br>-  |                                                   | M16<br>- | М6 | M8 |     |                 |
| Hammerbohren r Tabelle C6.2: Ankerstange Innengewindear                     | Gruppenfakt                                                                                                                                                                                                                                                                    | oren [mm]     | M6 -        | M8<br>-  | M10<br>-  | -                                                 | M16      | М6 | M8 |     | -<br>M12<br>x85 |
| Hammerbohren r<br>Tabelle C6.2:<br>Ankerstange<br>Innengewindear            | Gruppenfakt  nker FIS E   cmin = ccr                                                                                                                                                                                                                                           | oren [mm]     | M6 -        | M8<br>-  | M10<br>-  | - 60                                              | M16<br>- | М6 | M8 |     |                 |
| Hammerbohren r Tabelle C6.2: Ankerstange Innengewindear Randabstand         | Gruppenfakt  nker FIS E  c <sub>min</sub> = c <sub>cr</sub> α <sub>g,N</sub> (s <sub>min</sub> II)                                                                                                                                                                             | oren [mm]     | M6 -        | M8<br>-  | M10<br>-  | -<br>60<br>0,6<br>1,3<br>1,4                      | M16      | М6 | M8 |     |                 |
| Tabelle C6.2: Ankerstange Innengewindear Randabstand  hateleare             | Gruppenfakt  nker FIS E $c_{min} = c_{cr}$ $\alpha_{g,N} \text{ ($s_{min}$ II]}$ $\alpha_{g,V} \text{ ($s_{min}$ II]}$ $e_{ef} = 200 \alpha_{g,N} \text{ ($s_{min}$ II]}$ $e_{ef} = 200 \alpha_{g,V} \text{ ($s_{min}$ II]}$                                                   | oren [mm]     | M6 -        | M8<br>-  | M10<br>-  | -<br>60<br>0,6<br>1,3<br>1,4<br>1,5               | M16      | М6 | M8 |     |                 |
| Tabelle C6.2: Ankerstange Innengewindear Randabstand  hateleare             | Gruppenfakt  nker FIS E $c_{min} = c_{cr}$ $\alpha_{g,N} \text{ ($s_{min}   I )}$ $\alpha_{g,V} \text{ ($s_{min}   I )}$ $\alpha_{g,V} \text{ ($s_{min}   I )}$ $\alpha_{g,N} \text{ ($s_{min}   I )}$ $\alpha_{g,N} \text{ ($s_{min}   I )}$                                  | oren [mm]     | M6 -        | M8<br>-  | M10<br>-  | -<br>60<br>0,6<br>1,3<br>1,4<br>1,5<br>0,3        | M16      | М6 | M8 |     |                 |
| Tabelle C6.2: Ankerstange Innengewindear Randabstand  Gruppen- faktoren     | Gruppenfakt  nker FIS E $c_{min} = c_{cr}$ $\alpha_{g,N} \text{ ($s_{min}$ II]}$ $\alpha_{g,V} \text{ ($s_{min}$ II]}$ $\alpha_{g,N} \text{ ($s_{min}$ II]}$ $\alpha_{g,N} \text{ ($s_{min}$ II]}$ $\alpha_{g,N} \text{ ($s_{min}$ II]}$ $\alpha_{g,V} \text{ ($s_{min}$ II]}$ | oren [mm]     | M6 -        | M8<br>-  | M10<br>-  | -<br>60<br>0,6<br>1,3<br>1,4<br>1,5<br>0,3<br>1,3 | M16      | М6 | M8 |     |                 |
| Tabelle C6.2: Ankerstange Innengewindear Randabstand  Gruppen- faktoren  he | Gruppenfakt  nker FIS E $c_{min} = c_{cr}$ $\alpha_{g,N} \text{ ($s_{min}   I )}$ $\alpha_{g,V} \text{ ($s_{min}   I )}$ $\alpha_{g,V} \text{ ($s_{min}   I )}$ $\alpha_{g,N} \text{ ($s_{min}   I )}$ $\alpha_{g,N} \text{ ($s_{min}   I )}$                                  | [mm]          | M6 -        | M8<br>-  | M10<br>-  | -<br>60<br>0,6<br>1,3<br>1,4<br>1,5<br>0,3        | M16      | М6 | M8 |     |                 |



#### Vollziegel Mz, NF, EN 771-1:2011+A1:2015

**Tabelle C7.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung für Randabstand c=60mm

| Ankerstange                                    |                       | М                   | 6     | N   | 18   |      | M10   |      |      | M12   |  |  | M16 |  | -         | -   |                    |
|------------------------------------------------|-----------------------|---------------------|-------|-----|------|------|-------|------|------|-------|--|--|-----|--|-----------|-----|--------------------|
| Innengewindeanke<br>FIS E                      | r                     | -                   |       |     | -    |      | -     |      |      | -     |  |  | -   |  | M8<br>x85 | M10 | M12<br>x8 <b>5</b> |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = 1$             | $N_{Rk,p,c} = N_{Rk}$ | , <sub>b,c</sub> [k | N]; 1 | emp | erat | urbe | reich | 50/8 | 30°C | 3)    |  |  |     |  |           |     |                    |
| mittlere Druckfestigkeit / Mindestdruckfestig- | Nutzungs-             |                     | 100   | 50  | 100  |      |       |      |      | kerur |  |  | -   |  | ç         | 25  |                    |

| mittlere                                                        | Nutzunge               |     |   |     |     |     | Е   | ffekt | ive V | eran | kerur | ngstie | efe h | <sub>ef</sub> [mn | n]  |     |
|-----------------------------------------------------------------|------------------------|-----|---|-----|-----|-----|-----|-------|-------|------|-------|--------|-------|-------------------|-----|-----|
| Druckfestigkeit /<br>Mindestdruckfestig-<br>keit Einzelstein 1) | Nutzungs-<br>bedingung |     |   | 100 | 50  | 100 | 50  | 100   | 200   | 50   | 100   | 200    | 50    | 100               | 200 | 85  |
| 15 / 12 N/mm <sup>2</sup>                                       | w/w                    | w/d | 1 | ,5  | 2,0 | 2,0 | 2,0 | 2,5   | _2)   | 2,0  | 2,5   | _2)    | 2,0   | 5,5               | _2) | _2) |
| 15 / 12 N/IIIII                                                 | d,                     | /d  | 2 | ,5  | 3,0 | 4,0 | 3,0 | 4,0   | 9,5   | 3,0  | 4,0   | 9,5    | 3,0   | 8,5               | 9,5 | _2) |
| 25 / 20 N/mm <sup>2</sup>                                       | w/w                    | w/d | 2 | ,0  | 2,5 | 3,0 | 2,5 | 3,5   | _2)   | 3,0  | 3,5   | _2)    | 3,0   | 7,5               | _2) | _2) |
| 25 / 20 N/IIIII                                                 | d,                     | /d  | 3 | ,5  | 4,5 | 5,5 | 4,5 | 5,5   | 12    | 4,5  | 5,5   | 12     | 4,5   | 12                | 12  | _2) |
| 35 / 28 N/mm <sup>2</sup>                                       | w/w                    | w/d | 2 | ,5  | 3,0 | 4,0 | 3,0 | 4,0   | _2)   | 3,5  | 4,0   | _2)    | 3,5   | 9,0               | _2) | _2) |
| 35 / 26 N/IIIII-                                                | d,                     | /d  | 4 | ,0  | 5,5 | 6,5 | 5,5 | 6,5   | 12    | 5,5  | 6,5   | 12     | 5,5   | 12                | 12  | _2) |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C7.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung für Randabstand c=60mm

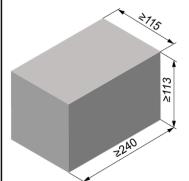
| Ankerstange       | M6 | M8 | M10 | M12 | M16 | -     | -       |
|-------------------|----|----|-----|-----|-----|-------|---------|
| Innengewindeanker |    |    |     |     |     | M6 M8 | M10 M12 |
| FIS E             | -  | _  | _   | -   | -   | 11x85 | 15x85   |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} =$ | V <sub>Rk,c,⊥</sub> [kN] | ; Te | mper | atur | bere | ich 5 | 0/80° | °C ur | id 72 | /120° | Č     |                   |      |     |   |     |
|-------------------------------------|--------------------------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------------------|------|-----|---|-----|
| mittlere                            |                          |      |      |      |      | Е     | ffekt | ive V | eranl | kerun | gstie | fe h <sub>e</sub> | f[mm | 1]  |   |     |
|                                     | Nutzungs-<br>bedingung   |      | 100  | 50   | 100  | 50    | 100   | 200   | 50    | 100   | 200   | 50                | 100  | 200 | 8 | 35  |
| 15 / 12 N/mm <sup>2</sup>           | w/w                      | 1,2  | 2,5  | 1,2  | 3,0  | 2,0   | 3,0   | 1,5   | 1,5   | 3,0   | 3,0   | 0,6               | 3,0  | 4,5 | - | _2) |
| 25 / 20 N/mm <sup>2</sup>           | w/d                      | 1,5  | 3,5  | 1,5  | 4,5  | 3,0   | 4,5   | 2,5   | 2,0   | 4,5   | 4,5   | 0,9               | 4,5  | 6,0 |   | _2) |
| 35 / 28 N/mm <sup>2</sup>           | d/d                      | 2,0  | 4,0  | 2,0  | 5,0  | 3,5   | 5,0   | 3,0   | 2,5   | 5,0   | 5,0   | 1,2               | 5,0  | 7,5 |   | _2) |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                             |           |
|---------------------------------------------------------------------------------------------------------------|-----------|
| Leistung Vollziegel Mz NF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung, Randabstand c=60mm | Anhang C7 |


<sup>&</sup>lt;sup>2)</sup> Leistung nicht bewertet.

<sup>&</sup>lt;sup>3)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .

<sup>2)</sup> Leistung nicht bewertet



## Vollziegel Mz, 2DF, EN 771-1:2011+A1:2015



| Hersteller                                                       |                       | z.B.    | Wienerbe          | rger   |
|------------------------------------------------------------------|-----------------------|---------|-------------------|--------|
| Nennmaße                                                         | [mm]                  | Länge L | Breite B          | Höhe H |
| Neminase                                                         | נוווווון              | ≥ 240   | ≥ 115             | ≥ 113  |
| Rohdichte ρ                                                      | [kg/dm <sup>3</sup> ] |         | ≥ 1,8             |        |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ]  | 12,5 /  | 10 oder 2         | 0 / 16 |
| Norm oder Anhang                                                 |                       | EN 771  | -1:2011+ <i>A</i> | 1:2015 |

#### Tabelle C8.1: Installationsparameter

|                                                   |       | -    |        |     |         |        |       |       |        |        |        |     |            |     |     |
|---------------------------------------------------|-------|------|--------|-----|---------|--------|-------|-------|--------|--------|--------|-----|------------|-----|-----|
| Ankerstange                                       |       | N    | 16     | N   | 18      | М      | 10    | М     | 12     | М      | 16     |     | -          |     | -   |
| Innongovindoonkor EIC                             | _     |      |        |     |         |        |       |       |        |        |        | M6  | M8         | M10 | M12 |
| Innengewindeanker FIS                             | _     | '    | -      | ,   |         | -      | -     |       | •      |        | -      | 11) | <b>(85</b> | 15  | x85 |
| Ankerstangen und Inner                            | gewin | dean | ker Fl | SEo | hne In  | jektio | ons-A | nkerh | ülse   |        |        |     |            |     |     |
| Effektive<br>Verankerungstiefe h <sub>ef</sub>    | [mm]  | 50   | 100    | 50  | 100     | 50     | 100   | 50    | 100    | 50     | 100    |     | 8          | 5   |     |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> | [Nm]  | 4    | 4      |     |         |        | 1     | 0     |        |        |        | 4   |            | 10  |     |
| Ankerstangen und Inner                            | gewin | dean | ker Fl | SEm | it Inje | ktion  | s-Ank | cerhü | lse FI | S H 16 | 3x85 H | (   |            |     |     |
| Effektive<br>Verankerungstiefe h <sub>ef</sub>    | [mm]  |      | 2)     |     | 8       | 5      |       |       |        | 2)     |        | 8   | 5          |     | 2)  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> | [Nm]  | -    | ,      |     | 1       | 0      |       |       | _      | -,     |        | 4   | 10         | _   | _,  |
| Allgemeine Installations                          | param | eter |        |     |         |        |       |       |        |        |        |     |            |     |     |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>    |       |      |        |     |         |        |       | 6     | 0      | •      |        |     |            |     |     |

| Randabstand      | $c_{min} = c_{cr}$             |      | 60  |
|------------------|--------------------------------|------|-----|
|                  | s <sub>min</sub> II            | [1   | 120 |
| Achs-<br>abstand | s <sub>cr</sub> II             | [mm] | 240 |
| abstand          | $s_{cr} \perp = s_{min} \perp$ |      | 115 |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C8.2: Gruppenfaktoren

| Ankerstan     | ge                                                    |     | M6 | M8 | M10 | M12 | M16 |     | •           | -   |     |  |
|---------------|-------------------------------------------------------|-----|----|----|-----|-----|-----|-----|-------------|-----|-----|--|
| Innongowii    | ndeanker FIS E                                        |     |    |    |     |     |     | М6  | M8          | M10 | M12 |  |
| Illileligewii | ildealiker FIS E                                      |     | -  | -  | -   | •   | -   | 112 | <b>(8</b> 5 | 15  | x85 |  |
|               | α <sub>g,N</sub> (s <sub>min</sub> II)                |     |    |    |     | 1,5 |     |     |             |     |     |  |
| Gruppen-      | α <sub>g,V</sub> (s <sub>min</sub> II)                | r 1 |    |    |     | 1,4 |     |     |             |     |     |  |
| faktoren      | $lpha_{	extsf{g},	extsf{N}}$ (s <sub>min</sub> $ot$ ) | [-] |    |    |     | 2   |     |     |             |     |     |  |
|               | $\alpha_{g,V}$ ( $s_{min} \perp$ )                    |     |    |    |     | 2   |     |     |             |     |     |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                |           |
|----------------------------------------------------------------------------------|-----------|
| Leistung Vollziegel Mz 2DF, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C8 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>2)</sup> Leistung nicht bewertet.



#### Vollziegel Mz, 2DF, EN 771-1:2011+A1:2015

**Tabelle C9.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                      | M6 | M8 | M10 | M12 | M16 | -    |    |            | • | M8 | M10 | -     |
|----------------------------------|----|----|-----|-----|-----|------|----|------------|---|----|-----|-------|
| Innengewindeanker FIS E          | -  | -  | -   | -   | -   | M6 N | -+ | M10<br>15> |   | -  | -   | M6 M8 |
| Injektions-Ankerhülse<br>FIS H K | -  | -  | -   | -   | -   | -    |    |            |   |    | 16x |       |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} =$ | $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2</sup> |       |                                      |     |     |     |     |     |     |     |     |     |     |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------|-------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| Mittlere                         | Nutz-                                                                                                 |       | Effektive Verankerungstiefe hef [mm] |     |     |     |     |     |     |     |     |     |     |  |  |
| Druckfestigkeit /                | ungs-                                                                                                 |       |                                      |     |     |     |     |     |     |     |     |     |     |  |  |
| Mindestdruckfestig-              | 1                                                                                                     | 50    | 100                                  | 50  | 100 | 50  | 100 | 50  | 100 | 50  | 100 | 85  |     |  |  |
| keit Einzelstein 1)              | gung                                                                                                  |       |                                      |     |     |     |     |     |     |     |     |     |     |  |  |
| 12,5 / 10 N/mm <sup>2</sup>      | w/w w/                                                                                                | d 1,5 | 2,5                                  | 1,5 | 2,5 | 1,5 | 3,0 | 2,0 | 3,5 | 2,0 | 3,5 | 2,0 | 1,5 |  |  |
| 12,5 / 10 N/IIIII                | d/d                                                                                                   | 3,0   | 4,0                                  | 3,0 | 4,0 | 3,0 | 4,5 | 3,0 | 5,5 | 3,0 | 5,5 | 3,0 | 3,0 |  |  |
| 20 / 16 N/mm <sup>2</sup>        | w/w w/                                                                                                | d 2,5 | 4,0                                  | 2,5 | 4,0 | 2,5 | 4,5 | 3,5 | 5,5 | 3,5 | 5,5 | 3,5 | 2,5 |  |  |
| 20 / 10 N/IIIII                  | d/d                                                                                                   | 4,5   | 7,0                                  | 4,5 | 7,0 | 4,5 | 7,5 | 5,5 | 8,0 | 5,5 | 8,0 | 5,5 | 4,5 |  |  |

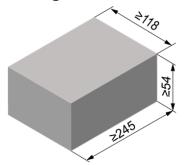
<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C9.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                      | M6 | M8 | M10 | M12 | M16 | -              | -                | M8    | M10 | -              |
|----------------------------------|----|----|-----|-----|-----|----------------|------------------|-------|-----|----------------|
| Innengewindeanker FIS E          | -  | -  | ı   | -   | -   | M6 M8<br>11x85 | M10 M12<br>15x85 | -     | -   | M6 M8<br>11x85 |
| Injektions-Ankerhülse<br>FIS H K | -  | -  | -   | -   | -   | -              | -                | 16x85 |     | 85             |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} =$ | <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |     |                                      |     |     |     |     |     |     |     |                |     |     |     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|----------------|-----|-----|-----|
| Mittlere                            | Nutz-                                                                                                                       |     | Effektive Verankerungstiefe hef [mm] |     |     |     |     |     |     |     |                |     |     |     |
| Druckfestigkeit /                   | ungs-                                                                                                                       |     |                                      |     |     |     |     |     |     |     |                |     |     |     |
| Mindestdruckfestig-                 | 1 1                                                                                                                         |     | ≥ 50 85                              |     |     |     |     |     |     |     |                |     |     |     |
| keit Einzelstein 1)                 | gung                                                                                                                        |     |                                      |     |     |     |     |     |     |     | $\blacksquare$ |     |     |     |
| 12,5 / 10 N/mm²                     | w/w w/d                                                                                                                     | 2,5 | 3,0                                  | 3,0 | 3,5 | 3,0 | 2.5 | 3 0 | 3 0 | 3,0 | 3 0            | 3.5 | 2 5 | 3 0 |
| 12,5 / 10 14/111111                 | d/d                                                                                                                         | 2,0 | 3,0                                  | 3,0 | 3,3 | 3,0 | 2,5 | 3,0 | 3,0 | 3,0 | 3,0            | 3,3 | 2,5 | 3,0 |
| 20 / 16 N/mm <sup>2</sup>           | w/w w/d                                                                                                                     | 4,0 | 5,0                                  | 5,5 | 5,5 | 5,0 | 4,0 | 5,0 | 5,0 | 5,0 | 5,0            | 6,0 | 4,0 | 5,0 |
|                                     | d/d                                                                                                                         |     |                                      | ·   | ·   |     | ·   | _   | -   | -   | ·              |     |     |     |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.


Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                      |           |
|--------------------------------------------------------------------------------------------------------|-----------|
| Leistung Vollziegel Mz 2DF, Charakteristischer Widerstand unter Zugbeanspruchung und Querbeanspruchung | Anhang C9 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



## Vollziegel Mz, EN 771-1:2011+A1:2015



| Hersteller                                                          |                      |                        | z.B. Nigra |        |  |
|---------------------------------------------------------------------|----------------------|------------------------|------------|--------|--|
| Nennmaße                                                            | [mm]                 | Länge L                | Breite W   | Höhe H |  |
|                                                                     | [mm]                 | ≥ 245                  | ≥ 118      | ≥ 54   |  |
| Rohdichte ρ                                                         | [kg/dm³]             | ≥ 1,8                  |            |        |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | 12,5 / 10 oder 25 / 20 |            |        |  |
| Norm oder Anhang                                                    |                      | EN 771-1:2011+A1:2015  |            |        |  |

#### Tabelle C10.1: Installationsparameter

| Ankerstange                                       |       | IV   | 16     | IV      | 18     | M      | 10   | M     | 12   | M  | 16  | -        |   |    | -   |     |     |
|---------------------------------------------------|-------|------|--------|---------|--------|--------|------|-------|------|----|-----|----------|---|----|-----|-----|-----|
| Innongovindoonkor EIS E                           |       |      |        |         |        |        |      |       |      |    |     |          |   | М6 | M8  | M10 | M12 |
| Innengewindeanker FIS E                           | -     |      |        |         | •      |        | •    |       | •    | -  |     | 11x85 15 |   |    | x85 |     |     |
| Ankerstangen und Innen                            | gewin | dean | ker FI | SEo     | hne In | jektio | ns-A | nkerh | ülse |    |     |          |   |    |     |     |     |
| Effektive<br>Verankerungstiefe h <sub>ef</sub>    | [mm]  | 50   | 100    | 50      | 100    | 50     | 100  | 50    | 100  | 50 | 100 |          | 8 | 5  |     |     |     |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> | [Nm]  | 4    | 1      | 10 4 10 |        |        |      |       | 10   |    |     |          |   |    |     |     |     |
| Allgemeine Installationsparameter                 |       |      |        |         |        |        |      |       |      |    |     |          |   |    |     |     |     |

| Randabstand | c <sub>min</sub> = c <sub>cr</sub>     |      | 60  |
|-------------|----------------------------------------|------|-----|
| Achs-       | $s_{cr} \parallel = s_{min} \parallel$ | [mm] | 245 |
| abstand     | $s_{cr} \perp = s_{min} \perp$         |      | 60  |

#### **Bohrverfahren**

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C10.2: Gruppenfaktoren

| Ankerstan               | Ankerstange                                                                                                                             |   | M6 M8 M10 M12 |   |   | M16 | -     |    | -   |             |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---|---|-----|-------|----|-----|-------------|
| Innengewindeanker FIS E |                                                                                                                                         |   | -             | - |   | -   | М6    | M8 | M10 | M12         |
|                         |                                                                                                                                         | - |               |   | - |     | 11x85 |    | 15: | <b>k</b> 85 |
| Gruppen-<br>faktoren    | $ \frac{\alpha_{g,N} (s_{min} II)}{\alpha_{g,V} (s_{min} II)} $ $ \frac{\alpha_{g,N} (s_{min} \bot)}{\alpha_{g,V} (s_{min} \bot)} $ [-] |   |               |   | 2 |     |       |    |     |             |

| fischer Injektionssystem FIS V Plus für Mauerwerk                            |            |
|------------------------------------------------------------------------------|------------|
| Leistung Vollziegel Mz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C10 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Ankerstange



#### Vollziegel Mz, EN 771-1:2011+A1:2015

**Tabelle C11.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange             | tange M6 |   | M10 | M12 | M16 | -     |     | -   |             |
|-------------------------|----------|---|-----|-----|-----|-------|-----|-----|-------------|
| Innongovindoonkor EIS E |          |   |     |     |     | M6 I  | VI8 | M10 | M12         |
| Innengewindeanker FIS E | -        | - | -   | -   | -   | 11x85 |     | 15> | <b>k</b> 85 |

| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c}$ | N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,b</sub> = N <sub>Rk,p,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |      |      |                                      |      |      |      |      |      |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------------------------|------|------|------|------|------|--|--|
| Mittlere Druckfestigkeit /                                                      |                                                                                                                                                   | ıtz- |      | Effektive Verankerungstiefe hef [mm] |      |      |      |      |      |  |  |
| Mindestdruckfestigkeit<br>Einzelstein 1)                                        | ungs-<br>bedin-<br>gung                                                                                                                           |      |      |                                      |      | 85   |      |      |      |  |  |
| 40.5.740.07                                                                     | w/w                                                                                                                                               | w/d  | 0,60 | 0,90                                 | 0,75 | 0,75 | 0,75 | 0,60 | 0,75 |  |  |
| 12,5 / 10 N/mm²                                                                 | d,                                                                                                                                                | /d   | 1,20 | 1,50                                 | 1,20 | 1,20 | 1,20 | 1,20 | 1,20 |  |  |
| 25 / 20 N/mm²                                                                   | w/w                                                                                                                                               | w/d  | 0,90 | 1,50                                 | 1,20 | 1,20 | 1,20 | 0,90 | 1,20 |  |  |
|                                                                                 | d                                                                                                                                                 | /d   | 1,50 | 2,50                                 | 2,00 | 2,00 | 2,00 | 1,50 | 2,00 |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**M8** 

M10

M12

M16

**Tabelle C11.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

**M6** 

| Innengewindeanker FIS                         | _                       |            |            |             | _          |                          | M6  | M8          | M10 | M12         |
|-----------------------------------------------|-------------------------|------------|------------|-------------|------------|--------------------------|-----|-------------|-----|-------------|
| innengewindeanker Fis                         | <b>-</b>                | •          | -          | -           | -          | -                        | 112 | <b>k</b> 85 | 15> | <b>k</b> 85 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,}$ | $_{\perp}$ [kN]; Ten    | nperaturbe | reich 50/8 | 0°C und 7   | 2/120°C    |                          |     |             |     |             |
| Mittlere Druckfestigkeit /                    | Nutz-                   |            | E          | ffektive Ve | rankerungs | tiefe h <sub>ef</sub> [m | nm] |             |     |             |
| Mindestdruckfestigkeit<br>Einzelstein 1)      | ungs-<br>bedin-<br>gung |            |            | 85          |            |                          |     |             |     |             |
| 12,5 / 10 N/mm²                               | w/w w/d                 | 2,0        | 3,0        | 4,0         | 4,5        | 5,5                      | 2,0 | 3,0         | 4,0 | 4,5         |
| 25 / 20 N/mm²                                 | w/w w/d                 | 2,5        | 4,0        | 5,5         | 6,0        | 8,0                      | 2,5 | 4,0         | 5,5 | 6,0         |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                  |            |
|----------------------------------------------------------------------------------------------------|------------|
| Leistung Vollziegel Mz, Charakteristischer Widerstand unter Zugbeanspruchung und Querbeanspruchung | Anhang C11 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}(72/120^{\circ}C) = 0.83 \cdot N_{Rk}(50/80^{\circ}C)$ .



#### Vollziegel Mz, EN 771-1:2011+A1:2015 \$100 Hersteller z.B. Wienerberger Breite B Höhe H Länge L Nennmaße [mm] ≥ 230 ≥ 108 ≥ 55 Rohdichte ρ [kg/dm<sup>3</sup>] ≥ 1,8 Mittlere Druckfestigkeit / $[N/mm^2]$ 12,5 / 10 oder 25 / 20 Mindestdruckfestigkeit Einzelstein 1) Norm oder Anhang EN 771-1:2011+A1:2015

#### Tabelle C12.1: Installationsparameter

|       | M            | 6         | M              | 18                                 | M                         | 10                                                   | M                                   | 12                                       | M                                                                         | 16 | -       |                 |                 | -             |  |
|-------|--------------|-----------|----------------|------------------------------------|---------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------------------------------|----|---------|-----------------|-----------------|---------------|--|
|       |              |           |                |                                    |                           |                                                      |                                     |                                          |                                                                           |    | M6      | M8              | M10             | M12           |  |
|       | •            |           | •              |                                    |                           |                                                      |                                     |                                          | •                                                                         |    | 11x85 1 |                 |                 | x85           |  |
| jewin | deanl        | ker Fl    | S E o          | hne In                             | jektic                    | ns-A                                                 | nkerh                               | ülse                                     |                                                                           |    |         |                 |                 |               |  |
| [mm]  | 50           | 90        | 50             | 90                                 | 50                        | 90                                                   | 50                                  | 90                                       | 50                                                                        | 90 | 85      |                 |                 |               |  |
| [Nm]  | 4            | ļ         | 10 4           |                                    |                           |                                                      |                                     |                                          |                                                                           | 10 |         |                 |                 |               |  |
|       | ewin<br>[mm] | ewindeanl | ewindeanker FI | ewindeanker FIS E of [mm] 50 90 50 | ewindeanker FIS E ohne In | ewindeanker FIS E ohne Injektion [mm] 50 90 50 90 50 | ewindeanker FIS E ohne Injektions-A | ewindeanker FIS E ohne Injektions-Ankerh | ewindeanker FIS E ohne Injektions-Ankerhülse [mm] 50 90 50 90 50 90 50 90 | -  |         | M6   11x     M6 | M6   M8   11x85 | M6   M8   M10 |  |

#### Allgemeine Installationsparameter

| Randabstand | c <sub>min</sub> = c <sub>cr</sub>     |      | 60  |
|-------------|----------------------------------------|------|-----|
| Achs-       | $s_{cr} \parallel = s_{min} \parallel$ | [mm] | 230 |
| abstand     | $s_{cr} \perp = s_{min} \perp$         |      | 60  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C12.2: Gruppenfaktoren

| Ankerstang              | ge                                                          |       | M6 | M8 | M10 | M12 | M16   |    | •     |     | -   |
|-------------------------|-------------------------------------------------------------|-------|----|----|-----|-----|-------|----|-------|-----|-----|
| Innongovin              | doonkor EIS E                                               |       |    | _  | _   |     |       | М6 | M8    | M10 | M12 |
| Innengewindeanker FIS E |                                                             |       | -  | -  | -   | -   | 11x85 |    | 15x85 |     |     |
|                         | α <sub>g,N</sub> (s <sub>min</sub> II)                      |       |    |    |     |     |       |    |       |     |     |
| Gruppen-                | $\alpha_{\text{g,V}}$ (s <sub>min</sub> II)                 | [-]   |    |    |     | 2   |       |    |       |     |     |
| faktoren                | $lpha_{	extsf{g},	extsf{N}}$ (s <sub>min</sub> $ot$ )       | ו נ-ז |    |    |     | 2   |       |    |       |     |     |
|                         | $lpha_{	extsf{g,V}}$ (s <sub>min</sub> $oldsymbol{\perp}$ ) |       |    |    |     |     |       |    |       |     |     |

| fischer Injektionssystem FIS V Plus für Mauerwerk                            |            |
|------------------------------------------------------------------------------|------------|
| Leistung Vollziegel Mz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C12 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Vollziegel Mz, EN 771-1:2011+A1:2015

**Tabelle C13.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange             | M6 | M8 | M10 | M12 | M16 |       | -  |       |     |
|-------------------------|----|----|-----|-----|-----|-------|----|-------|-----|
| Innangovindaankar EIS E |    |    |     |     |     | М6    | M8 | M10   | M12 |
| Innengewindeanker FIS E | -  | -  | -   | -   | -   | 11x85 |    | 15x85 |     |

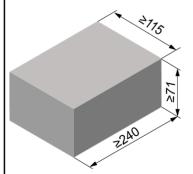
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$ | = <b>N</b> R         | <sub>k,b,c</sub> [k | N]; Tempe | raturberei                           | ch 50/80°C | 2)   |      |     |    |  |  |  |  |  |
|---------------------------------------------|----------------------|---------------------|-----------|--------------------------------------|------------|------|------|-----|----|--|--|--|--|--|
| Mittlere Druckfestigkeit /                  | Nι                   | ıtz-                |           | Effektive Verankerungstiefe hef [mm] |            |      |      |     |    |  |  |  |  |  |
| Mindestdruckfestigkeit Einzelstein 1)       | bed                  | gs-<br>din-<br>ing  |           | ≥ 50                                 |            |      |      |     |    |  |  |  |  |  |
| 42 F / 40 N/mm²                             | w/w                  | w/d                 | 0,60      | 0,90                                 | 0,75       | 0,75 | 0,75 | 0,7 | '5 |  |  |  |  |  |
| 12,5 / 10 N/mm²                             | d                    | /d                  | 1,20      | 1,50                                 | 1,20       | 1,20 | 1,20 | 1,2 | 20 |  |  |  |  |  |
| 25 / 20 N/mm <sup>2</sup>                   | 25 / 20 N/mm² W/W W/ |                     | 0,90      | 1,50                                 | 1,20       | 1,20 | 1,20 | 1,2 | 20 |  |  |  |  |  |
| 25 / 20 N/MM-                               | d                    | /d                  | 1,50      | 2,50                                 | 2,00       | 2,00 | 2,00 | 2,0 | 00 |  |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C13.2:** Charakteristischer Widerstand lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                         |                         | M6        | M8         | M10         | M12        | M16                       | -         |          | - |            |
|-----------------------------------------------------|-------------------------|-----------|------------|-------------|------------|---------------------------|-----------|----------|---|------------|
| Innengewindeanker FIS                               | E                       | -         | -          | -           | -          | -                         | M6<br>11x | M8<br>85 |   | M12<br><85 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,.}$      | ⊥ [kN];; Te             | mperaturb | ereich 50/ | 80°C und 7  | 2/120°C    |                           |           |          |   |            |
| Mittlere Druckfestigkeit /                          | Nutz-                   |           | E          | ffektive Ve | rankerungs | stiefe h <sub>ef</sub> [m | m]        |          |   |            |
| Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | ungs-<br>bedin-<br>gung |           |            | 8           | 5          |                           |           |          |   |            |

| Einzelstein 1)  | bedin-<br>gung |     |     | ≥ 50 |     |     |     | 8   | 5   |     |
|-----------------|----------------|-----|-----|------|-----|-----|-----|-----|-----|-----|
| 12,5 / 10 N/mm² | w/w w/d        | 2,0 | 3,0 | 4,0  | 4,5 | 5,5 | 2,0 | 3,0 | 4,0 | 4,5 |
| 25 / 20 N/mm²   | w/w w/d        | 2,5 | 4,0 | 5,5  | 6,0 | 8,0 | 2,5 | 4,0 | 5,5 | 6,0 |


<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                            |            |
|------------------------------------------------------------------------------|------------|
| Leistung Vollziegel Mz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C13 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}(72/120^{\circ}C) = 0.83 \cdot N_{Rk}(50/80^{\circ}C)$ .





| Hersteller                                                          |                       |         | -                        |        |
|---------------------------------------------------------------------|-----------------------|---------|--------------------------|--------|
| Nennmaß                                                             | [mm]                  | Länge L | Breite B                 | Höhe H |
| liveriiiiiais                                                       | [mm]                  | ≥ 240   | ≥ 115                    | ≥ 71   |
| Rohdichte ρ                                                         | [kg/dm <sup>3</sup> ] |         | ≥ 1,8                    |        |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm²]               |         | 12 oder 25<br>der 35 / 2 |        |
| Norm oder Anhang                                                    |                       | EN 771  | -2:2011+ <i>A</i>        | 1:2015 |

#### Tabelle C14.1: Installationsparameter

| Ankerstange               |                            |       | N    | 16            | IV  | 18     | M      | 10   | М     | 12              | М   | 16  |       |    |       |     |     |  |   |   |   |   |
|---------------------------|----------------------------|-------|------|---------------|-----|--------|--------|------|-------|-----------------|-----|-----|-------|----|-------|-----|-----|--|---|---|---|---|
| Innongowind               | oonkor EIS E               | _     |      |               |     |        |        |      |       |                 |     |     | M6    | M8 | M10   | M12 |     |  |   |   |   |   |
| Innengewind               | ealiker FIS E              | -     | -    |               | -   |        | -      |      | _     |                 | _   |     | 11x85 |    | 15x85 |     |     |  |   |   |   |   |
| Ankerstangen und Innengew |                            |       | dean | ker Fl        | SEo | hne In | jektio | ns-A | nkerh | ülse            |     |     |       |    |       |     |     |  |   |   |   |   |
| Effektive                 | h.                         | [mm]  | 50   | 50 100 50 100 |     |        |        | 100  | 50    | 100             | 50  | 100 | 8     | 5  | 8     | 5   |     |  |   |   |   |   |
| Verankerungs              | stiefe h <sub>ef</sub>     | [[[]] | 50   | 100           | 50  | 100    | 20     | 00   | 200   |                 | 200 |     | 200   |    | 200   |     | 200 |  | 0 | J | 0 | 5 |
| Max. Montage drehmoment   | e- max T <sub>inst</sub>   | [Nm]  | ;    | 3             | 5   |        | 1      | 5    | 15    |                 | 25  |     | 3     | 5  | 1     | 5   |     |  |   |   |   |   |
| Allgemeine I              | nstallationsp              | oaram | eter |               |     |        |        |      |       |                 |     |     |       |    |       |     |     |  |   |   |   |   |
| Randabstand               | $c_{min} = c_{cr}$         |       |      |               |     |        |        |      | 6     | 0               |     |     |       |    |       |     |     |  |   |   |   |   |
| _                         | s <sub>min</sub> II        |       |      |               |     |        |        |      | 8     | 0               |     |     |       |    |       |     |     |  |   |   |   |   |
| Achs-                     | s <sub>cr</sub> II         | [mm]  |      |               |     |        |        |      | 8     | 0               |     |     |       |    |       |     |     |  |   |   |   |   |
| abstand                   | $s_{min} oldsymbol{\perp}$ |       |      |               |     |        |        |      | 3x    | h <sub>ef</sub> |     |     |       |    |       |     |     |  |   |   |   |   |
|                           | Scr⊥                       |       |      |               |     |        |        |      | 3x    | h <sub>ef</sub> |     |     |       |    |       |     |     |  |   |   |   |   |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

1) Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

#### Tabelle C14.2: Gruppenfaktoren

| Ankerstang   | Ankerstange                                              |     | М6 | M8  | M10 | M12 | M16 | -     |    | -   |             |
|--------------|----------------------------------------------------------|-----|----|-----|-----|-----|-----|-------|----|-----|-------------|
| Innongowin   | deanker FIS E                                            |     |    |     |     |     |     | М6    | M8 | M10 | M12         |
| Illiengewiii | idealikei FIS E                                          |     |    | -   | -   | -   | -   | 11x85 |    | 15) | <b>k</b> 85 |
|              | α <sub>g,N</sub> (s <sub>min</sub> II)                   |     |    |     |     | 0,7 |     |       |    |     |             |
| Gruppen-     | α <sub>g,V</sub> (s <sub>min</sub> II)                   | r 1 |    |     |     | 1,3 |     |       |    |     |             |
| faktoren     | $lpha_{	extsf{g},	extsf{N}}$ (Smin $ot$ )                | [-] |    | 2,0 |     |     |     |       |    |     |             |
|              | $lpha_{	extsf{g,V}}$ ( $	extsf{s}_{	ext{min}}$ $oxdot$ ) |     |    |     |     | 2,0 |     |       |    |     |             |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                          |            |
|--------------------------------------------------------------------------------------------|------------|
| Leistung<br>Kalksandvollstein KS, NF, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C14 |

35 / 28 N/mm<sup>2</sup>



#### Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015

**Tabelle C15.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange M6 M8 M10 M12 M16                                   |                  |      |      |       |       |       | -    |                 | -     |      |      |       |       |         |     |    |     |     |     |
|-----------------------------------------------------------------|------------------|------|------|-------|-------|-------|------|-----------------|-------|------|------|-------|-------|---------|-----|----|-----|-----|-----|
| Innengewindeanke                                                | r                |      |      |       |       |       |      |                 |       |      |      |       |       | -       |     | М6 | M8  | M10 | M12 |
| FIS E                                                           |                  |      | -    |       | -     |       | -    |                 | -     |      |      |       |       | 11x85   |     | 15 | k85 |     |     |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = 1$                              | [k <b>N]</b> ;   | Tem  | pera | turbe | ereic | h 50/ | 80°0 | C <sup>2)</sup> |       |      |      |       |       |         |     |    |     |     |     |
| Mittlere                                                        | Nu               | tz-  |      |       |       |       | E    | ffekt           | ive V | erar | keru | ngsti | efe h | lef [mr | m]  |    |     |     |     |
| Druckfestigkeit /<br>Mindestdruckfestig-<br>keit Einzelstein 1) | ung<br>bed<br>gu | din- | 50   | 100   | 50    | 100   | 50   | 100             | 200   | 50   | 100  | 200   | 50    | 100     | 200 | 8  | 5   | 8   | 5   |
| 15 / 12 N/mm <sup>2</sup>                                       | w/w              | w/d  | 2,0  | 3,0   | 2,5   | 4,5   | 2,5  | 3,5             | 7,0   | 2,5  | 3,0  | 6,5   | 2,5   | 3,5     | 8,0 | 2  | ,5  | 2   | ,5  |
| 15 / 12 N/MM-                                                   | d/               | ′d   | 4,0  | 5,5   | 4,0   | 8,0   | 4,0  | 5,5             | 12    | 4,0  | 4,5  | 12    | 4,5   | 5,5     | 12  | 4  | ,0  | 4   | ,0  |
| 25 / 20 N/mm <sup>2</sup>                                       | w/w              | w/d  | 3,0  | 4,5   | 3,5   | 6,5   | 3,5  | 4,5             | 10    | 3,5  | 4,0  | 9,5   | 4,0   | 5,0     | 11  | 3  | ,5  | 3   | ,5  |
| 25 / 20 N/MM-                                                   | d/               | ⁄d   | 5,5  | 7,5   | 6,0   | 11    | 6,0  | 8,0             | 12    | 6,0  | 6,5  | 12    | 6,5   | 8,0     | 12  | 6  | ,0  | 6   | ,0  |
|                                                                 | w/w              | w/d  | 3.5  | 5.0   | 4.0   | 8.0   | 4.5  | 5.5             | 12    | 4.5  | 5.0  | 11    | 4.5   | 5.5     | 12  | 4  | 5   | 4   | 5   |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

9,0

12

12 7,0

7,0 7,5

12 7,5 9,5

7,0

d/d

9,0

**Tabelle C15.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                     |                    |       | N     | 16   | N    | 18    | М       | 10       | M      | 112      | M16                    |      |       |   |     |   |            |  |
|-----------------------------------------------------------------|--------------------|-------|-------|------|------|-------|---------|----------|--------|----------|------------------------|------|-------|---|-----|---|------------|--|
| Innengewindeanker                                               | r                  |       |       | -    |      | -     |         | -        |        | -        | -                      |      | M6 M8 |   |     |   | M10<br>15x |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} =$                             | V <sub>Rk,c,</sub> | ⊥ [kN | ]; Te | empe | ratu | rbere | ich 50/ | 80°C uı  | nd 72/ | 120°C    |                        |      |       |   |     |   |            |  |
| Mittlere                                                        | Nu                 |       |       |      |      |       | Effe    | ektive V | eranke | rungstie | efe h <sub>ef</sub> [r | mm]  |       |   |     |   |            |  |
| Druckfestigkeit /<br>Mindestdruckfestig-<br>keit Einzelstein 1) | ung<br>bed<br>gu   | Jin-  | 50    | 100  | 50   | 100   | 50      | ≥100     | 50     | ≥100     | 50                     | ≥100 | 8     | 5 | 8   | 5 |            |  |
| 15 / 12 N/mm²                                                   | w/w<br>d/          |       | 1,5   | 3,0  | 1,5  | 3,0   | 1,2     | 2,0      | 1,2    | 2,0      | 1,2                    | 2,0  | 1,    | 2 | 1,: | 2 |            |  |
| 25 / 20 N/mm²                                                   | w/w<br>d/          |       | 2,5   | 4,0  | 2,5  | 4,0   | 1,5     | 3,0      | 1,5    | 3,0      | 1,5                    | 3,0  | 1,    | 5 | 1,  | 5 |            |  |
| 35 / 28 N/mm²                                                   | w/w<br>d/          | -     | 3,0   | 4,5  | 3,0  | 4,5   | 1,5     | 3,5      | 1,5    | 3,5      | 1,5                    | 3,5  | 1,    | 5 | 1,  | 5 |            |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                       |            |
|-----------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, NF, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C15 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk,(72/120^{\circ}C)} = 0.83 \cdot N_{Rk,(50/80^{\circ}C)}$ .



#### Kalksandvollstein KS, 8DF, EN 771-2:2011+A1:2015 Hersteller Länge L Breite B Höhe H Nennmaße [mm] ≥ 250 ≥ 240 ≥ 240 [kg/dm<sup>3</sup>] ≥ 2.0 Rohdichte p Mittlere Druckfestigkeit / 12,5 / 10 oder 25 / 20 [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) oder 35 / 28 EN 771-2:2011+A1:2015 Norm oder Anhang Steinabmessungen siehe auch Anhang B15 Tabelle C16.1: Installationsparameter **Ankerstange M6 M8** M10 M12 M16 M10 M12 M6 **M8** Innengewindeanker FIS E 11x85 15x85 Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse Effektive 100 100 50 100 50 100 100 85 50 50 50 hef [mm] Verankerungstiefe Max. Montage-4 10 4 10 max T<sub>inst</sub> [Nm] drehmoment Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H 16x85 K Effektive [mm] 85 85 hef Verankerungstiefe \_2) \_2) \_2) Max. Montagemax T<sub>inst</sub> |[Nm] 10 4 10 drehmoment Allgemeine Installationsparameter Randabstand $c_{min} = c_{cr}$ 60 80 s<sub>min</sub> II scr II [mm] $3x \ h_{\text{ef}}$ Achsabstand 80 Smin $\perp$ $3x h_{\text{ef}}$ S<sub>cr</sub> $\bot$ Bohrverfahren Hammerbohren mit Hartmetall-Hammerbohrer 1) Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

## <sup>2)</sup> Leistung nicht bewertet. **Tabelle C16.2:** Gruppenfaktoren

| Ankerstang | е                                                           |     | М6 | M6 M8 M10 M12 M16 |   |     |   | •         | -         |     |            |  |
|------------|-------------------------------------------------------------|-----|----|-------------------|---|-----|---|-----------|-----------|-----|------------|--|
| Innengewin | deanker FIS E                                               |     | -  | -                 | - | -   | - | M6<br>112 | M8<br>(85 |     | M12<br>x85 |  |
|            | α <sub>g,N</sub> (s <sub>min</sub> II)                      |     |    |                   |   | 1,5 |   |           | 100       | 102 |            |  |
| Gruppen-   | α <sub>g,V</sub> (s <sub>min</sub> II)                      |     |    |                   |   |     |   |           |           |     |            |  |
| faktoren   | α <sub>g,N</sub> (S <sub>min</sub> ⊥)                       | [-] |    |                   |   |     |   |           |           |     |            |  |
|            | $\alpha_{	extsf{g,V}}$ ( $\mathbf{s}_{	ext{min}}$ $\perp$ ) |     |    |                   |   | 1,2 |   |           |           |     |            |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                        |            |
|------------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, 8DF, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C16 |



**Tabelle C17.1:** Charakteristischer gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                   | М6 | M8 | M10 | M12 | M16 | -   |       | . <u>-</u> |       | M8 | M10 | -     |      |   |
|-------------------------------|----|----|-----|-----|-----|-----|-------|------------|-------|----|-----|-------|------|---|
| Innengewindeanker FIS E       |    | _  | _   | _   | _   | M6  | M8    | M10        | M12   | _  | _   | M6 M8 |      |   |
| illiengewindeanker i 10 E     |    | _  |     |     |     | 112 | 11x85 |            | 15x85 |    |     | 11x85 |      |   |
| Injektions-Ankerhülse FIS H K | -  | -  | -   | -   | -   | -   |       |            |       | -  |     |       | 16x8 | 5 |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                         |     |                                      |      |      |      |     |      |      |         |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------|-----|--------------------------------------|------|------|------|-----|------|------|---------|--|--|--|
| Mittlere Druckfestigkeit /                                                                             | Nutz-                   |     | Effektive Verankerungstiefe hef [mm] |      |      |      |     |      |      |         |  |  |  |
| Mindestdruckfestigkeit<br>Einzelstein 1)                                                               | ungs-<br>bedin-<br>gung |     | ≥ 50 85                              |      |      |      |     |      |      |         |  |  |  |
| 42 E / 40 N/mm²                                                                                        | w/w w/d                 | 3,0 | 4,0                                  | 4,5  | 4,5  | 3,5  | 3,0 | 3,5  | 4,5  | 3,0 4,5 |  |  |  |
| 12,5 / 10 N/mm²                                                                                        | d/d                     | 5,0 | 7,0                                  | 7,0  | 7,0  | 5,5  | 5,0 | 5,5  | 8,0  | 5,0 8,0 |  |  |  |
| 25 / 20 N/mm <sup>2</sup>                                                                              | w/w w/d                 | 4,5 | 6,0                                  | 6,0  | 6,0  | 5,0  | 4,5 | 5,0  | 6,5  | 4,5 6,5 |  |  |  |
| 25 / 20 N/IIIII-                                                                                       | d/d                     | 7,5 | 10,0                                 | 10,0 | 10,0 | 7,5  | 7,5 | 7,5  | 11,0 | 7,5 11  |  |  |  |
| 35 / 28 N/mm²                                                                                          | w/w w/d                 | 5,0 | 8,0                                  | 8,5  | 8,5  | 7,0  | 5,0 | 7,0  | 8,5  | 5,0 8,5 |  |  |  |
|                                                                                                        | d/d                     | 8,5 | 12,0                                 | 12,0 | 12,0 | 11,0 | 8,5 | 11,0 | 12,0 | 8,5 12  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C17.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                   | М6 | M8 | M10 | M12 | M16 | -     |    | -     |     | - |      |       |  | M8 | M10 | - |
|-------------------------------|----|----|-----|-----|-----|-------|----|-------|-----|---|------|-------|--|----|-----|---|
| Innongovindoonkov EIS E       |    |    |     |     |     | M6    | M8 | M10   | M12 |   |      | M6 M8 |  |    |     |   |
| Innengewindeanker FIS E       | -  | -  | -   | _   | _   | 11x85 |    | 15x85 |     | - | -    | 11x85 |  |    |     |   |
| Injektions-Ankerhülse FIS H K | •  | -  | -   | -   | -   | -     |    | -     |     |   | 16x8 | 5     |  |    |     |   |

| V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |                         |     |                                      |     |     |     |     |     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|--------------------------------------|-----|-----|-----|-----|-----|--|--|--|--|--|
| Mittlere Druckfestigkeit /                                                                                                    | Nutz-                   |     | Effektive Verankerungstiefe hef [mm] |     |     |     |     |     |  |  |  |  |  |
| Mindestdruckfestigkeit<br>Einzelstein 1)                                                                                      | ungs-<br>bedin-<br>gung |     | ≥ 50                                 | 85  |     |     |     |     |  |  |  |  |  |
| 12,5 / 10 N/mm²                                                                                                               | w/w w/d<br>d/d          | 2,5 | 4,5                                  | 2,5 | 4,5 | 4,5 | 2,5 | 4,5 |  |  |  |  |  |
| 25 / 20 N/mm²                                                                                                                 | w/w w/d<br>d/d          | 4,0 | 6,5                                  | 4,0 | 6,5 | 6,5 | 4,0 | 6,5 |  |  |  |  |  |
| 35 / 28 N/mm²                                                                                                                 | w/w w/d<br>d/d          | 5,0 | 9,0                                  | 5,0 | 9,0 | 9,0 | 5,0 | 9,0 |  |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                  |            |
|----------------------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, 8DF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C17 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .



15x85

#### ETA-20/0729 vom 3. Februar 2025 Kalksandvollstein KS, EN 771-2:2011+A1:2015 z.B. Calduran Hersteller Breite B Höhe H Länge L Nennmaße [mm] ≥ 214 ≥ 997 ≥ 538 2,2 [kg/dm<sup>3</sup>] 1,8 Rohdichte p Mittlere Druckfestigkeit / 12,5 / 10 oder 45 / 36 [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) 25 / 20 Norm oder Anhang EN 771-2:2011+A1:2015 0 214 0 Tabelle C18.1: Installationsparameter **M6 M8** M10 M12 M16 **Ankerstange** M6 | M8 M10 M12 Innengewindeanker FIS E 11x85 15x85 Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse **Effektive** $h_{\text{ef}} \\$ [mm] 50 100 50 100 50 100 50 100 50 100 85 Verankerungstiefe Max. Montagemax T<sub>inst</sub> [Nm] 4 10 4 10 drehmoment Allgemeine Installationsparameter Randabstand $c_{min} = c_{cr}$ 75 $s_{cr} \parallel = s_{min} \parallel \parallel [mm]$ 3x hef Achsabstand 3x hef $s_{cr} \perp = s_{min} \perp$ **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer <sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

| Tabelle C18.2: Gruppenfak | toren |    |     |     |     |    |    |     |     |
|---------------------------|-------|----|-----|-----|-----|----|----|-----|-----|
| Ankerstange               | M6    | M8 | M10 | M12 | M16 |    | -  |     | -   |
|                           |       |    |     |     |     | M6 | M8 | M10 | M12 |

Innengewindeanker FIS E 11x85  $\alpha_{g,N}$  (s<sub>min</sub> II)  $\alpha_{g,V}$  (s<sub>min</sub> II) Gruppen-2 [-] faktoren  $\alpha_{\text{g,N}}$  (s<sub>min</sub>  $\perp$ )  $\alpha_{\text{g,V}}$  (s<sub>min</sub>  $\perp$ )

| fischer Injektionssystem FIS V Plus für Mauerwerk                                   |            |
|-------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C18 |



Tabelle C19.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

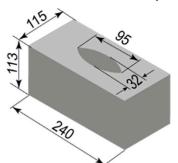
| Ankerstange                | М6 | M8 | M10 | M12  | M16 |           | - | -          |
|----------------------------|----|----|-----|------|-----|-----------|---|------------|
| Innengewindeanker<br>FIS E | -  | -  | -   | -    | -   | M6<br>112 |   | M12<br><85 |
|                            |    |    |     | - 2\ | -   |           |   |            |

| N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,p,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                         |         |                                      |     |      |      |      |      |      |      |      |      |    |     |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--------------------------------------|-----|------|------|------|------|------|------|------|------|----|-----|
| Mittlere                                                                                                                      | Nut                     | z-      | Effektive Verankerungstiefe hef [mm] |     |      |      |      |      |      |      |      |      |    |     |
| Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)                                                                       | ungs-<br>bedin-<br>gung |         | 50                                   | 100 | 50   | 100  | 50   | 100  | 50   | 100  | 50   | 100  | 8  | 5   |
| 12,5 / 10 N/mm²                                                                                                               | w/w                     | w/d     | 4                                    | ,0  | 4,0  | 7,0  | 5,0  | 6,0  | 5,0  | 6,0  | 5,5  | 7,5  | 5, | ,5  |
| 12,5 / 10 N/IIIII                                                                                                             | d/d                     |         | 7                                    | ,0  | 7,0  | 12,0 | 8,0  | 9,5  | 8,0  | 10,0 | 9,0  | 11,5 | 9, | ,0  |
| 25 / 20 N/mm <sup>2</sup>                                                                                                     | w/w                     | w/d     | 5                                    | ,5  | 6,0  | 10,0 | 7,0  | 8,5  | 7,0  | 9,0  | 8,0  | 11,0 | 8, | ,0  |
| 25 / 20 N/IIIII-                                                                                                              | d/d                     |         | 8                                    | ,5  | 10,5 | 12,0 | 11,5 | 12,0 | 11,0 | 12,0 | 12,0 | 12,0 | 12 | 2,0 |
| 45 / 36 N/mm²                                                                                                                 | w/w                     | w/w w/d |                                      | ,5  | 8,0  | 12,0 | 11,5 | 12,0 | 12,0 | 12,0 | 12,0 | 12,0 | 12 | 2,0 |
| 49 / 30 N/IIIII                                                                                                               | d/                      | d       | 8                                    | ,0  | 12,0 | 12,0 | 12,0 | 12,0 | 12,0 | 12,0 | 12,0 | 12,0 | 12 | 2,0 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C19.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                     |                   |          | M6        | M8          | M10           | M12         | M16                      |     | •           |      | -    |
|-----------------------------------------------------------------|-------------------|----------|-----------|-------------|---------------|-------------|--------------------------|-----|-------------|------|------|
| Innengewindeanker                                               | Innengewindeanker |          |           |             |               | _           |                          | M6  | M8          | M10  | M12  |
| FIS E                                                           |                   |          | -         | •           | -             | •           | -                        | 112 | <b>k</b> 85 | 15:  | x85  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,II}$                 | $V_{Rk,c,\perp}$  | [kN];    | Temperatu | rbereich 50 | 0/80°C und    | 72/120°C    |                          |     |             |      |      |
| Mittlere                                                        | Nu                | tz-      |           | E           | Effektive Ver | ankerungsti | efe h <sub>ef</sub> [mm] |     |             |      |      |
| Druckfestigkeit /<br>Mindestdruckfestig-<br>keit Einzelstein 1) | ung<br>bed<br>gui | ĺin-     |           | ≥ 50        |               |             |                          |     |             | 5    |      |
| 12,5 / 10 N/mm²                                                 | w/w<br>d/         |          | 3,0       | 5,0         | 5,5           | 4,0         | 4,0                      | 3,0 | 5,0         | 5,5  | 4,0  |
| 25 / 20 N/mm²                                                   | w/w<br>d/         | w/d<br>d | 4,5       | 7,0         | 7,5           | 6,0         | 6,0                      | 4,5 | 7,0         | 7,5  | 6,0  |
| 45 / 36 N/mm²                                                   | w/w<br>d/         | w/d<br>d | 4,5       | 9,0         | 11,0          | 12,0        | 12,0                     | 4,5 | 9,0         | 11,0 | 12,0 |


Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, Charakteristischer Widerstand unter Zug- und Querbean- | Anhang C19 |
| spruchung                                                                             |            |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.





| Hersteller                                                       |                       |         | -                 |        |
|------------------------------------------------------------------|-----------------------|---------|-------------------|--------|
| Nennmaße                                                         | [mm]                  | Länge L | Breite B          | Höhe H |
| Nemmaise                                                         | נוווווון              | ≥ 240   | ≥ 115             | ≥ 113  |
| Rohdichte ρ                                                      | [kg/dm <sup>3</sup> ] |         | 1,8               |        |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | [N/mm²]               | 12,5 /  | 10 oder 2         | 5 / 20 |
| Norm oder Anhang                                                 |                       | EN 771  | -2:2011+ <i>F</i> | 1:2015 |

Tabelle C20.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                 |                              |       | М6   | M8     |     | -                  | M8     | M10   | M8   | M10     |     | •   | M12 | M16 | M12 | M16 |
|-----------------------------|------------------------------|-------|------|--------|-----|--------------------|--------|-------|------|---------|-----|-----|-----|-----|-----|-----|
| Innongovindoonkor EIS E     |                              |       |      | М6     | M8  |                    | -      | _     |      | M10 M12 |     | -   |     |     |     |     |
| Innengewindea               | nnengewindeanker FIS E       |       | ·    | •      | 112 | x85                |        |       |      | •       | 15> | (85 |     |     | '   | -   |
| Injektions-Anke             | njektions-Ankerhülse FIS H k |       | 12:  | x85    |     | 16x85 16x130 20x85 |        |       |      | 20x130  |     |     |     |     |     |     |
| Ankerstangen                | und Innen                    | gewin | dean | ker Fl | SEm | nit Inje           | ektion | s-Ank | erhü | lse     |     |     |     |     |     |     |
| Max. Montage-<br>drehmoment | max T <sub>inst</sub>        | [Nm]  | 2    | 2      | 4   |                    |        |       |      |         |     |     |     |     |     |     |

#### Allgemeine Installationsparameter

| i mgemente me | Administration pair diff                                                             |     |     |     |     |     |
|---------------|--------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| Randabstand   | C <sub>min</sub> = C <sub>cr</sub>                                                   |     |     | 100 |     |     |
| Achsabstand   | s <sub>min</sub> II<br>s <sub>cr</sub> II<br>s <sub>min</sub> ⊥<br>s <sub>cr</sub> ⊥ | 255 | 255 | 390 | 255 | 390 |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C20.2: Gruppenfaktoren

| Ankerstar           | nge                                                                                                                                                                                                  | M6  | M8  | M8  | M10 | M8  | M10  | M12 | M16 | M12 | M16 |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|
| Injektions          | -Ankerhülse FIS H K                                                                                                                                                                                  | 12: | x85 | 16: | x85 | 16x | (130 | 20  | x85 | 20x | 130 |
| Gruppen<br>faktoren | $\begin{array}{c} \alpha_{g,N} \ (s_{min} \ II) \ = \\ \underline{\alpha_{g,V} \ (s_{min} \ II)} \\ \hline \alpha_{g,N} \ (s_{min} \ \bot) \ = \\ \alpha_{g,V} \ (s_{min} \ \bot) \end{array} \ [-]$ |     |     |     |     | ;   | 2    |     |     |     |     |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                   |            |
|-------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C20 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Tabelle C21.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                 |                                    |       | M10               | M10 M12 M16           |    |  |  |  |  |  |  |
|-----------------------------|------------------------------------|-------|-------------------|-----------------------|----|--|--|--|--|--|--|
| Injektions-Anke             | erhülse Fl                         | знк   | 18x13             | 18x130/200 22x130/200 |    |  |  |  |  |  |  |
| Ankerstangen i              | mit Injekti                        | ons-A | nkerhülse FIS H K | kerhülse FIS H K      |    |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment | max T <sub>inst</sub>              | [Nm]  |                   | 4                     |    |  |  |  |  |  |  |
| Allgemeine Ins              | tallationsp                        | param | eter              | er                    |    |  |  |  |  |  |  |
| Randabstand                 | C <sub>min</sub> = C <sub>cr</sub> |       |                   | 1                     | 00 |  |  |  |  |  |  |
|                             | s <sub>min</sub> II                |       |                   | 3                     | 90 |  |  |  |  |  |  |
| Achs-                       | s <sub>cr</sub> II                 | [mm]  |                   | 3                     | 90 |  |  |  |  |  |  |
| abstand                     | s <sub>min</sub> ⊥                 |       |                   | 3                     | 90 |  |  |  |  |  |  |
|                             | s <sub>cr</sub> ⊥                  |       | 390               |                       |    |  |  |  |  |  |  |
| Bohrverfahren               |                                    |       |                   |                       |    |  |  |  |  |  |  |
| Drehhohren mit              | mit Hartmetallhohrer               |       |                   |                       |    |  |  |  |  |  |  |

#### Tabelle C21.2: Gruppenfaktoren

| Ankerstang           | е                                                                                                                                          | M10   | M12    | M16        |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------|--|--|--|
| Injektions-A         | Ankerhülse FIS H K                                                                                                                         | 18x13 | 30/200 | 22x130/200 |  |  |  |
| Gruppen-<br>faktoren | $ \frac{\alpha_{g,N} (s_{min} II)}{\alpha_{g,V} (s_{min} II)} $ $ \frac{\alpha_{g,N} (s_{min} \bot)}{\alpha_{g,V} (s_{min} \bot)} $ $ [-]$ |       |        | 2          |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Kalksandvollstein KS, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C21



**Tabelle C22.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6    | M8 |                | -     | M8 | M10 | M8  | M10       |                  | - | M12 | M16 | M12 | M16 |
|-------------------------------|-------|----|----------------|-------|----|-----|-----|-----------|------------------|---|-----|-----|-----|-----|
| Innengewindeanker FIS E       | - !   |    | M6 M8<br>11x85 |       | -  |     | -   |           | M10 M12<br>15x85 |   | _   |     | -   |     |
| Injektions-Ankerhülse FIS H K | 12x85 |    |                | 16x85 |    |     | 16x | 16x130 20 |                  |   | x85 |     | 20x | 130 |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N$                                          | <sub>Rk,p,c</sub> = N <sub>Rk</sub> | , <sub>b,c</sub> [kN]; Te | mperaturbe | ereich 50/80 | )°C <sup>2)</sup> |      |      |
|-----------------------------------------------------------------------------|-------------------------------------|---------------------------|------------|--------------|-------------------|------|------|
| Mittlere<br>Druckfestigkeit /<br>Mindestdruckfestig-<br>keit Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung    |                           |            |              |                   |      |      |
| 12,5 / 10 N/mm <sup>2</sup>                                                 | w/w                                 | 3,5                       | 2,0        | 2,0          | 2,0               | 6,5  | 4,5  |
| 12,5 / 10 14/111111                                                         | d/d                                 | 6,0                       | 4,0        | 3,5          | 3,5               | 10,5 | 7,0  |
| 25 / 20 N/mm²                                                               | w/w                                 | 5.0                       | 3.0        | 3.0          | 3.0               | 9.5  | 6.0  |
|                                                                             | d/d                                 | 8,5                       | 5,5        | 5,5          | 5,5               | 12,0 | 10,0 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C22.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                      |                                                                                                        | M10   | M12      | M16         |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|----------|-------------|--|--|--|--|--|
| Injektions-Ankerhüls                                             | se FIS H K                                                                                             | 18x13 | 30/200   | 22x130/200  |  |  |  |  |  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N$                               | $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |       |          |             |  |  |  |  |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung                                                                       |       |          |             |  |  |  |  |  |
| 12,5 / 10 N/mm²                                                  | w/w<br>d/d                                                                                             |       | ,0<br>,5 | 4,5<br>7,0  |  |  |  |  |  |
| 25 / 20 N/mm²                                                    | w/w<br>d/d                                                                                             |       | ,0<br>,5 | 6,0<br>10,0 |  |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                   |            |
|-------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C22 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet



# Tabelle C23.1: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6  | M8  |       | -          | M8   | M10 | M8  | M10 |       |            | M12 | M16 | M12 | M16 |
|-------------------------------|-----|-----|-------|------------|------|-----|-----|-----|-------|------------|-----|-----|-----|-----|
| Innengewindeanker FIS E       | -   | •   | M6    | M8<br>1x85 |      | •   |     | •   |       | M12<br>x85 |     | •   | -   |     |
| Injektions-Ankerhülse FIS H K | 12> | (85 | 5 16x |            | 5x85 |     | 16x | 130 | 30 20 |            | x85 |     | 20x | 130 |

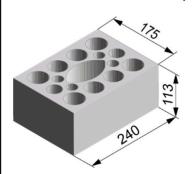
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_I$ | $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |     |     |  |  |  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------|-----|-----|--|--|--|--|--|--|
| Mittlere                                | Nutz-                                                                                            |     |     |  |  |  |  |  |  |
| Druckfestigkeit /                       | ungs-                                                                                            |     |     |  |  |  |  |  |  |
| Mindestdruckfestigkeit                  | bedin-                                                                                           |     |     |  |  |  |  |  |  |
| Einzelstein 1)                          | gung                                                                                             |     |     |  |  |  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>             | w/w                                                                                              | 2.0 | 2.5 |  |  |  |  |  |  |
| 12,5 / 10 N/IIIII                       | d/d                                                                                              | 3,0 | 3,5 |  |  |  |  |  |  |
| 25 / 20 N/mm²                           | w/w                                                                                              | 4,0 | 5,5 |  |  |  |  |  |  |
| 25 / 20 N/MM-                           | d/d                                                                                              | 4,0 | J,5 |  |  |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

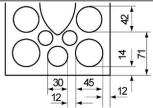
Tabelle C23.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                      |                                  | M10        | M12 | M16        |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------|------------|-----|------------|--|--|--|
| Injektions-Ankerhülse                                                                            | FIS H K                          | 18x130/200 |     | 22x130/200 |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                                  |            |     |            |  |  |  |
| Mittlere<br>Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1)                        | Nutz-<br>ungs-<br>bedin-<br>gung |            |     |            |  |  |  |
| 12,5 / 10 N/mm²                                                                                  | w/w<br>d/d                       |            | 3   | 3,5        |  |  |  |
| 25 / 20 N/mm²                                                                                    | w/w<br>d/d                       |            |     | 5,5        |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.


Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                    |            |
|--------------------------------------------------------------------------------------|------------|
| Leistung Kalksandvollstein KS, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C23 |


<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet





| Hersteller                            |                       |                           | -                 |        |  |  |
|---------------------------------------|-----------------------|---------------------------|-------------------|--------|--|--|
| Nannmaßa                              | [mm]                  | Länge L                   | Breite B          | Höhe H |  |  |
| Nennmaße                              | [mm]                  | 240                       | 175               | 113    |  |  |
| Rohdichte ρ                           | [kg/dm <sup>3</sup> ] |                           | ≥ 1,4             |        |  |  |
| Mittlere Druckfestigkeit /            |                       |                           | der 12,5 /        |        |  |  |
| Mindestdruckfestigkeit Einzelstein 1) | [N/mm²]               | 15 / 12 oder 20 / 16 oder |                   |        |  |  |
|                                       |                       |                           | 25 / 20           |        |  |  |
| Norm oder Anhang                      |                       | EN 771                    | -2:2011+ <i>A</i> | 1:2015 |  |  |



Steinabmessungen siehe auch Anhang B15

Tabelle C24.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | М6    | M8 | M6    | M8 |       | -  | M8        | M10 | M8          | M10 |       | •   | M12      | M16 | M12 | M16 |
|-------------------------------|-------|----|-------|----|-------|----|-----------|-----|-------------|-----|-------|-----|----------|-----|-----|-----|
| Innengewindeanker FIS E       |       | _  |       | _  |       | M8 | -<br>5x85 |     | -<br>16x130 |     |       | M12 |          | -   | -   |     |
| Injektions-Ankerhülse FIS H K | 12x50 |    | 12x85 |    | 11x85 |    |           |     |             |     | 15x85 |     | ∖<br>x85 | r85 |     | 130 |

#### Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T<sub>inst</sub> [Nm]

#### Allgemeine Installationsparameter

| Angemente mat       | anationsp                          | arairi | etei |     |  |  |  |  |  |  |  |
|---------------------|------------------------------------|--------|------|-----|--|--|--|--|--|--|--|
| Randabstand         | C <sub>min</sub> = C <sub>cr</sub> |        | 60   | 80  |  |  |  |  |  |  |  |
|                     | s <sub>min</sub> II                |        | 100  |     |  |  |  |  |  |  |  |
| A ala a ala ata mal | s <sub>cr</sub> II                 | [mm]   | 240  |     |  |  |  |  |  |  |  |
| Achsabstand         | S <sub>min</sub> ⊥                 |        |      | 115 |  |  |  |  |  |  |  |
|                     | <b>S</b> cr ⊥                      |        | 115  |     |  |  |  |  |  |  |  |

#### **Bohrverfahren**

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C24.2: Gruppenfaktoren

| Ankerstan               | Ankerstange                                                   |     |     | М6  | M8 |           | •           | M8 | M10    | M8 | M10   | -                | M12 | M16 | M12 | M16 |
|-------------------------|---------------------------------------------------------------|-----|-----|-----|----|-----------|-------------|----|--------|----|-------|------------------|-----|-----|-----|-----|
| Innengewindeanker FIS E |                                                               |     | -   | -   |    | M6<br>112 | M8<br>(85   | -  |        |    | -     | M10 M12<br>15x85 | 1   | -   | -   | -   |
| Injektions-             | 12                                                            | x50 | 12  | x85 |    | 162       | <b>k</b> 85 |    | 16x130 |    | 20x85 |                  |     | 20x | 130 |     |
| Gruppen-                | $\alpha_{g,N} (s_{min} II) = \alpha_{g,V} (s_{min} II)$       |     | 1,5 |     |    |           |             |    |        |    |       |                  |     |     |     |     |
| faktor                  | $\alpha_{g,N} (s_{min} \perp) = \alpha_{g,V} (s_{min} \perp)$ | 2,0 |     |     |    |           |             |    |        |    |       |                  |     |     |     |     |

## fischer Injektionssystem FIS V Plus für Mauerwerk

#### Leistung

Kalksandlochstein KSL, 3DF, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C24** 

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Tabelle C25.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                              |                                    |       | M10               | M12        | M16 |  |  |  |  |  |  |  |
|----------------------------------------------------------|------------------------------------|-------|-------------------|------------|-----|--|--|--|--|--|--|--|
| Injektions-Anke                                          | erhülse Fl                         | SHK   | 18x13             | 22x130/200 |     |  |  |  |  |  |  |  |
| Ankerstangen i                                           | nit Injektio                       | ons-A | nkerhülse FIS H K |            |     |  |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [Nm] 2 |                                    |       |                   |            |     |  |  |  |  |  |  |  |
| Allgemeine Installationsparameter                        |                                    |       |                   |            |     |  |  |  |  |  |  |  |
| Randabstand                                              | C <sub>min</sub> = C <sub>cr</sub> |       |                   | 8          | 0   |  |  |  |  |  |  |  |
|                                                          | s <sub>min</sub> II                |       |                   | 10         | 00  |  |  |  |  |  |  |  |
| A -     t                                                | s <sub>cr</sub> II                 | [mm]  | 240               |            |     |  |  |  |  |  |  |  |
| Achsabstand                                              | S <sub>min</sub> ⊥                 |       | 115               |            |     |  |  |  |  |  |  |  |
|                                                          | s <sub>cr</sub> ⊥                  |       | 115               |            |     |  |  |  |  |  |  |  |
| Bohrverfahren                                            |                                    |       |                   |            |     |  |  |  |  |  |  |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C25.2: Gruppenfaktoren

| Ankerstang   | je                                                                       | M10   | M16   |            |
|--------------|--------------------------------------------------------------------------|-------|-------|------------|
| Injektions-A | Ankerhülse FIS H K                                                       | 18x13 | 0/200 | 22x130/200 |
| Gruppen-     | $\frac{\alpha_{g,N} (s_{min} II)}{\alpha_{g,V} (s_{min} II)}$            |       | 1     | ,5         |
| faktoren     | $\frac{\alpha_{g,N} (s_{min} \perp)}{\alpha_{g,V} (s_{min} \perp)} $ [-] |       | 2     | 2,0        |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung

Kalksandlochstein KSL, 3DF, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C25** 



**Tabelle C26.1:** Charakt. Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 | M8  | М6  | M8  |     |     | M8  | M10 | M8  | M10 |     | -   | M12 | M16 | M12 | M16 |
|-------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Innongowindoonkor EIS E       |    |     |     |     | М6  | M8  |     |     |     |     | M10 | M12 |     |     |     |     |
| Innengewindeanker FIS E       | -  |     |     | -   | 11> | (85 |     | -   |     | •   | 15  | x85 | 5 - |     |     | •   |
| Injektions-Ankerhülse FIS H K |    | (50 | 12: | x85 |     | 16  | x85 |     | 16x | 130 |     | 20  | x85 |     | 20x | 130 |

| injoiteione / tintornales i                                                       |                | •                   | IZAGO   | IZAGO    | 1000               | 107100 | 1000 | 207100 |
|-----------------------------------------------------------------------------------|----------------|---------------------|---------|----------|--------------------|--------|------|--------|
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p}$                                         | c = NR         | <sub>к,b,с</sub> [k | N]; Tem | peraturk | pereich 50/80°C 2) |        |      |        |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzu<br>bedin |                     |         |          |                    |        |      |        |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w            | w/d                 | 1       | ,5       | 2,0                | 2,0    | 2,0  | 2,0    |
| 10 / 6 14/111111                                                                  | d/d            |                     | 1       | ,5       | 2,0                | 2,5    | 2,5  | 2,5    |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | w/w            | w/d                 | 2       | ,0       | 2,0                | 2,5    | 2,5  | 2,5    |
| 12,5 / 10 14/111111                                                               | d/d            |                     | 2       | ,0       | 2,5                | 3,0    | 3,0  | 3,0    |
| 15 / 12 N/mm²                                                                     | w/w            | w/d                 | 2       | ,5       | 2,5                | 3,0    | 3,0  | 3,0    |
| 15 / 12 N/IIIII                                                                   | d/             | d                   | 2       | ,5       | 3,0                | 3,5    | 3,5  | 3,5    |
| 20 / 16 N/mm <sup>2</sup>                                                         | w/w            | w/d                 | 3       | ,0       | 3,5                | 4,5    | 4,5  | 4,5    |
| 20 / 16 N/IIIII                                                                   | d/             | d                   | 3       | ,5       | 4,0                | 4,5    | 4,5  | 4,5    |
| 25 / 20 N/mm <sup>2</sup>                                                         | w/w            | w/d                 | 4       | ,0       | 4,5                | 5,5    | 5,5  | 5,5    |
| 25 / 20 N/IIIII                                                                   | d/             | d                   | 4       | ,5       | 5,0                | 6,0    | 6,0  | 6,0    |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C26.2:** Charakt. Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                   |                      | M10           | M12                | M16        |
|-----------------------------------------------------------------------------------|-------------------|----------------------|---------------|--------------------|------------|
| Injektions-Ankerhülse Fl                                                          | SHK               |                      | 18:           | k130/200           | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                                       | = N <sub>Rk</sub> | , <sub>b,c</sub> [kN | ]; Temperatui | bereich 50/80°C 2) |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> |                   | ungs-<br>ngung       |               |                    |            |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w               | w/d                  |               |                    | 2.0        |
| 10 / 6 N/IIIII                                                                    | d                 | l/d                  |               |                    | 2,5        |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | w/w               | w/d                  |               |                    | 2,5        |
| 12,57 10 14/111111                                                                | d                 | l/d                  |               |                    | 3,0        |
| 15 / 12 N/mm²                                                                     | w/w               | w/d                  |               |                    | 3,0        |
| 15 / 12 N/IIIII                                                                   | d                 | l/d                  |               |                    | 3,5        |
| 20 / 16 N/mm²                                                                     | w/w               | w/d                  |               |                    | 4,5        |
| 20 / 10 14/111111                                                                 | d                 | l/d                  |               |                    | 4,5        |
| 25 / 20 N/mm²                                                                     | w/w               | w/d                  |               |                    | 5.5        |
| 25 / 20 N/IIIII                                                                   | d                 | l/d                  |               |                    | 6,0        |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ . Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                         |            |
|-------------------------------------------------------------------------------------------|------------|
| Leistung Kalksandlochstein KSL, 3DF, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C26 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .



**Tabelle C27.1:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6 | M8  | M6  | M8      |     | -           | M8 | M10 | M8  | M10 | -   |             | M12 | M16 | M12 | M16 |
|-------------------------------|----|-----|-----|---------|-----|-------------|----|-----|-----|-----|-----|-------------|-----|-----|-----|-----|
| Innengewindeanker FIS E       |    |     |     |         | M6  | M8          |    |     |     |     | M10 | M12         | l   |     |     |     |
| innengewindeanker FIS E       |    | •   |     | •       | 11) | <b>(85</b>  |    | -   |     | •   | 15x | 85          |     | •   |     | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12) | x85 16> |     | <b>k</b> 85 |    | 16x | 130 | 20  |     | <b>k</b> 85 |     | 20x | 130 |     |

| injektions-Ankernuis                                             | e rio n k                        | 128 | 190  | 122   | <b>XO</b> 5 |       | 10000          | 102130 | 20x05 |     | 208 | 130 |
|------------------------------------------------------------------|----------------------------------|-----|------|-------|-------------|-------|----------------|--------|-------|-----|-----|-----|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V$                            | Rk,c,⊥ [kN];                     | Tem | pera | turbe | ereic       | h 50/ | 80°C und 72/12 | 0°C    |       |     |     |     |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |     |      |       |             |       |                |        |       |     |     |     |
| 10 / 8 N/mm²                                                     | w/w w/d<br>d/d                   |     |      | 1,5   |             |       |                | 3,0    |       | 2,5 | 3,0 | 2,5 |
| 12,5 / 10 N/mm²                                                  | w/w w/d<br>d/d                   |     |      | 2,0   |             |       |                |        | 3,5   |     |     |     |
| 15 / 12 N/mm²                                                    | w/w w/d<br>d/d                   |     |      | 2,5   |             |       |                | 4,5    |       | 4,0 | 4,5 | 4,0 |
| 20 / 16 N/mm <sup>2</sup>                                        | w/w w/d<br>d/d                   | 3,0 | 3,5  | 3,0   | 3,5         | 3,0   |                | 6,0    |       | 5,5 | 6,0 | 5,5 |
| 25 / 20 N/mm²                                                    | w/w w/d<br>d/d                   | 4,0 | 4,5  | 4,0   | 4,5         | 4,0   |                | 7,5    |       | 6,5 | 7,5 | 6,5 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C27.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                |                         | M10              | M12                 | M16        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|------------|--|--|--|--|--|
| Injektions-Ankerhüls                                                                       | e FIS H K               | 18x13            | 30/200              | 22x130/200 |  |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V$                                                      | <sub>Rk,c,⊥</sub> [kN]; | Temperaturbereic | h 50/80°C und 72/12 | 0°C        |  |  |  |  |  |
| Mittlere Nutz- Druckfestigkeit / ungs- Mindestdruckfestig- bedin- keit Einzelstein 1) gung |                         |                  |                     |            |  |  |  |  |  |
| 10 / 8 N/mm <sup>2</sup>                                                                   |                         | 3                | .0                  | 2.5        |  |  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                                | w/w                     | 3                | ,5                  | 3,5        |  |  |  |  |  |
| 15 / 12 N/mm <sup>2</sup>                                                                  | w/d                     | 4.               | .5                  | 4.0        |  |  |  |  |  |
| 20 / 16 N/mm <sup>2</sup>                                                                  | ] d/d                   | 6                | .0                  | 5,5        |  |  |  |  |  |
| 25 / 20 N/mm <sup>2</sup>                                                                  |                         | 7.               | ,5                  | 6,5        |  |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                          |            |
|--------------------------------------------------------------------------------------------|------------|
| Leistung Kalksandlochstein KSL, 3DF, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C27 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Wienerberger, Poroton Länge L Breite B Höhe H Nenndurchmesser [mm] 500 175 237 370 240 237 Rohdichte p [kg/dm<sup>3</sup>] ≥ 1,0 Mittlere Druckfestigkeit / 5 / 4 oder 7,5 / 6 oder 10 / 8 $[N/mm^2]$ Mindestdruckfestigkeit Einzelstein 1) oder 12,5 / 10 oder 15 / 12 EN 771-1:2011+A1:2015 Norm oder Anhang Steinabmessungen siehe auch B15 Tabelle C28.1: Installationsparameter **Ankerstange** M6 **M8 M6 M8** M8 M10 M8 M10 M12 M16 M12 M16 M10 M12 M6 | M8 Innengewindeanker FIS E 15x85 11x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montagemax T<sub>inst</sub> [Nm] 2 drehmoment Allgemeine Installationsparameter Randabstand $c_{min} = c_{cr}$ 100 smin II 100 s<sub>cr</sub> II|[mm] 500 (370) Achsabstand 100 Smin $\perp$ $\mathbf{s}_{\mathsf{cr}} \, \bot$ 240 Bohrverfahren Hammerbohren mit Hartmetall-Hammerbohrer <sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C28.2: Gruppenfaktoren **M8** M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M6 | M8 M6 M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 16x85 20x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x130 20x130 $\alpha_{g,N}$ (s<sub>min</sub> II) = $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-[-] 1 faktor $\alpha_{g,N}$ (s<sub>min</sub> $\perp$ ) = $\alpha_{g,V}$ ( $s_{min} \perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C28 Leistuna Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015

**Tabelle C29.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                   | M6  | M8  | М6    | M8    | -  | M8  | M10 | M8               | M10 | -   | M12 M16 | M12 M16 |
|-------------------------------|-----|-----|-------|-------|----|-----|-----|------------------|-----|-----|---------|---------|
| Innengewindeanker FIS E       |     |     | M6 M8 | H - I |    | -   |     | M10 M12<br>15x85 | -   | -   |         |         |
| Injektions-Ankerhülse FIS H K | 12> | (50 | 12    | x85   | 16 | x85 |     | 16x              | 130 | 20: | k85     | 20x130  |

| ilijektions-Alikemuse r                                                           | 13 П І    | `                         | 12350    | 12000    | 1000              | 102130       | 20x05 | 20X130       |
|-----------------------------------------------------------------------------------|-----------|---------------------------|----------|----------|-------------------|--------------|-------|--------------|
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,}$                                        | c = NF    | Rk,b,c [                  | kN]; Tem | peraturb | ereich 50/80°C 2) |              |       |              |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | un<br>bed | itz-<br>gs-<br>din-<br>ng |          |          |                   |              |       |              |
| 5 / 4 N/mm <sup>2</sup>                                                           |           | w/d<br>/d                 | 0,3      |          |                   | 0,90<br>0,90 |       | 1,20<br>1,20 |
|                                                                                   | -         |                           | 0,2      | +0       |                   | 0,90         |       | 1,20         |
| 7,5 / 6 N/mm <sup>2</sup>                                                         | w/w       | w/d                       | 0.5      | 50       |                   | 1,50         |       | 2.00         |
| 7,57614/11111                                                                     | d.        | /d                        | 0,6      | 30       |                   | 1,50         |       | 2,00         |
| 10 / 8 N/mm²                                                                      | w/w       | w/d                       | 0,7      | 75       |                   | 2,00         |       | 2,50         |
| IU / O IN/IIIIII                                                                  | d.        | /d                        | 0,7      | 75       |                   | 2,00         |       | 2,50         |
| 12,5 / 10 N/mm²                                                                   | w/w       | w/d                       | 0,0      | 90       |                   | 2,50         |       | 3,00         |
| 12,5 / 10 N/IIIII-                                                                | d         | /d                        | 0,9      | 90       |                   | 2,50         |       | 3,50         |
| 15 / 12 N/mm <sup>2</sup>                                                         | w/w       | w/d                       | 0,0      | 90       |                   | 3,00         |       | 3,50         |
| 15 / 12 N/MM-                                                                     | d         | /d                        | 1,2      | 20       |                   | 3,00         |       | 4,00         |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C29.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung Widerstand

| Ankerstange                   | М6  | M8 | М6  | M8         |           | -         | M8  | M10 | M8  | M10 | -          |     | M12         | M16 | M12 | M16 |
|-------------------------------|-----|----|-----|------------|-----------|-----------|-----|-----|-----|-----|------------|-----|-------------|-----|-----|-----|
| Innengewindeanker FIS E       | _   | 1  |     | •          | M6<br>112 | M8<br><85 |     | -   |     | -   | M10<br>15x |     | ı           | -   |     | -   |
| Injektions-Ankerhülse FIS H K | 12x | 50 | 12: | <b>(85</b> |           | 16        | x85 |     | 16x | 130 |            | 202 | <b>k</b> 85 |     | 20x | 130 |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c}$                           | ,⊥ [kN]; Te                      | mperaturbereich | 50/80°C und 72/12 | 20°C |      |      |
|------------------------------------------------------------------------|----------------------------------|-----------------|-------------------|------|------|------|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                 |                   |      |      |      |
| 5 / 4 N/mm <sup>2</sup>                                                |                                  | 0,              | 50                | 0,60 | 0,50 | 0,60 |
| 7,5 / 6 N/mm <sup>2</sup>                                              | ] w/w                            | 0,              | 75                | 0,90 | 0,75 | 0,90 |
| 10 / 8 N/mm <sup>2</sup>                                               | w/d                              | 0,              | 90                | 1,20 | 0,90 | 1,20 |
| 12,5 / 10 N/mm <sup>2</sup>                                            | d/d                              | 1,2             | 20                | 1,50 | 1,20 | 1,50 |
| 15 / 12 N/mm <sup>2</sup>                                              |                                  | 1,              | 50                | 2,00 | 1,50 | 2,00 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                             |            |
|-----------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querbean- spruchung | Anhang C29 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .



| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н             | erstelle                         | er                 |           |                |           |                                  |                |        | z.B                  | Wiene                         | rberge | er     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|--------------------|-----------|----------------|-----------|----------------------------------|----------------|--------|----------------------|-------------------------------|--------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >             | onnma                            | 200                |           |                |           |                                  | Ima            | , L    | änge L               | Breite                        | ВН     | öhe F  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ennma                            |                    |           |                |           |                                  | [mm            | ני     | 240                  | 115                           | 5      | 113    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ohdich                           |                    |           |                |           |                                  | [kg/dr         |        |                      | ≥ 1,4                         |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                  | Druckfe<br>druckfe |           |                | lstein 1) | )                                | [N/m           | m²] 7  | ,5 / 6 oc<br>16 oder | 25 / 20                       | oder   | 35 / 2 |
| 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N             | orm oc                           | der Anh            | nang      |                |           |                                  |                |        | EN 77                | 1-1:201                       | 1+A1:  | 2015   |
| Tabelle C30.1: Installa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıtions        | sparan                           | neter              | 115       | 14 - 28        |           | 240                              |                |        | s                    | steinabr<br>iehe au<br>inhang | ıch    | ngen   |
| Ankerstange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | M6                               | M8                 | M6        | M8             | -         |                                  | M8             | M10    | )                    | -                             | M12    | M16    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                  | ı                  |           |                | M6        | M8                               |                |        | M10                  | M12                           |        |        |
| Innengewindeanker FIS E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | •                                | -                  | ·         | •              | 11x       | 85                               |                | -      | 15                   | x85                           |        |        |
| Injektions-Ankerhülse FIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HK            | 12>                              | x50                | 12        | (85            |           | 16>                              | (85            |        |                      | 202                           | x85    |        |
| Ankerstangen und Inneng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gewin         | deank                            | er FIS             | E mit I   | njektic        | ns-An     | kerhül                           | se FIS         | HK     |                      |                               |        |        |
| Max. Montage-<br>drehmoment max T <sub>inst</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [Nm]          |                                  |                    |           |                |           | 2                                | 2              |        |                      |                               |        |        |
| Allgemeine Installationsp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aram          | -4                               |                    |           |                |           |                                  |                |        |                      |                               |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | eter                             |                    |           |                |           |                                  | _              |        |                      |                               |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [1            |                                  |                    |           |                |           | 8                                |                |        |                      |                               |        |        |
| Achs- s <sub>cr</sub> II = s <sub>min</sub> II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [mm]          |                                  |                    |           |                |           | 24                               | 10             |        |                      |                               |        |        |
| Achs- $s_{cr} \parallel = s_{min} \parallel$<br>abstand $s_{cr} \perp = s_{min} \perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [mm]          |                                  |                    |           |                |           |                                  | 10             |        |                      |                               |        |        |
| Achs- $s_{cr} \parallel = s_{min} \parallel$ abstand $s_{cr} \perp = s_{min} \perp$ Bohrverfahren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                  | bohrer             |           |                |           | 24                               | 10             |        |                      |                               |        |        |
| Achsabstand $\frac{s_{cr}   I = s_{min}   I }{s_{cr} \perp = s_{min} \perp}$ Bohrverfahren  Hammerbohren mit Hartme  1) Die Mindestdruckfestigkeit  Tabelle C30.2: Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tall-Ha       | ammer<br>inzelste<br>toren       | eins dar           | f nicht v |                | ı         | 24<br>11<br>% der r              | 15<br>nittlere |        | ,                    |                               | _      |        |
| Achsabstand $\frac{s_{cr}   I = s_{min}   I}{s_{cr} \perp = s_{min} \perp}$ Bohrverfahren  Hammerbohren mit Hartme  1) Die Mindestdruckfestigkeit  Tabelle C30.2: Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tall-Ha       | ammer<br>inzelste                | eins dar           |           | wenigel        | -         | 24<br>11<br>% der r              | 10<br>15       | n Drud | )                    | -                             | agen.  | M10    |
| Achs- abstand $s_{cr}   I = s_{min}   I \\ s_{cr} \perp = s_{min} \perp$ Bohrverfahren Hammerbohren mit Hartme  1) Die Mindestdruckfestigkeit Tabelle C30.2: Gruppe Ankerstange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etall-Hades E | ammer<br>inzelste<br>toren       | eins dar           | f nicht v |                | -<br>M6   | 24<br>11<br>% der r              | 15<br>nittlere |        | M10                  | -<br>M12                      | _      | M10    |
| Achs- abstand $s_{cr} \parallel = s_{min} \parallel \mid s_{cr} \perp = s_{min} \parallel \mid s_{cr} \perp = s_{min} \perp \mid s_{cr} \perp = s_{min} \parallel \mid s_{cr$ | etall-Hades E | ammer<br>inzelste<br>toren<br>M6 | eins dar           | f nicht v | M8<br>-        | -         | 24<br>11<br>% der r              | 15<br>nittlere |        | M10                  | -<br>M12<br>x85               | M12    | M10    |
| Achs- abstand $ \begin{array}{l} s_{cr} \mid I = s_{min} \mid I \\ s_{cr} \perp = s_{min} \perp \end{array} $ Bohrverfahren  Hammerbohren mit Hartme  Die Mindestdruckfestigkeit  Tabelle C30.2: Gruppe  Ankerstange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | etall-Hades E | ammer<br>inzelste<br>toren<br>M6 | eins dar           | f nicht v |                | -<br>M6   | 24<br>11<br>% der r<br>M8        | M8             |        | M10                  | -<br>M12<br>x85               | _      | M1     |
| Achs-abstand $s_{cr}   I = s_{min}   I  $ abstand $s_{cr} \perp = s_{min} \perp$ Bohrverfahren  Hammerbohren mit Hartme  ) Die Mindestdruckfestigkeit  Tabelle C30.2: Gruppe  Ankerstange  Innengewindeanker FIS E  Injektions-Ankerhülse FIS $\alpha_{g,N} (s_{min}   II)$ $\alpha_{g,N} (s_{min}   II)$ $\alpha_{g,N} (s_{min}   II)$ $\alpha_{g,N} (s_{min}   II)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | etall-Hades E | ammer<br>inzelste<br>toren<br>M6 | M8<br>-<br>x50     | M6        | M8<br>-<br><85 | M6 11x    | 24<br>11<br>% der r<br>M8<br>(85 | M8             |        | M10                  | -<br>M12<br>x85               | M12    | M1     |

35 / 28 N/mm<sup>2</sup>

**Ankerstange** 



#### Hochlochziegel HLz; 2DF, EN 771-1:2011+A1:2015

**Tabelle C31.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                                                                           |                       |                | M6    | M8    | M6    | M8    |       | -         | M8     | M10 |                  | -  | M12 | M16 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------|-------|-------|-------|-------|-----------|--------|-----|------------------|----|-----|-----|--|--|--|
| Innengewindeanker FIS E                                                                                               |                       |                | -     |       |       | -     | M6    | M8<br>x85 |        | -   | M10 M12<br>15x85 |    |     |     |  |  |  |
| Injektions-Ankerhülse FIS                                                                                             | ΗK                    |                | 12x   | 50    | 12:   | x85   |       | 16        | x85    |     | 20x85            |    |     |     |  |  |  |
| $\mathbf{N}_{\mathrm{Rk}} = \mathbf{N}_{\mathrm{Rk,p}} = \mathbf{N}_{\mathrm{Rk,b}} = \mathbf{N}_{\mathrm{Rk,p,c}} =$ | N <sub>Rk,b,c</sub>   | [kN];          | Tempe | eratu | rbere | ich 5 | 0/80° | C 2)      |        |     |                  |    |     |     |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                     |                       | ungs-<br>ngung |       |       |       |       |       |           |        |     |                  |    |     |     |  |  |  |
| 7,5 / 6 N/mm²                                                                                                         | w/w                   | w/d            | 0,7   | 75    | 0.    | 90    |       | 0         | ,75    |     |                  | 0, | 90  |     |  |  |  |
| 7,57614/11111                                                                                                         | d                     | /d             | 0,7   | 75    | 1,    | 20    |       | 0         | ,75    |     |                  | 0, | 90  |     |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                                                           | w/w                   | w/d            | 1,2   | 20    | 1.    | 50    |       | 1         | .20    |     |                  | 1, | 50  |     |  |  |  |
| 12,37 10 14/11111                                                                                                     | d                     | /d             | 1,2   | 20    | 2,    | 00    |       | 1         | ,20    |     |                  | 1, | 50  |     |  |  |  |
| 20 / 16 N/mm <sup>2</sup>                                                                                             | w/w                   | w/d            | 2,0   | 00    | 2,    | 50    |       | 2         | 00,    |     |                  | 2, | 00  |     |  |  |  |
| 20 / 10 14/11111                                                                                                      | d                     | /d             | 2,0   | 00    | 3,    | 00    |       | 2         | 2,00   |     | 2,50             |    |     |     |  |  |  |
| 25 / 20 N/mm <sup>2</sup>                                                                                             | 25 / 20 N/mm² w/w w/d |                |       |       | 3,    | 50    |       | 2         | .50    |     | 3,00             |    |     |     |  |  |  |
| 25 / 20 N/IIIIII                                                                                                      | ۱ ۸                   | /4             | 2.1   | -     | 4     | 00    |       |           | . F.O. |     | 2.00             |    |     |     |  |  |  |

4,00

5,00

5,50

2,50

3,50

3,50

M8 | M10 |

3,00

4.00

4,50

M12 M16

M6 | M8 | M6 | M8 |

d/d

w/w w/d

d/d

**Tabelle C31.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

2,50

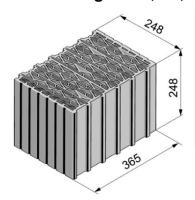
3,00

3,50

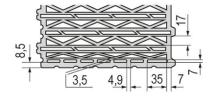
| 9                                                                                 |                        |       |             |      |            |           |           |      |   |           |            |     |   |
|-----------------------------------------------------------------------------------|------------------------|-------|-------------|------|------------|-----------|-----------|------|---|-----------|------------|-----|---|
| Innengewindeanker FIS E                                                           |                        | ,     | -           |      | -          | M6<br>112 | M8<br>(85 |      | - | M10<br>15 | M12<br>c85 |     | - |
| Injektions-Ankerhülse FIS H                                                       | ł K                    | 12    | <b>k</b> 50 | 12)  | <b>(85</b> |           | 16x85     |      |   | 20>       | (85        |     |   |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | (N]; Temper            | aturb | ereicl      | 50/8 | 30°C       | und       | 72/12     | 20°C |   |           |            |     |   |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzungs-<br>bedingung |       |             |      |            |           |           |      |   |           |            |     |   |
| 7,5 / 6 N/mm <sup>2</sup>                                                         |                        | 1,2   | 1,5         | 1,2  | 2,0        | 1,2       |           | 1,5  |   |           | 2,         | ,5  |   |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | w/w                    | 2,0   | 2,5         | 2,0  | 4,0        | 2,0       |           | 2,5  |   |           | 4,         | ,5  |   |
| 20 / 16 N/mm <sup>2</sup>                                                         | w/d                    | 3,0   | 3,5         | 3,0  | 6,0        | 3,0       |           | 3,5  |   |           | 7,         | ,0  |   |
| 25 / 20 N/mm <sup>2</sup>                                                         | d/d                    | 4,0   | 4,5         | 4,0  | 7,5        | 4,0       |           | 4,5  |   | 8,5       |            |     |   |
| 35 / 28 N/mm <sup>2</sup>                                                         |                        | 5,0   | 6,5         | 5,0  | 9,5        | 5,0       |           | 6,5  |   |           | 12         | 2,0 | · |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.


| fischer Injektionssystem FIS V Plus für Mauerwerk                                                |            |
|--------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, 2DF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C31 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.


<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk,(72/120^{\circ}C)} = 0.83 \cdot N_{Rk,(50/80^{\circ}C)}$ .



#### Hochlochziegel HLz, U8, EN 771-1:2011+A1:2015



| Hersteller                                                          |                      | z.B. Wienerberger |             |            |  |  |  |  |
|---------------------------------------------------------------------|----------------------|-------------------|-------------|------------|--|--|--|--|
| Nennmaße                                                            | [mm]                 | Länge L           | Breite B    | Höhe H     |  |  |  |  |
| lveriiiiiaise                                                       | [mm]                 | 248               | 365         | 248        |  |  |  |  |
| Rohdichte ρ                                                         | [kg/dm³]             |                   | 0,6         |            |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | 5 / 4 ode         | r 7,5 / 6 o | der 10 / 8 |  |  |  |  |
| Norm oder Anhang                                                    | _                    | EN 771            | -1:2011+/   | A1:2015    |  |  |  |  |



Steinabmessung siehe auch Anhang B15

Tabelle C32.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | М6  | M8  | М6 | M8  |    |                  | M8  | M10 | M8  | M10 | -              | M12        | M16 | M12 | M16 | M12 | M16 |
|-------------------------------|-----|-----|----|-----|----|------------------|-----|-----|-----|-----|----------------|------------|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E       |     | •   | ,  | •   | M6 | M8<br><b>c85</b> | -   | -   | ,   | -   | <br>M12<br>x85 | ,          | •   | ı   | •   | -   |     |
| Injektions-Ankerhülse FIS H K | 12: | x50 | 12 | x85 |    | 162              | x85 |     | 16x | 130 | 20:            | <b>(85</b> |     | 20x | 130 | 20x | 200 |

#### Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montage-drehmoment  $\max T_{inst}$  [Nm] 3 5 3 5 3 5

#### Allgemeine Installationsparameter

| Randabstar       | $c_{min} = c_{cr}$  |      | 60  |
|------------------|---------------------|------|-----|
|                  | s <sub>min</sub> II |      | 80  |
| Achs-            | s <sub>cr</sub> II  | [mm] | 250 |
| Achs-<br>abstand | S <sub>min</sub> ⊥  |      | 80  |
|                  | s <sub>cr</sub> ⊥   |      | 250 |

#### Bohrverfahren

Drehbohren mit Hartmetallbohrer

#### Tabelle C32.2: Gruppenfaktoren

| Ankerstang   | е                                              | M6 | M8  | М6 | M8  | -    |          | M8 | M10 | M8  | M10 | -                | M12 M16 | M12 M1 | 6 M12 M16 |
|--------------|------------------------------------------------|----|-----|----|-----|------|----------|----|-----|-----|-----|------------------|---------|--------|-----------|
| Innengewin   | deanker FIS E                                  |    | -   | ,  | -   | M6 N | M8<br>85 | •  |     |     | -   | M10 M12<br>15x85 | _       |        | -         |
| Injektions-A | Ankerhülse FIS H K                             | 12 | x50 | 12 | x85 | •    | 16x      | 85 |     | 16x | 130 | 20:              | x85     | 20x130 | 20x200    |
|              | $\alpha_{g,N}$ (S <sub>min</sub> II)           |    |     |    |     |      |          |    |     | 1   | ,3  |                  |         |        |           |
| Gruppen-     | α <sub>g,V</sub> (S <sub>min</sub> II)         |    |     |    |     |      |          |    |     | 1   | ,2  |                  |         |        |           |
| faktoren     | $\alpha_{g,N}$ (S <sub>min</sub> $\perp$ ) [-] |    |     |    |     |      |          |    |     | 1   | ,3  |                  |         |        |           |
|              | α <sub>g,</sub> ∨ (s <sub>min</sub> ⊥)         |    |     |    |     |      |          |    |     | 1   | ,0  |                  |         |        |           |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, U8, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C32 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Hochlochziegel HLz, U8, EN 771-1:2011+A1:2015

#### Tabelle C33.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange             |                                    |       | M10               | M12   | M16        |  |  |  |  |  |  |
|-------------------------|------------------------------------|-------|-------------------|-------|------------|--|--|--|--|--|--|
| Injektions-An           | kerhülse Fl                        | SHK   | 18x13             | 0/200 | 22x130/200 |  |  |  |  |  |  |
| Ankerstanger            | n mit Injektio                     | ons-A | nkerhülse FIS H K |       |            |  |  |  |  |  |  |
| Max. Montage drehmoment | max T <sub>inst</sub>              | [Nm]  |                   | 5     |            |  |  |  |  |  |  |
| Allgemeine In           | stallationsp                       | aram  | eter              |       |            |  |  |  |  |  |  |
| Randabstand             | C <sub>min</sub> = C <sub>cr</sub> |       |                   | 6     | 0          |  |  |  |  |  |  |
|                         | s <sub>min</sub> II                |       |                   | 8     | 0          |  |  |  |  |  |  |
| Achs-                   | s <sub>cr</sub> II                 | [mm]  |                   | 25    | 50         |  |  |  |  |  |  |
| abstand                 | $s_{min} \bot$                     |       |                   | 8     | 0          |  |  |  |  |  |  |
|                         | s <sub>cr</sub> ⊥                  |       |                   | 25    | 50         |  |  |  |  |  |  |
| Bohrverfahre            | n                                  |       |                   |       |            |  |  |  |  |  |  |

#### Drehbohren mit Hartmetallbohrer

#### Tabelle C33.2: Gruppenfaktoren

| Ankerstang                                      | je                                     | M10   | M12                   | M16 |  |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------|-------|-----------------------|-----|--|--|--|--|--|--|--|
| Injektions-A                                    | Ankerhülse FIS H K                     | 18x13 | 18x130/200 22x130/200 |     |  |  |  |  |  |  |  |
|                                                 | α <sub>g,N</sub> (s <sub>min</sub> II) |       | 1                     | ,3  |  |  |  |  |  |  |  |
| Gruppen- α <sub>g,V</sub> (s <sub>min</sub> II) |                                        |       | 1,2                   |     |  |  |  |  |  |  |  |
| faktoren                                        | $\alpha_{g,N} (s_{min} \perp)$ [-]     |       | 1                     | ,3  |  |  |  |  |  |  |  |
|                                                 | α <sub>g,</sub> ∨ (s <sub>min</sub> ⊥) |       | 1,0                   |     |  |  |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, U8, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C33



#### Hochlochziegel HLz, U8, EN 771-1:2011+A1:2015

**Tabelle C34.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                                                                                  |                                  | M6 M8 | M6 M8   | - M8M10        | M8 M10 | - M12 M16        | M12 M16 | M12 M16 |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------|-------|---------|----------------|--------|------------------|---------|---------|--|--|--|--|
| Innengewindeanker FIS E                                                                      |                                  | -     | -       | M6 M8<br>11x85 | -      | M10 M12<br>15x85 | -       |         |  |  |  |  |
| Injektions-Ankerhülse FIS H                                                                  | Injektions-Ankerhülse FIS H K    |       |         | 16x85          | 16x130 | 20x85            | 20x130  | 20x200  |  |  |  |  |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}$ | Rk,b,c <b>[kN]</b> ;             | Tempe | raturbe | reich 50/80°C  | 2)     |                  |         |         |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>            | Nutz-<br>ungs-<br>bedin-<br>gung |       |         |                |        |                  |         |         |  |  |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                      | w/w w/d                          | 1,2   |         |                |        | 1,2              |         |         |  |  |  |  |
| 3 / 4 N/IIIII                                                                                | d/d                              | 1,2   |         | 1,5            |        |                  |         |         |  |  |  |  |
| 7,5 / 6 N/mm <sup>2</sup>                                                                    | w/w w/d                          | 1,5   |         |                |        | 1,5              |         |         |  |  |  |  |
| 7,576 N/IIIII                                                                                | d/d                              | 1,5   |         |                |        | 1,5              |         |         |  |  |  |  |
| 10 / 8 N/mm²                                                                                 | w/w w/d                          | 1,5   |         |                |        | 2,0              |         |         |  |  |  |  |
| 10 / 8 N/mm-                                                                                 | d/d                              | 2,0   | 2,0 2,0 |                |        |                  |         |         |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C34.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |          |                            | M10            | M12                       | M16        |
|-----------------------------------------------------------------------------------|----------|----------------------------|----------------|---------------------------|------------|
| Injektions-Ankerhülse FIS H                                                       | ΙK       |                            | 18x1           | 30/200                    | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = I$                                   | Rk,b,c   | [kN];                      | Temperaturbere | ich 50/80°C <sup>2)</sup> |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | un<br>be | ıtz-<br>gs-<br>din-<br>ıng |                |                           |            |
| 5 / 4 N/mm <sup>2</sup>                                                           |          | w/d                        |                | 1                         | ,2         |
| 5 / 4 N/IIIII                                                                     | d        | /d                         |                | 1                         | ,5         |
| 7,5 / 6 N/mm²                                                                     | w/w      | w/d                        |                | 1                         | ,5         |
| 7,5 7 6 N/IIIII                                                                   | d        | /d                         |                | 1                         | ,5         |
| 10 / 8 N/mm²                                                                      | w/w      | w/d                        |                | 2                         | ,0         |
| 10 / 8 N/MM <sup>2</sup>                                                          | d        | /d                         |                | 2                         | ,0         |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, U8, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C34 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.

7,5 / 6 N/mm<sup>2</sup>

10 / 8 N/mm<sup>2</sup>



1,5

1,5

#### Hochlochziegel HLz, U8, EN 771-1:2011+A1:2015

w/w w/d

d/d w/w w/d

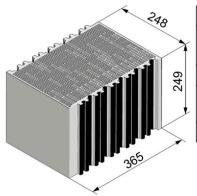
d/d

**Tabelle C35.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

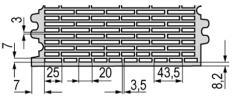
| Ankerstange                                                                       |                                                                                                                               | M6  | M8         | M6    | M8          | -              | М8  | M10 | M8  | M10  | -                | M12         | M16 | M12 | M16 | M12 | M16 |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|------------|-------|-------------|----------------|-----|-----|-----|------|------------------|-------------|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E                                                           |                                                                                                                               | -   |            | I - H |             | M6 M8<br>11x85 |     | -   | -   |      | M10 M12<br>15x85 | _           |     |     | -   |     |     |
| Injektions-Ankerhülse FIS H K                                                     |                                                                                                                               |     | <b>(50</b> | 12    | <b>k</b> 85 | 16:            | x85 |     | 16> | (130 | 202              | <b>k</b> 85 |     | 20x | 130 | 20x | 200 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k                             | V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |     |            |       |             |                |     |     |     |      |                  |             |     |     |     |     |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung                                                                                              |     |            |       |             |                |     |     |     |      |                  |             |     |     |     |     |     |
| 5 / 4 N/mm²                                                                       | w/w w/d                                                                                                                       | 1,2 |            |       |             |                |     |     |     |      |                  |             |     |     |     |     |     |

**Tabelle C35.2:** Charakteristischer Widerstand lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10                | M12              | M16 |
|-----------------------------------------------------------------------------------|----------------------------------|--------------------|------------------|-----|
| Injektions-Ankerhülse FIS H                                                       | 18x13                            | 30/200             | 22x130/200       |     |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}  [\![k\!]\!]$                   | N]; Tempe                        | eraturbereich 50/8 | 0°C und 72/120°C |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                    |                  |     |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   |                    | 1,               | ,2  |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   |                    | 1,               | .5  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   |                    | 1,               | ,5  |


<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.


| fischer Injektionssystem FIS V Plus für Mauerwerk                                       |            |
|-----------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, U8, Charakteristischer Widerstand unter Querbeanspruchungt | Anhang C35 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.





| Hersteller                                                       |                      | z.B. Wienerberger                     |          |        |  |  |  |
|------------------------------------------------------------------|----------------------|---------------------------------------|----------|--------|--|--|--|
| Nennmaße                                                         | [mm]                 | Länge L                               | Breite B | Höhe H |  |  |  |
| Nemmaise                                                         | [mm]                 | 248                                   | 365      | 249    |  |  |  |
| Rohdichte ρ                                                      | [kg/dm³]             | 0,7                                   |          |        |  |  |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | 10 / 8 oder 12,5 / 10 oder<br>15 / 12 |          |        |  |  |  |
| Norm oder Anhang                                                 |                      | EN 771                                | -1:2011+ | 1:2015 |  |  |  |



Steinabmessungen siehe auch Anhang B16

Tabelle C36.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | М6  | M8            | М6 | M8          |           | •         | M8         | M10 | M8  | M10 |           | •   | M12 | M16 | M12 M | 16 | M12         | M16 |
|-------------------------------|-----|---------------|----|-------------|-----------|-----------|------------|-----|-----|-----|-----------|-----|-----|-----|-------|----|-------------|-----|
| Innengewindeanker FIS E       |     | •             | ,  | •           | M6<br>112 | M8<br>(85 |            | -   | ,   | -   | M10<br>15 |     |     | •   | -     |    | -           |     |
| Injektions-Ankerhülse FIS H K | 12) | <b>&lt;50</b> | 12 | <b>k</b> 85 |           | 162       | <b>x85</b> |     | 16x | 130 |           | 20> | (85 |     | 20x1  | 30 | <b>20</b> x | 200 |

#### Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

| П | Max. Montage-<br>drehmoment | max T <sub>inst</sub> [Nn | n] 3 | 5 | 3 | 5 | į |
|---|-----------------------------|---------------------------|------|---|---|---|---|
|   | i arenmoment                | 1-                        | -1   |   |   |   |   |

#### Allgemeine Installationsparameter

|                  | <u>-</u>                |                                         |     |  |  |  |    |
|------------------|-------------------------|-----------------------------------------|-----|--|--|--|----|
| Randabstar       | $nd 	 c_{min} = c_{cr}$ |                                         | 60  |  |  |  |    |
|                  | s <sub>min</sub> II     |                                         | 80  |  |  |  |    |
| Achs-            | s <sub>cr</sub> II      | [mm]                                    | 250 |  |  |  |    |
| Achs-<br>abstand | Smin⊥                   | S <sub>min</sub> ⊥<br>S <sub>cr</sub> ⊥ |     |  |  |  | 80 |
| _                | s <sub>cr</sub> ⊥       |                                         | 250 |  |  |  |    |

#### **Bohrverfahren**

Drehbohren mit Hartmetallbohrer

#### Tabelle C36.2: Gruppenfaktoren

| Ankerstan                     | ge                                                           | M6  | M8  | M6 | M8  |    | -         | M8  | M10 | M8     | M10 | -                                                | M12 M16 | M12 M16 | M12 M16 |
|-------------------------------|--------------------------------------------------------------|-----|-----|----|-----|----|-----------|-----|-----|--------|-----|--------------------------------------------------|---------|---------|---------|
| Innengewi                     | ndeanker FIS E                                               |     | -   |    | -   | M6 | M8<br>x85 | -   |     | ,      | -   | M10 M12                                          | -       | -       | -       |
| Injektions-Ankerhülse FIS H K |                                                              | 12  | x50 | 12 | x85 |    |           | k85 |     | 16x130 |     | <del>                                     </del> |         | 20x130  | 20x200  |
|                               | $\alpha_{g,N}$ (s <sub>min</sub> II)                         |     |     |    |     |    |           |     |     | 1      | ,7  |                                                  |         |         |         |
| Gruppen-                      | $\frac{\alpha_{g,V}(\mathbf{s}_{min}   \mathbf{II})}{(-)}$   |     | 0,5 |    |     |    |           |     |     |        |     |                                                  |         |         |         |
| faktoren                      | $\alpha_{\sf g,N}$ (s <sub>min</sub> $\perp$ )               | 1,3 |     |    |     |    |           |     |     |        |     |                                                  |         |         |         |
|                               | $lpha_{	extsf{g,V}}\left(	extsf{s}_{	extsf{min}}\perp ight)$ | 0,5 |     |    |     |    |           |     |     |        |     |                                                  |         |         |         |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                           |            |
|---------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, T10, T11, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C36 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Tabelle C37.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange M10 M12 M16                        |                                      |      |    |     |     |  |  |  |  |  |  |  |
|------------------------------------------------|--------------------------------------|------|----|-----|-----|--|--|--|--|--|--|--|
| Injektions-Ank                                 | rhülse FIS H K 18x130/200 22x130/200 |      |    |     |     |  |  |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                      |      |    |     |     |  |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>                | [Nm] |    | 5   |     |  |  |  |  |  |  |  |
| Allgemeine Installationsparameter              |                                      |      |    |     |     |  |  |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub>   |      |    | · · | 60  |  |  |  |  |  |  |  |
|                                                | s <sub>min</sub> II                  |      | 80 |     |     |  |  |  |  |  |  |  |
| Achs-                                          | s <sub>cr</sub> II                   | [mm] |    | 2   | 250 |  |  |  |  |  |  |  |
| abstand s <sub>min</sub> \(  \)                |                                      |      |    |     |     |  |  |  |  |  |  |  |
|                                                | s <sub>cr</sub> ⊥                    |      |    | 250 |     |  |  |  |  |  |  |  |
| Bohrverfahren                                  |                                      |      |    |     |     |  |  |  |  |  |  |  |

Drehbohren mit Hartmetallbohrer

#### Tabelle C37.2: Gruppenfaktoren

| Ankerstang  | ge                                     | M10   | M10 M12 M16 |            |  |  |  |  |  |  |  |
|-------------|----------------------------------------|-------|-------------|------------|--|--|--|--|--|--|--|
| Injektions- | Ankerhülse FIS H K                     | 18x13 | 30/200      | 22x130/200 |  |  |  |  |  |  |  |
|             | α <sub>g,N</sub> (s <sub>min</sub> II) |       | 1,7         |            |  |  |  |  |  |  |  |
| Gruppen-    | α <sub>g,V</sub> (s <sub>min</sub> II) | 0,5   |             |            |  |  |  |  |  |  |  |
| faktoren    |                                        |       |             |            |  |  |  |  |  |  |  |
|             | α <sub>g,V</sub> (s <sub>min</sub> ⊥)  |       | 0,5         |            |  |  |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, T10, T11, Abmessungen, Installationsparameter,
Gruppenfaktoren

Anhang C37



**Tabelle C38.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                                                                                                                                       | М6 | M8          | М6  | M8  |           | •         | M8  | M10 | M8  | M10 | -              | M12 | M16 | M12 | M16 | M12 | M16 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|-----|-----|-----------|-----------|-----|-----|-----|-----|----------------|-----|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E                                                                                                                           |    | •           | •   |     | M6<br>112 | M8<br>(85 | ı   | -   | ,   | -   | <br>M12<br>x85 | l . | •   | -   |     | •   | •   |
| Injektions-Ankerhülse FIS H K                                                                                                                     | 12 | <b>k</b> 50 | 12x | (85 |           | 16>       | (85 |     | 16x | 130 | 20:            | x85 |     | 20x | 130 | 20x | 200 |
| N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,b</sub> = N <sub>Rk,p,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |    |             |     |     |           |           |     |     |     |     |                |     |     |     |     |     |     |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} =$                                     | N <sub>Rk,b</sub> | ,c [kN                     | l]; Temp | peraturbereich 50/80°C <sup>2)</sup> |
|-----------------------------------------------------------------------------------|-------------------|----------------------------|----------|--------------------------------------|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | un<br>bed         | ıtz-<br>gs-<br>din-<br>ıng |          |                                      |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w               | w/d                        | 1,5      | 1,5                                  |
| 10 / 6 14/111111                                                                  | d                 | /d                         | 1,5      | 2,0                                  |
| 12,5 / 10 N/mm²                                                                   | w/w               | w/d                        | 1,5      | 2,0                                  |
| 12,57 10 14/111111                                                                | d                 | /d                         | 2,0      | 2,0                                  |
| 15 / 12 N/mm²                                                                     | w/w               | w/d                        | 2,0      | 2,0                                  |
| 15/12 N/IIIII                                                                     | d                 | /d                         | 2,0      | 2,5                                  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C38.2: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                                                   |           |                            | M10 | M12                | M16        |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-----|--------------------|------------|--|--|--|--|
| Injektions-Ankerhülse FIS                                                                                                     | нк        |                            | 18: | <b>&lt;130/200</b> | 22x130/200 |  |  |  |  |
| N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,p,c</sub> = N <sub>Rk,p,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |           |                            |     |                    |            |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                             | un<br>bed | ıtz-<br>gs-<br>din-<br>ıng |     |                    |            |  |  |  |  |
| 10 / 8 N/mm²                                                                                                                  | w/w       | w/d                        |     | 1,5                | 1,5        |  |  |  |  |
| IU / O N/IIIIII                                                                                                               | d         | /d                         |     | 2,0                | 2,0        |  |  |  |  |
| 12,5 / 10 N/mm²                                                                                                               | w/w       | w/d                        |     | 2,0                | 2,0        |  |  |  |  |
| 12,5 / 10 N/IIIII                                                                                                             | d         | /d                         |     | 2,0                | 2,0        |  |  |  |  |
| 15 / 12 N/mm²                                                                                                                 | w/w       | w/d                        |     | 2,0                | 2,0        |  |  |  |  |
| 15 / 12 N/MM <sup>-</sup>                                                                                                     | d         | /d                         |     | 2,5                | 2,5        |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                           |            |
|---------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, T10, T11, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C38 |

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .



**Tabelle C39.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

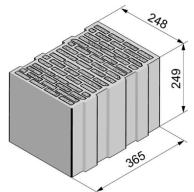
| Ankerstange                                                                                     | М6 | M8  | М6  | М8 | -     | ı   | M8 | M10 | М8  | M10 |        | •   | M12         | M16 | M12 | M16 | M12M16 |
|-------------------------------------------------------------------------------------------------|----|-----|-----|----|-------|-----|----|-----|-----|-----|--------|-----|-------------|-----|-----|-----|--------|
| Innengewindeanker FIS E                                                                         |    | -   |     |    |       | 18  |    |     |     |     | M10M12 |     | ı           |     |     |     |        |
|                                                                                                 |    |     |     | '  | 11x85 |     |    | -   |     | -   |        | (85 | ] -         |     | -   |     | -      |
| Injektions-Ankerhülse FIS H K                                                                   | 12 | x50 | 12x | 85 | 1     | 16x | 85 |     | 16x | 130 |        | 20) | <b>k</b> 85 |     | 20x | 130 | 20x200 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C und 72/120°C |    |     |     |    |       |     |    |     |     |     |        |     |             |     |     |     |        |
|                                                                                                 |    |     |     |    |       |     |    |     |     |     |        |     |             |     |     |     |        |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | N]; Tempe                        | eraturbereich & | 50/80°C und 72/120°C |     |
|-----------------------------------------------------------------------------------|----------------------------------|-----------------|----------------------|-----|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                 |                      |     |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 0,9             | 1,5                  | 2,0 |
| 12,5 / 10 N/mm²                                                                   | w/w w/d<br>d/d                   | 0,9             | 1,5                  | 2,0 |
| 15 / 12 N/mm²                                                                     | w/w w/d<br>d/d                   | 1,2             | 2,0                  | 2,0 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C39.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10                | M12                               | M16        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|--------------------|-----------------------------------|------------|--|--|--|--|--|--|--|
| Injektions-Ankerhülse FIS H                                                       | K                                | 18x13              | 30/200                            | 22x130/200 |  |  |  |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | N]; Tempe                        | eraturbereich 50/8 | raturbereich 50/80°C und 72/120°C |            |  |  |  |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                    |                                   |            |  |  |  |  |  |  |  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 1                  | ,5                                | 2,0        |  |  |  |  |  |  |  |
| 12,5 / 10 N/mm²                                                                   | w/w w/d<br>d/d                   | 1                  | ,5                                | 2,0        |  |  |  |  |  |  |  |
| 15 / 12 N/mm²                                                                     | w/w w/d<br>d/d                   | 2                  | ,0                                | 2,0        |  |  |  |  |  |  |  |


<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                   |            |
|-----------------------------------------------------------------------------------------------------|------------|
| <b>Leistung</b> Hochlochziegel HLz, T10, T11, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C39 |



## Hochlochziegel HLz, T7 PF, Perlite gefüllt, EN 771-1:2011+A1:2015



| Hersteller                                                       |                      | z.B.             | Wienerbe | erger |  |
|------------------------------------------------------------------|----------------------|------------------|----------|-------|--|
| Nennmaße                                                         | [mm]                 | Länge L          | Höhe H   |       |  |
| Nemmaise                                                         | [mm]                 | 248              | 365      | 249   |  |
| Rohdichte ρ                                                      | [kg/dm³]             | 0,5              |          |       |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | 5 / 4 oder 8 / 6 |          |       |  |
| Norm und Anhang                                                  | EN 771               | -1:2011+/        | A1:2015  |       |  |

7,4

Steinabmessungen siehe auch Anhang B16

Tabelle C40.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | М6 | M8  | М6 | M8  |           | •         | M8          | M10 | M8  | M10 | -          | _   | M12 | M16 | M12 | M16 | M12 | 2 M16 |
|-------------------------------|----|-----|----|-----|-----------|-----------|-------------|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-------|
| Innengewindeanker FIS E       | ,  | -   | ,  | -   | M6<br>112 | M8<br>(85 |             | -   |     | -   | M10<br>15x | _   |     | •   | ,   | •   |     | -     |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | x85 |           | 16        | <b>k</b> 85 |     | 16x | 130 |            | 20> | (85 |     | 20x | 130 | 20  | x200  |

#### Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

| Max. Montage-<br>drehmoment | max T <sub>inst</sub> [Nm] | 2 | 5 | 2 | 5 |
|-----------------------------|----------------------------|---|---|---|---|
|-----------------------------|----------------------------|---|---|---|---|

#### Allgemeine Installationsparameter

| All gomente metanation parameter |                      |      |     |      |      |      |      |      |     |  |
|----------------------------------|----------------------|------|-----|------|------|------|------|------|-----|--|
| Randabstan                       | $d c_{min} = c_{cr}$ |      | 60  |      |      |      |      |      |     |  |
|                                  | s <sub>min</sub> II  |      | 80  |      |      |      |      |      |     |  |
| Achs-                            | s <sub>cr</sub> II   | [mm] | 1   | [mm] | [mm] | [mm] | [mm] | [mm] | 250 |  |
| Achs-<br>abstand                 | S <sub>min</sub> ⊥   |      |     |      | 80   |      |      |      |     |  |
| · ·                              | S <sub>cr</sub> ⊥    |      | 250 |      |      |      |      |      |     |  |

#### Bohrverfahren

Drehbohren mit Hartmetallbohrer

#### Tabelle C40.2: Gruppenfaktoren

| Ankerstang              | е                                                                       | M6 | M8                              | М6    | M8 |     | -     | M8 | M10       | M8 | M10 | -      | M12 M16 | M12 M16 | M12 M16 |  |  |
|-------------------------|-------------------------------------------------------------------------|----|---------------------------------|-------|----|-----|-------|----|-----------|----|-----|--------|---------|---------|---------|--|--|
| Innongovin              | In a constant of a colon FIG. F                                         |    | In a constant of a color FIG. F |       |    |     |       | М6 | M8        |    |     |        |         | M10 M12 |         |  |  |
| Innengewindeanker FIS E |                                                                         | _  |                                 | -     |    | 112 | x85   | '  |           |    | •   | 15x85  | _       | -       | -       |  |  |
| Injektions-A            | Injektions-Ankerhülse FIS H K                                           |    |                                 | 12x85 |    |     | 16x85 |    | 16x130 20 |    | x85 | 20x130 | 20x200  |         |         |  |  |
|                         | α <sub>g,N</sub> (s <sub>min</sub> II)                                  |    |                                 |       |    |     |       |    |           | 1  | ,1  |        |         |         |         |  |  |
| Gruppen-                | α <sub>g,V</sub> (s <sub>min</sub> II)                                  |    |                                 |       |    |     |       |    |           | 1  | ,2  |        |         |         |         |  |  |
| faktoren                | $\frac{\alpha_{g,N} (s_{min} \perp)}{\alpha_{g,N} (s_{min} \perp)} [-]$ |    |                                 |       |    |     |       |    |           | 1  | ,1  |        |         |         |         |  |  |
|                         | α <sub>g,</sub> ∨ (s <sub>min</sub> ⊥)                                  |    |                                 |       |    |     |       |    |           | 1  | ,2  |        |         |         |         |  |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                        |            |
|----------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, T7 PF, Perlit gefüllt; Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C40 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Hochlochziegel HLz, T7 PF, Perlite gefüllt, EN 771-1:2011+A1:2015

#### Tabelle C41.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                    |                                    |      | M10   | M12   | M16        |  |  |  |  |  |
|------------------------------------------------|------------------------------------|------|-------|-------|------------|--|--|--|--|--|
| Injektions-Anl                                 | kerhülse Fl                        | знк  | 18x13 | 0/200 | 22x130/200 |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                    |      |       |       |            |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>              | [Nm] |       | 5     |            |  |  |  |  |  |
| Allgemeine In                                  | Allgemeine Installationsparameter  |      |       |       |            |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub> |      |       | 6     | 60         |  |  |  |  |  |
|                                                | s <sub>min</sub> II                |      |       | 8     | 30         |  |  |  |  |  |
| Achs-                                          | s <sub>cr</sub> II                 | [mm] |       | 2     | 50         |  |  |  |  |  |
| abstand                                        | s <sub>min</sub> ⊥                 |      |       | 8     | 30         |  |  |  |  |  |
|                                                | s <sub>cr</sub> ⊥                  |      |       | 2     | 50         |  |  |  |  |  |
| Bohrverfahren                                  |                                    |      |       |       |            |  |  |  |  |  |

Drehbohren mit Hartmetallbohrer

#### Tabelle C41.2: Gruppenfaktoren

| Ankerstang         | е                                                  | M10   | M16   |            |  |  |  |  |  |
|--------------------|----------------------------------------------------|-------|-------|------------|--|--|--|--|--|
| Injektions-A       | Ankerhülse FIS H K                                 | 18x13 | 0/200 | 22x130/200 |  |  |  |  |  |
|                    | α <sub>g,N</sub> (s <sub>min</sub> II)             |       | 1,1   |            |  |  |  |  |  |
| Gruppen-<br>faktor | $\alpha_{g,V}\left(s_{min}\;II\right)$             |       | 1,2   |            |  |  |  |  |  |
| faktor             | $\alpha_{g,N}$ ( $s_{min} \perp$ ) [-]             |       | 1,1   |            |  |  |  |  |  |
|                    | $\alpha_{\sf g,V}$ ( ${\sf s}_{\sf min}$ $\perp$ ) | 1,2   |       |            |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, T7 PF, Perlite gefüllt; Abmessungen, Installationsparameter,
Gruppenfaktoren

Anhang C41



### Hochlochziegel HLz, T7 PF, Perlite gefüllt, EN 771-1:2011+A1:2015

Tabelle C42.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                                       |                          | M6  | M8            | M6    | M8   | -     | '    | M8   | M10   | M8  | M10 |          | -              | M12 I | M16 | M12 M16 | M12 M16 |
|---------------------------------------------------|--------------------------|-----|---------------|-------|------|-------|------|------|-------|-----|-----|----------|----------------|-------|-----|---------|---------|
| Innengewindeanker FIS E                           |                          |     | •             |       | •    | M6    | _    |      | -     |     | -   | $\vdash$ | 10 M12<br>5x85 | -     |     | -       | -       |
| Injektions-Ankerhülse FIS H                       | K                        | 12) | <b>&lt;50</b> | 12)   | (85  |       | 162  | x85  |       | 16x | 130 |          | 20x            | 85    |     | 20x130  | 20x200  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N$   | Rk,b,c <b>[kN]</b> ;     | Те  | mp            | eratı | urbe | ereic | h 50 | 0/80 | °C 2) | )   |     |          |                |       |     |         |         |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit | Nutz-<br>ungs-<br>bedin- |     |               |       |      |       |      |      |       |     |     |          |                |       |     |         |         |

| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein <sup>1)</sup> | ungs-<br>bedin-<br>gung |     |     |     |     |     |
|-----------------------------------------------------------------------------|-------------------------|-----|-----|-----|-----|-----|
| 5 / 4 N/mm²                                                                 | w/w w/c                 | 1,2 | 1,2 | 1,2 | 1,2 | 2,0 |
| 5 / 4 14///////                                                             | d/d                     | 1,5 | 1,5 | 1,5 | 1,5 | 2,0 |
| 8 / 6 N/mm <sup>2</sup>                                                     | w/w w/c                 | 1,5 | 1,5 | 1,5 | 1,5 | 2,5 |
| 6 / 6 N/IIIII                                                               | d/d                     | 1,5 | 2,0 | 1,5 | 2,0 | 3,0 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C42.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                           |                          |     | M10                   | M16 |     |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|--------------------------|-----|-----------------------|-----|-----|--|--|--|--|
| Injektions-Ankerhülse FIS H                                                                           | K                        |     | 18x130/200 22x130/200 |     |     |  |  |  |  |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk,p,c}$ | ch 50/80°C <sup>2)</sup> |     |                       |     |     |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                     | Nut<br>ung<br>bed<br>gur | in- |                       |     |     |  |  |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                               | w/w                      | w/d | 1,                    | ,2  | 1,2 |  |  |  |  |
| 5 / 4 19/111111                                                                                       | d/d                      | d   | 1,                    | ,5  | 1,5 |  |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                                               | w/w                      | w/d | 1,                    | 5   | 1,5 |  |  |  |  |
| 0 / 0 N/IIIII                                                                                         | d/d                      | d   | 2,                    | ,0  | 2,0 |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                |            |
|--------------------------------------------------------------------------------------------------|------------|
| Leistung                                                                                         | Anhang C42 |
| Hochlochziegel HLz, T7 PF, Perlite gefüllt; Charakteristischer Widerstand unter Zugbeanspruchung |            |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}(72/120^{\circ}C) = 0.83 \cdot N_{Rk}(50/80^{\circ}C)$ .

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .

**Ankerstange** 

8 / 6 N/mm<sup>2</sup>



## Hochlochziegel HLz, T7 PF, Perlite gefüllt, EN 771-1:2011+A1:2015

**Tabelle C43.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6 | М8            | М6  | М8  | -         |     | M8 M10 | M8  | M10 | -   |     | M12 M1 | 6 M12 | M16 | M12 M16 |
|-------------------------------|----|---------------|-----|-----|-----------|-----|--------|-----|-----|-----|-----|--------|-------|-----|---------|
| Innengewindeanker FIS E       |    |               |     |     | M6<br>11x |     |        | ,   | •   | M10 |     | -      |       |     | -       |
| Injektions-Ankerhülse FIS H K | 12 | <b>&lt;50</b> | 12> | (85 |           | 16x | 85     | 16x | 130 |     | 20x | 85     | 20x   | 130 | 20x200  |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | N]; Tempe                        | eraturbe | ereich 50/80°C und 72/120°C |     |
|-----------------------------------------------------------------------------------|----------------------------------|----------|-----------------------------|-----|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |          |                             |     |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   | 0,9      | 1,5                         | 1,2 |
| 8 / 6 N/mm²                                                                       | w/w w/d<br>d/d                   | 1,2      | 2,0                         | 1,5 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C43.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

M10

| Injektions-Ankerhülse FIS                                                         | H K                              | 18x13              | 30/200            | 22x130/200 |
|-----------------------------------------------------------------------------------|----------------------------------|--------------------|-------------------|------------|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | [kN]; Temp                       | eraturbereich 50/8 | 30°C und 72/120°C |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                    |                   |            |
| 5 / 4 N/mm²                                                                       | w/w w/d                          | 1                  | ,5                | 1,2        |

2,0

M12

M16

1,5

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

w/w|w/d

d/d

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                          |            |
|------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, T7 PF, Perlite gefüllt; Charakteristischer Widerstand unter Querbeanspruchung | Anhang C43 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt, EN 771-1:2011+A1:2015 Hersteller z.B. Wienerberger Breite B Höhe H Länge L Nennmaße [mm] 248 425 248 [kg/dm<sup>3</sup>] 8,0 Rohdichte p Mittlere Druckfestigkeit / 5 / 4 oder 8 / 6 oder 10 / 8 [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1)) Norm oder Anhang EN 771-1:2011+A1:2015 15<u>,</u>2 Steinabmessungen siehe auch Anhang B16 88 100 12,3 Tabelle C44.1: Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) M6 M8 M6 **M8** M8 M10 M8 M10 M12|M16|M12|M16|M12|M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 16x85 Injektions-Ankerhülse FIS H K | 12x50 12x85 16x130 20x85 20x130 20x200 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-3 5 3 5 [[Nm] max T<sub>inst</sub> drehmoment Allgemeine Installationsparameter Randabstand $c_{min} = c_{cr}$ 60 80 Smin II scr III[mm] 250 Achsabstand 80 Smin $\perp$ 250 $s_{cr} \perp$ **Bohrverfahren** Drehbohren mit Hartmetallbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C44.2: Gruppenfaktoren M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 M12 M16 **Ankerstange** M6 | M8 M6 | M8 M10 M12 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 | 20x200 1,3 $\alpha_{g,N}$ (s<sub>min</sub> II) 1,2 Gruppen- $\alpha_{g,V}$ (s<sub>min</sub> II) [-] faktor 0,6 $\alpha_{g,N}$ ( $s_{min} \perp$ ) 1,2 $\alpha_{g,V}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C44 Leistuna

Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt; Abmessungen, Installationsparameter, Gruppenfaktoren



## Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

### Tabelle C45.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                    |                                    |                       | M10                   | M12 | M16 |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------|-----------------------|-----------------------|-----|-----|--|--|--|--|--|--|
| Injektions-Anl                                 | kerhülse Fl                        | SHK                   | 18x130/200 22x130/200 |     |     |  |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                    |                       |                       |     |     |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>              | [Nm]                  |                       | ,   | 5   |  |  |  |  |  |  |
| Allgemeine In                                  | stallationsp                       | aram                  | eter                  |     |     |  |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub> |                       |                       | 6   | 0   |  |  |  |  |  |  |
|                                                | s <sub>min</sub> II                |                       |                       | 8   | 0   |  |  |  |  |  |  |
| Achs-                                          | s <sub>cr</sub> II                 | [mm]                  |                       | 25  | 50  |  |  |  |  |  |  |
| abstand                                        | s <sub>min</sub> ⊥                 |                       | 80                    |     |     |  |  |  |  |  |  |
|                                                | <b>s</b> cr ⊥                      | s <sub>cr</sub> ⊥ 250 |                       |     |     |  |  |  |  |  |  |
| Bohrverfahrer                                  | า                                  |                       |                       |     |     |  |  |  |  |  |  |

Drehbohren mit Hartmetallbohrer

#### Tabelle C45.2: Gruppenfaktoren

| Ankerstang   | e                                      | M10 M12 M16 |            |  |  |  |  |  |  |  |
|--------------|----------------------------------------|-------------|------------|--|--|--|--|--|--|--|
| Injektions-A | Ankerhülse FIS H K                     | 18x13       | 22x130/200 |  |  |  |  |  |  |  |
|              | α <sub>g,N</sub> (s <sub>min</sub> II) |             | 1,3        |  |  |  |  |  |  |  |
| Gruppen-     | $\alpha_{g,V}\left(s_{min}\;II\right)$ |             | 1,2        |  |  |  |  |  |  |  |
| faktoren     | $\alpha_{g,N}$ (Smin $\perp$ ) [-]     |             | 0,6        |  |  |  |  |  |  |  |
|              | $\alpha_{g,V}$ ( $s_{min} \perp$ )     | 1,2         |            |  |  |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk **Anhang C45** Leistung Hochlochziegel HLz, T39 MW, Mineralwolle gefüllt;

Abmessungen, Installationsparameter, Gruppenfaktoren

10 / 8 N/mm<sup>2</sup>



### Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C46.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| `                                                                                 |             |                           | ,    |            |      |     |      |       |            |     |    |       |        |     |            |     |     |     |     |     |
|-----------------------------------------------------------------------------------|-------------|---------------------------|------|------------|------|-----|------|-------|------------|-----|----|-------|--------|-----|------------|-----|-----|-----|-----|-----|
| Ankerstange                                                                       |             |                           | M6   | M8         | M6   | M8  |      | •     | М8         | M10 | M  | 8 M10 |        | -   | M12        | M16 | M12 | M16 | M12 | M16 |
| Innengewindeanker FIS E                                                           | anker FIS E |                           |      | -          |      | -   |      | M6 M8 |            | -   |    | -     | M10 M1 |     | _          |     | -   |     |     | -   |
| Injektions-Ankerhülse FIS H                                                       | K           |                           | 12   | <b>(50</b> | 12   | x85 |      | 16>   | <b>(85</b> |     | 16 | 6x130 |        | 20  | <b>(85</b> |     | 20x | 130 | 20x | 200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,p,c}$                          | Rk,b,c      | [kN]                      | ; Te | mpe        | rati | urb | erei | ch 50 | 0/80       | )°C | 2) |       |        |     |            |     |     |     |     |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | un          | itz-<br>gs-<br>din-<br>ng |      |            |      |     |      |       |            |     |    |       |        |     |            |     |     |     |     |     |
| 5 / 4 N/mm²                                                                       | w/w         | w/d                       |      | 1,         | ,5   |     |      | 2,    | ,0         |     |    | 3,0   |        | 2   | ,5         |     |     | 4,  | 0   |     |
| 57414/11111                                                                       | d.          | /d                        |      | 2          | ,0   |     |      | 2,    | ,5         |     |    | 3,0   |        | 2   | ,5         |     |     | 4,  | 5   |     |
| 8 / 6 N/mm²                                                                       | w/w         | w/d                       |      | 2          | ,0   |     |      | 2,    | ,5         |     |    | 3,5   |        | 3   | ,0         |     |     | 5,  | 0   |     |
| d/d                                                                               |             |                           |      | 2,0        |      |     |      | 3,0   |            |     |    | 4,0   |        | 3,0 |            |     | 5   |     | 5,5 |     |
| 10 / 8 N/mm²                                                                      | w/w         | w/d                       |      | 2,         | ,5   |     |      | 3,    | ,0         |     |    | 4,0   |        | 3   | ,5         |     |     | 6,  | 0   |     |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

2,5

d/d

Tabelle C46.2: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

3,0

4,5

3.5

6,5

| Ankerstange                                                                                  |          |                            | M10                   | M12                        | M16 |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------|----------------------------|-----------------------|----------------------------|-----|--|--|--|--|
| Injektions-Ankerhülse FIS H                                                                  | K        |                            | 18x130/200 22x130/200 |                            |     |  |  |  |  |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}$ | Rk,b,c   | [kN]                       | ; Temperaturbere      | ich 50/80°C <sup>2))</sup> |     |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>            | un<br>be | ıtz-<br>gs-<br>din-<br>ıng |                       |                            |     |  |  |  |  |
| 5 / 4 N/mm²                                                                                  | w/w      | w/d                        |                       | 3,0                        | 4,0 |  |  |  |  |
| 5 / 4 N/MIII-                                                                                | d        | /d                         |                       | 3,0                        | 4,5 |  |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                                      | w/w      | w/d                        |                       | 3,5                        | 5,0 |  |  |  |  |
| 8 / 6 N/IIIII-                                                                               | d        | /d                         |                       | 4,0                        | 5,5 |  |  |  |  |
| 10 / 8 N/mm²                                                                                 | w/w      | w/d                        |                       | 4,0                        | 6,0 |  |  |  |  |
| IU/6 N/IIIII-                                                                                | d        | /d                         |                       | 4,5                        | 6,5 |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                              |            |
|----------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt; Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C46 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



### Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

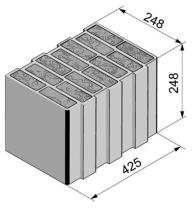
Tabelle C47.1: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                                                                       |                                  | M6   | M8            | M6   | M8   | -     |          | М8  | M10 | M8   | M10  | -                | M12 | M16 | M12 | M16 | M12 M16 |
|-----------------------------------------------------------------------------------|----------------------------------|------|---------------|------|------|-------|----------|-----|-----|------|------|------------------|-----|-----|-----|-----|---------|
| Innengewindeanker FIS E                                                           | nnengewindeanker FIS E           |      | -             |      | -    |       | M8<br>85 |     | -   |      | -    | M10 M12<br>15x85 |     | -   |     | -   | -       |
| Injektions-Ankerhülse FIS H                                                       | K                                | 12:  | <b>&lt;50</b> | 12   | x85  |       | 16x      | 85  |     | 16   | x130 | 20:              | x85 |     | 20x | 130 | 20x200  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | N]; Temp                         | erat | urbe          | erei | ch 5 | 0/80° | °C ι     | ınc | 72  | /120 | )°C  |                  |     |     |     |     |         |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |      |               |      |      |       |          |     |     |      |      |                  |     |     |     |     |         |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   | 2,   | 0             |      |      | 2,0   | )        |     |     | 2    | 2,5  |                  | 2   | 2,0 |     |     | 1,5     |
| 8 / 6 N/mm²                                                                       | w/w w/d<br>d/d                   | 2,   | 5             |      |      | 2,5   | 5        |     |     | 3    | 3,0  |                  | 2   | 2,5 |     |     | 2,0     |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 2,   | 5             |      |      | 3,0   | )        |     |     |      | 1,0  |                  | 3   | 3,0 |     |     | 2,5     |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C47.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10                | M12                               | M16        |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|--------------------|-----------------------------------|------------|--|--|--|--|--|--|
| Injektions-Ankerhülse FIS H                                                       | K                                | 18x13              | 0/200                             | 22x130/200 |  |  |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | N]; Tempe                        | eraturbereich 50/8 | raturbereich 50/80°C und 72/120°C |            |  |  |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                    |                                   |            |  |  |  |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   | 2,                 | 5                                 | 2,0        |  |  |  |  |  |  |
| 8 / 6 N/mm²                                                                       | w/w w/d<br>d/d                   | 3,                 | 0                                 | 2,5        |  |  |  |  |  |  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 4,                 | 0                                 | 3,0        |  |  |  |  |  |  |


<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                               |            |
|-----------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, T9 MW, Mineralwolle gefüllt; Charakteristischer Widerstand unter Querbeanspruchung | Anhang C47 |



# Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015



| Hersteller                                                       | z.B. Wienerberger     |                                   |          |        |  |  |
|------------------------------------------------------------------|-----------------------|-----------------------------------|----------|--------|--|--|
| Nennmaße                                                         | [mm]                  | Länge L                           | Breite B | Höhe H |  |  |
| Neminaise                                                        | נווווון               | 248                               | 425      | 248    |  |  |
| Rohdichte ρ                                                      | [kg/dm³]              | 0,8                               |          |        |  |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ]  | 5 / 4 oder 7,5 / 6<br>oder 10 / 8 |          |        |  |  |
| Norm oder Anhang                                                 | EN 771-1:2011+A1:2015 |                                   |          |        |  |  |

21 21 10 18 10 1

Steinabmessungen siehe auch Anhang B16

Tabelle C48.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | М6 | M8         | М6 | M8          |           | •         | M8          | M10 | М8  | M10 | -              | M12 | M16 | M12 | M16 | M12 | M16 |
|-------------------------------|----|------------|----|-------------|-----------|-----------|-------------|-----|-----|-----|----------------|-----|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E       |    | •          |    | •           | M6<br>112 | M8<br>(85 |             | -   |     | -   | <br>M12<br>x85 |     | -   | -   | •   | •   |     |
| Injektions-Ankerhülse FIS H K | 12 | <b>x50</b> | 12 | <b>k</b> 85 |           | 16)       | <b>x</b> 85 |     | 16x | 130 | 20:            | x85 |     | 20x | 130 | 20x | 200 |

## Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

| Max. Montage-<br>drehmoment | max T <sub>inst</sub> [Nm] | 2 | 5 | 2 | 5 | ; |
|-----------------------------|----------------------------|---|---|---|---|---|
|-----------------------------|----------------------------|---|---|---|---|---|

#### Allgemeine Installationsparameter

| •                |                         |      |     |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |    |
|------------------|-------------------------|------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|----|--|--|----|
| Randabsta        | $nd 	 c_{min} = c_{cr}$ |      | 60  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |    |
| _                | s <sub>min</sub> II     |      | 80  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |    |
| Achs-            | s <sub>cr</sub> II      | [mm] | 250 |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |    |
| Achs-<br>abstand | S <sub>min</sub> ⊥      |      |     |  |  |  |  |  |  |  |  |  |  |  |  |  | [] |  |  | 80 |
|                  | <b>S</b> cr ⊥           |      | 250 |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |    |
|                  |                         |      |     |  |  |  |  |  |  |  |  |  |  |  |  |  |    |  |  |    |

#### **Bohrverfahren**

Drehbohren mit Hartmetallbohrer

#### Tabelle C48.2: Gruppenfaktoren

| Ankerstang   | e                                          | M6   M8 | M6  | M8  |    | -         | M8   M | 10 | M8  | M10 | -                | M12 M16 | M12 M16 | M12 M16 |
|--------------|--------------------------------------------|---------|-----|-----|----|-----------|--------|----|-----|-----|------------------|---------|---------|---------|
| Innengewin   | deanker FIS E                              | -       |     | -   | M6 | M8<br>x85 | _      |    |     | •   | M10 M12<br>15x85 | _       | -       | -       |
| Injektions-A | Ankerhülse FIS H K                         | 12x50   | 12  | x85 |    | 16        | x85    |    | 16x | 130 | 20:              | x85     | 20x130  | 20x200  |
|              | α <sub>g,N</sub> (s <sub>min</sub> II)     |         |     |     |    |           |        |    | 1,  | ,9  |                  |         |         |         |
| Gruppen-     | $\alpha_{g,V}$ (s <sub>min</sub> II)       |         | 0,9 |     |    |           |        |    |     |     |                  |         |         |         |
| faktoren     | $\alpha_{g,N}$ (Smin $\perp$ ) [-]         |         | 1,0 |     |    |           |        |    |     |     |                  |         |         |         |
|              | $lpha_{\sf g,V}$ (S $_{\sf min}$ $oxdot$ ) | 0,7     |     |     |    |           |        |    |     |     |                  |         |         |         |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                             |            |
|---------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt; Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C48 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



## Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

### Tabelle C49.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                    |                                    |      | M10   | M12   | M16        |  |  |  |  |  |
|------------------------------------------------|------------------------------------|------|-------|-------|------------|--|--|--|--|--|
| Injektions-Ank                                 | erhülse Fl                         | SHK  | 18x13 | 0/200 | 22x130/200 |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                    |      |       |       |            |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>              | [Nm] | 5     |       |            |  |  |  |  |  |
| Allgemeine Installationsparameter              |                                    |      |       |       |            |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub> |      |       | · ·   | 60         |  |  |  |  |  |
|                                                | s <sub>min</sub> II                |      |       |       | 80         |  |  |  |  |  |
| Achs-                                          | s <sub>cr</sub> II                 | [mm] |       | 2     | 250        |  |  |  |  |  |
| abstand                                        | $s_{min} oldsymbol{\perp}$         |      | 80    |       |            |  |  |  |  |  |
|                                                | s <sub>cr</sub> ⊥                  |      | 250   |       |            |  |  |  |  |  |
| Bohrverfahren                                  |                                    |      |       |       |            |  |  |  |  |  |

Drehbohren mit Hartmetallbohrer

#### Tabelle C49.2: Gruppenfaktoren

| Ankerstang   | е                                              | M10   | M12    | M16        |  |  |  |  |  |
|--------------|------------------------------------------------|-------|--------|------------|--|--|--|--|--|
| Injektions-A | Ankerhülse FIS H K                             | 18x13 | 30/200 | 22x130/200 |  |  |  |  |  |
|              | $\alpha_{g,N}$ (s <sub>min</sub> II)           |       | 1,9    | )          |  |  |  |  |  |
| Gruppen-     | $\alpha_{g,V}$ (S <sub>min</sub> II)           |       | 0,9    |            |  |  |  |  |  |
| faktoren     | $\alpha_{g,N}$ (S <sub>min</sub> $\perp$ ) [-] | 1,0   |        |            |  |  |  |  |  |
|              | $\alpha_{g,V}$ ( $\mathbf{s}_{min} \perp$ )    |       | •      |            |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt; Abmessungen, Installationsparameter,
Gruppenfaktoren

Anhang C49

10 / 8 N/mm<sup>2</sup>



#### Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C50.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                                                                       |                         |                            | М6   | M8  | М6   | M8   |       |      | M8   | M10 | N  | 18 M10 |     | •   | M12        | M16 | M12 | M16 | M12 | 2 M16 |
|-----------------------------------------------------------------------------------|-------------------------|----------------------------|------|-----|------|------|-------|------|------|-----|----|--------|-----|-----|------------|-----|-----|-----|-----|-------|
| Immon moved and combon FIS F                                                      |                         |                            |      |     |      |      | M6    | M8   |      |     |    |        | M10 | M12 |            |     |     |     |     |       |
| Illiengewindeanker FIS E                                                          | Innengewindeanker FIS E |                            |      | -   |      | _ [  |       | (85  |      |     |    | -      | 15> | (85 | _          |     | -   |     |     |       |
| Injektions-Ankerhülse FIS H                                                       | K                       |                            | 12   | (50 | 12   | x85  |       | 16x  | 85   |     | 1  | 6x130  |     | 20) | <b>(85</b> |     | 20x | 130 | 203 | x200  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N$                                   | Rk,b,c                  | [kN]                       | ; Te | mpe | ratı | urbe | ereic | h 50 | 0/80 | )°C | 2) |        |     |     |            |     |     |     |     |       |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | un                      | ıtz-<br>gs-<br>din-<br>ıng |      |     |      |      |       |      |      |     |    |        |     |     |            |     |     |     |     |       |
| 5 / 4 N/mm <sup>2</sup>                                                           | w/w                     | w/d                        | 0,6  | 60  | 0,   | 75   |       | 1,5  | 50   |     |    | 2,00   |     | 1,  | 20         |     | 2,0 | 00  | 2   | ,00   |
| 5 / 4 N/IIIII                                                                     | d                       | /d                         | 0,6  | 30  | 0,9  | 90   |       | 1,5  | 50   |     |    | 2,00   |     | 1,  | 50         |     | 2,0 | 00  | 2   | ,50   |
| 7,5 / 6 N/mm²                                                                     |                         | w/d                        | 0,7  | 75  | 0,9  | 90   |       | 1,5  | 50   |     |    | 2,00   |     | 1,  | 50         |     | 2,  | 50  | 2   | ,50   |
|                                                                                   |                         | /d                         | 0,9  | 90  | 0,9  | 90   |       | 2,0  | 00   |     |    | 2,50   |     | 2,  | 00         |     | 2,  | 50  | 3   | ,00   |

<sup>1,20</sup> 1) Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

1,20

2,00

2,00

2,50

3,00

2,00

2,00

2,50

3,00

3,00

3,50

w/w w/d

d/d

0,90

0,90

Tabelle C50.2: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                  |          |                            | M10              | M12                       | M16 |
|----------------------------------------------------------------------------------------------|----------|----------------------------|------------------|---------------------------|-----|
| Injektions-Ankerhülse FIS H                                                                  |          | 18x13                      | 0/200            | 22x130/200                |     |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}$ | Rk,b,c   | [kN]                       | ; Temperaturbere | ich 50/80°C <sup>2)</sup> |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>            | un<br>be | itz-<br>gs-<br>din-<br>ing |                  |                           |     |
| 5 / 4 N/mm²                                                                                  | w/w      | w/d                        | 2                | ,0                        | 2,0 |
| 5 / 4 N/mm²                                                                                  | d        | /d                         | 2                | ,0                        | 2,0 |
| 7.5 / C. N/2                                                                                 | w/w      | w/d                        | 2                | ,0                        | 2,5 |
| 7,5 / 6 N/mm²                                                                                | d        | /d                         | 2                | ,5                        | 2,5 |
| 10 / 8 N/mm²                                                                                 | w/w      | w/d                        | 2                | ,5                        | 2,5 |
| 10 / 6 N/MM-                                                                                 | d        | /d                         | 3                | ,0                        | 3,0 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                             |            |
|---------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt; Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C50 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



### Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C51.1: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| 3.7                                                                               |                                  |      |      |      |    |          |            |          |     |     |     |       |   |            |            |     |     |     |     |       |
|-----------------------------------------------------------------------------------|----------------------------------|------|------|------|----|----------|------------|----------|-----|-----|-----|-------|---|------------|------------|-----|-----|-----|-----|-------|
| Ankerstange                                                                       |                                  | M6   | M8   | M6   | М  | 3        | •          |          | M8  | M10 | M   | 8 M10 |   | -          | M12        | M16 | M12 | M16 | M12 | 2 M16 |
| Innengewindeanker FIS E                                                           |                                  |      | -    |      | -  | $\vdash$ | 6 N<br>1x8 | $\dashv$ | ,   | •   |     | -     |   | M12<br>x85 |            | -   |     | -   |     | -     |
| Injektions-Ankerhülse FIS H                                                       | K                                | 12   | x50  | 12   | x8 | 5        | 1          | 6x       | 85  |     | 16  | 5x130 |   | 20>        | <b>(85</b> |     | 20× | 130 | 202 | x200  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | N]; Temp                         | erat | urbo | erei | ch | 50/8     | 30°C       | Cι       | ınd | 72/ | /12 | 0°C   |   |            |            |     |     |     |     |       |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |      |      |      |    |          |            |          |     |     |     |       |   |            |            |     |     |     |     |       |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   | 1    | ,2   |      |    |          |            |          |     |     |     | 1,5   |   |            |            |     |     |     | 1   | ,5    |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   | 1    | ,5   |      |    |          |            |          |     |     |     | 2,0   | · | ·          |            |     |     |     | 1   | ,5    |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 1    | ,5   |      |    |          |            |          |     |     |     | 2,5   | · |            |            |     |     |     | 2   | 2,0   |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C51.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10          | M12                 | M16        |
|-----------------------------------------------------------------------------------|----------------------------------|--------------|---------------------|------------|
| Injektions-Ankerhülse FIS H                                                       | K                                | 18           | x130/200            | 22x130/200 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}  \text{[k]}$                    | N]; Tempe                        | eraturbereic | h 50/80°C und 72/12 | 20°C       |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |              |                     |            |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   |              |                     | 1,5        |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   |              |                     | 2,0        |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   |              |                     | 2,5        |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                              |            |
|----------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt; Charakteristischer Widerstand unter Querbeanspruchung | Anhang C51 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Herrsteller z.B. Bouyer Leroux Breite B Länge L Höhe H Nennmaße [mm] 500 200 315 [kg/dm<sup>3</sup>] ≥ 0,6 Rohdichte p Mittlere Druckfestigkeit / [N/mm<sup>2</sup>] 5 / 4 oder 7,5 / 6 oder 10 / 8 Mindestdruckfestigkeit Einzelstein 1) Norm oder Anhang EN 771-1:2011+A1:2015 Steinabmessungen siehe auch Anhang B16 30 30 25 Tabelle C52.1: Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) **M8** M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M6 M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 20x85 20x130 16x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-2 max T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand C<sub>min</sub> = C<sub>cr</sub> 120 120 s<sub>min</sub> II Achs-[mm] scr II 500 abstand 315 $s_{min} \perp = s_{cr} \perp$ **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer <sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C52.2: Gruppenfaktoren M6 **M8 M6 M8** M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 1,3 α<sub>g,N</sub> (s<sub>min</sub> II) 1,7 $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-[-] faktoren $\alpha_{g,N}$ (s<sub>min</sub> $\perp$ ) 2,0 $\alpha_{g,V}$ (Smin $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C52 Leistuna Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



### Tabelle C53.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                     | •                              |       | M10               | M12        | M16 |
|---------------------------------|--------------------------------|-------|-------------------|------------|-----|
| Injektions-Ankerhülse FIS H K   |                                |       | 18x13             | 22x130/200 |     |
| Ankerstange                     | n mit Injekti                  | ons-A | nkerhülse FIS H K |            |     |
| Max. Montago<br>drehmoment      | e- max T <sub>inst</sub>       | [Nm]  |                   | 2          | 2   |
| Allgemeine I                    | nstallations                   | aram  | eter              |            |     |
| Randabstand                     | C <sub>min</sub>               |       |                   | 12         | 20  |
|                                 | s <sub>min</sub> II            | [     |                   | 12         | 20  |
| Achs- <sup>-</sup><br>abstand - | s <sub>cr</sub> II             | [mm]  |                   | 50         | 00  |
| abstand -                       | $s_{min} \perp = s_{cr} \perp$ |       |                   | 3          | 15  |

#### **Bohrverfahren**

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C53.2: Gruppenfaktoren

| Ankerstan   | ge                                                                      | M10   | M12        | M16 |
|-------------|-------------------------------------------------------------------------|-------|------------|-----|
| Injektions- | Ankerhülse FIS H K                                                      | 18x13 | 22x130/200 |     |
|             | α <sub>g,N</sub> (s <sub>min</sub> II)                                  |       | 1          | 3   |
| Gruppen-    | $\alpha_{g,V}$ (s <sub>min</sub> II)                                    |       | 1          | 7   |
| faktoren    | $\frac{\alpha_{g,N} (s_{min} \perp)}{\alpha_{g,N} (s_{min} \perp)} [-]$ |       | ,          |     |
|             | $lpha_{	extsf{g,V}}$ (s <sub>min</sub> $ot$ )                           |       |            |     |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C53



**Tabelle C54.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6 | M8  | М6  | M8  | -             | M8  | M10 | M8  | M10  | , | -          | M12 | M16 | M12 | M16 |
|-------------------------------|----|-----|-----|-----|---------------|-----|-----|-----|------|---|------------|-----|-----|-----|-----|
| Innengewindeanker FIS E       |    | -   |     | •   | <br>M8<br>(85 |     | -   |     | -    |   | M12<br>x85 | I   | -   |     | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12) | (85 | 16            | x85 |     | 16) | (130 |   | 20         | x85 |     | 20x | 130 |

| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} =$ | N <sub>Rk,b,c</sub> [kN          | ]; Temp | eraturbereich 50/80°C 2) |      |      |      |
|-----------------------------------------------------------------------------------|----------------------------------|---------|--------------------------|------|------|------|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |         |                          |      |      |      |
| 5 / 4 N/mm <sup>2</sup>                                                           | w/w w/d                          | 0,50    | 1,50                     | 0,75 | 1,50 | 1,50 |
| 5 / 4 N/IIIII                                                                     | d/d                              | 0,60    | 1,50                     | 0,90 | 1,50 | 2,00 |
| 7,5 / 6 N/mm <sup>2</sup>                                                         | w/w w/d                          | 0,75    | 2,00                     | 1,20 | 2,00 | 2,50 |
| 7,576 N/IIIII                                                                     | d/d                              | 0,90    | 2,50                     | 1,20 | 2,50 | 2,50 |
| 10 / 8 N/mm²                                                                      | w/w w/d                          | 0,90    | 3,00                     | 1,50 | 3,00 | 3,50 |
| 10 / 8 N/IIIII                                                                    | d/d                              | 1,20    | 3,00                     | 2,00 | 3,00 | 3,50 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C54.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10               | M12                        | M16        |
|-----------------------------------------------------------------------------------|----------------------------------|-------------------|----------------------------|------------|
| Injektions-Ankerhülse FIS                                                         | HK                               | 18x13             | 30/200                     | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                                       | = N <sub>Rk,b,c</sub> [kN        | l]; Temperaturber | eich 50/80°C <sup>2)</sup> |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                   |                            |            |
| 5 / 4 N/mm²                                                                       | w/w w/d                          | 0,                | 75                         | 1,50       |
| 5 / 4 N/IIIII <sup>-</sup>                                                        | d/d                              | 0,                | 90                         | 2,00       |
| 7,5 / 6 N/mm <sup>2</sup>                                                         | w/w w/d                          | 1,                | 20                         | 2,50       |
| 7,57 6 N/IIIIII                                                                   | d/d                              | 1,                | 20                         | 2,50       |
| 10 / 8 N/mm²                                                                      | w/w w/d                          | 1,                | 50                         | 3,50       |
| IU / O N/IIIII-                                                                   | d/d                              | 2,                | 00                         | 3,50       |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C54 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



**Tabelle C55.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| _                                                                                 | ,                               |         |             |      |      |      |           |            |        |     |             |         |     |     |     |     |     |
|-----------------------------------------------------------------------------------|---------------------------------|---------|-------------|------|------|------|-----------|------------|--------|-----|-------------|---------|-----|-----|-----|-----|-----|
| Ankerstange                                                                       |                                 | M6      | M8          | M6   | M8   |      | -         | M8         | M10    | M8  | M10         |         | -   | M12 | M16 | M12 | M16 |
| Innengewindeanker FIS E                                                           | engewindeanker FIS E            |         | -           |      | -    |      | M8<br>x85 | <b>⊣</b> - |        | -   |             | M10 M12 |     |     | -   |     | -   |
| Injektions-Ankerhülse FIS H K                                                     |                                 |         | 12x50 12x85 |      |      |      | 16x85     |            |        | 162 | <b>c130</b> |         | 20  | x85 |     | 20x | 130 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | [kN]; Te                        | mpera   | turb        | erei | ch 5 | 0/80 | °C u      | ınd 7      | 72/120 | )°C |             |         |     |     |     |     |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin<br>gung | -<br> - |             |      |      |      |           |            |        |     |             |         |     |     |     |     |     |
| 5 / 4 N/mm²                                                                       | w/w w                           | /d      |             |      | 1    | ,5   |           |            |        | C   | ,9          |         | 1,5 |     | 2,5 | 0   | ,9  |
| 7,5 / 6 N/mm²                                                                     | w/w w                           | /d      |             |      | 2    | ,5   |           |            |        | 1   | ,5          |         | 2,5 |     | 3,5 | 1,  | ,5  |
| 10 / 8 N/mm²                                                                      | w/w w                           | /d      |             |      | 3    | ,5   |           |            |        | 2   | 2,0         |         | 3,5 |     | 4,5 | 2   | ,0  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C55.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10           | M12                 | M16  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|---------------|---------------------|------|--|--|--|--|--|--|
| Injektions-Ankerhülse FIS H                                                       | ΙK                               | 18            | 18x130/200 22x130   |      |  |  |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}  [\![ k$                        | N]; Temp                         | peraturbereic | h 50/80°C und 72/12 | 20°C |  |  |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |               |                     |      |  |  |  |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   |               |                     | 0,9  |  |  |  |  |  |  |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   |               |                     | 1,5  |  |  |  |  |  |  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   |               |                     | 2,0  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C55 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Wienerberger Länge L Breite B Höhe H Nennmaße [mm] 500 200 300 [kg/dm<sup>3</sup>] ≥ 0,7 Rohdichte p Mittlere Druckfestigkeit / 5 / 4 oder 7,5 / 6 oder [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) 10 / 8 oder 12,5 / 10 Norm oder Anhang EN 771-1:2011+A1:2015 Steinabmessungen siehe auch Anhang B17 **Tabelle C56.1:** Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) **M8** M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M6 | M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 20x85 20x130 16x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-2 max T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand C<sub>min</sub> = C<sub>cr</sub> 50 80 50 80 100 $s_{\text{min}} \; II$ [mm] Achs-500 scr II abstand 300 $s_{min} \perp = s_{cr} \perp$ **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer <sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C56.2: Gruppenfaktoren M6 **M8 M6 M8** M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 1.4 α<sub>g,N</sub> (s<sub>min</sub> II) $\alpha_{\text{g,V}}$ (s<sub>min</sub> II) Gruppen-[-] faktoren 2 $\alpha_{g,N}$ (s<sub>min</sub> $\perp$ ) $\alpha_{g,V}$ (Smin $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C56 Leistuna Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



#### Tabelle C57.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                       |      | M10               | M12                   | M16 |  |  |  |  |  |
|---------------------------------------------------|------|-------------------|-----------------------|-----|--|--|--|--|--|
| Injektions-Ankerhülse FIS                         | знк  |                   | 18x130/200 22x130/200 |     |  |  |  |  |  |
| Ankerstangen mit Injektio                         | ns-A | nkerhülse FIS H K |                       |     |  |  |  |  |  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> | [Nm] |                   | 2                     | 2   |  |  |  |  |  |
| Allgemeine Installationsp                         | aram | eter              |                       |     |  |  |  |  |  |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>    |      |                   | 8                     | 0   |  |  |  |  |  |
| s <sub>min</sub> II                               | ·1   |                   | 1(                    | 00  |  |  |  |  |  |
| Achs-<br>abstand s <sub>cr</sub> II               | [mm] | 500               |                       |     |  |  |  |  |  |
| $s_{min} \perp = s_{cr} \perp$                    |      |                   |                       |     |  |  |  |  |  |
| Dalam samfalaman                                  |      |                   |                       |     |  |  |  |  |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C57.2: Gruppenfaktoren

| Ankerstan   | ge                                         | M10   | M12        | M16 |
|-------------|--------------------------------------------|-------|------------|-----|
| Injektions- | Ankerhülse FIS H K                         | 18x13 | 22x130/200 |     |
|             | α <sub>g,N</sub> (s <sub>min</sub> II)     |       | 1,         | 4   |
| Gruppen-    | α <sub>g,V</sub> (s <sub>min</sub> II) [-] |       |            |     |
| faktoren    | $\alpha_{g,N}$ (S <sub>min</sub> $\perp$ ) |       | 2          | 2   |
|             | α <sub>g,</sub> ∨ (s <sub>min</sub> ⊥)     |       |            |     |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C57



**Tabelle C58.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 | M8  | М6 | M8          |           | •         | M8  | M10 | M8  | M10  |   | -          | M12         | M16 | M12 | M16 |
|-------------------------------|----|-----|----|-------------|-----------|-----------|-----|-----|-----|------|---|------------|-------------|-----|-----|-----|
| Innengewindeanker FIS E       |    | -   |    | -           | M6<br>112 | M8<br>(85 |     | -   |     | -    | _ | M12<br>x85 |             | -   | -   | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | <b>k</b> 85 |           | 16        | x85 |     | 16> | (130 |   | 20         | <b>k</b> 85 |     | 20x | 130 |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                 |     |      |      |      |      |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-----------------|-----|------|------|------|------|------|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                      | Nutzu<br>beding |     |      |      |      |      |      |  |  |  |  |
| 5 / 4 N/mm²                                                                                            | w/w             | w/d | 0,50 | 0,60 | 1,20 | 0,75 | 1,50 |  |  |  |  |
| 5 / 4 N/IIIII                                                                                          | d/d             | k   | 0,60 | 0,75 | 1,20 | 0,90 | 1,50 |  |  |  |  |
| 7,5 / 6 N/mm²                                                                                          | w/w             | w/d | 0.75 | 0,90 | 1,50 | 1,20 | 2,00 |  |  |  |  |
| 7,576 N/IIIIII                                                                                         | d/d             | k   | 0,90 | 1,20 | 2,00 | 1,20 | 2,50 |  |  |  |  |
| 10 / 8 N/mm <sup>2</sup>                                                                               | w/w             | w/d | 0.90 | 1,20 | 2,00 | 1,50 | 2,50 |  |  |  |  |
| IU / O IN/IIIII                                                                                        | d/d             | k   | 1,20 | 1,50 | 2,50 | 1,50 | 3,00 |  |  |  |  |
| 12,5 / 10 N/mm²                                                                                        | w/w w/d         |     | 1,20 | 1,50 | 2,50 | 2,00 | 3,50 |  |  |  |  |
| 12,5 / 10 10/111111                                                                                    | d/d             | k   | 1,50 | 2,00 | 3,00 | 2,00 | 4,00 |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C58.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                     |        | M10           | M12                            | M16        |
|-----------------------------------------------------------------------------------|---------------------|--------|---------------|--------------------------------|------------|
| Injektions-Ankerhülse FI                                                          | SHK                 |        | 18:           | k130/200                       | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                                       | = N <sub>Rk,b</sub> | ,c [kl | N]; Temperatu | rbereich 50/80°C <sup>2)</sup> |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzu<br>beding     |        |               |                                |            |
| 5 / 4 N/mm²                                                                       | w/w                 | w/d    |               | 1,2                            | 1,5        |
| 574 N/IIIII                                                                       | d/d                 | k      |               | 1,2                            | 1,5        |
| 7,5 / 6 N/mm²                                                                     | w/w                 | w/d    |               | 1,5                            | 2,0        |
| 7,576 14/111111                                                                   | d/d                 | k      |               | 2,0                            | 2,5        |
| 10 / 8 N/mm²                                                                      | w/w                 | w/d    |               | 2,0                            | 2.5        |
| 10 / 8 N/IIIII                                                                    | d/d                 | k      |               | 2,5                            | 3,0        |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | w/w                 | w/d    |               | 2,5                            | 3,5        |
| 12,5 / 10 N/MM-                                                                   | d/d                 |        |               | 3,0                            | 4,0        |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C58 |

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



**Tabelle C59.1:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 | M8  | М6  | M8  | <b>.</b>  |           | M8   | M10 | M8  | M10            |          | -          | M12 | M16 | M12 | M16 |
|-------------------------------|----|-----|-----|-----|-----------|-----------|------|-----|-----|----------------|----------|------------|-----|-----|-----|-----|
| Innengewindeanker FIS E       |    | -   |     | •   | M6<br>11) | M8<br>(85 |      | -   |     | -              | <u> </u> | M12<br>x85 | l   | -   |     | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12) | (85 |           | 16        | 3x85 |     | 16) | <b>&lt;130</b> |          | 20         | x85 |     | 20x | 130 |

| •                                                                                 |                        |       |             |      |               |     |     |     |
|-----------------------------------------------------------------------------------|------------------------|-------|-------------|------|---------------|-----|-----|-----|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,I}$                                    | ⊥ [kN]; Tem            | perat | urbereich 5 | 0/80 | °C und 72/120 | 0°C |     |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzungs-<br>bedingung |       |             |      |               |     |     |     |
| 5 / 4 N/mm²                                                                       | w/w w/d                | 0,9   | 1,2         | 0,9  | 1,2           | 0,6 | 2,0 | 0,6 |
| 7,5 / 6 N/mm²                                                                     | w/w w/d                | 1,2   | 1,5         | 1,2  | 1,5           | 0,9 | 3,0 | 0,9 |
| 10 / 8 N/mm²                                                                      | w/w w/d                | 1,5   | 2,0         | 1,5  | 2,0           | 1,2 | 4,0 | 1,2 |
| 12,5 / 10 N/mm²                                                                   | w/w w/d                | 2,0   | 3,0         | 2,0  | 3,0           | 1,5 | 5,0 | 1,5 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C59.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                |      | M10                | M12   | M16        |  |  |
|-----------------------------------------------------------------------------------|----------------|------|--------------------|-------|------------|--|--|
| Injektions-Ankerhülse FIS                                                         | SHK            |      | 18x13              | 0/200 | 22x130/200 |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | _[kN];         | Temp | peraturbereich 50/ | C     |            |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzu<br>bedin |      |                    |       |            |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                           | w/w            | w/d  |                    | 0     | ,6         |  |  |
| 5 / 4 N/IIIII                                                                     | d/             | d    |                    | 0     | ,0         |  |  |
| 7,5 / 6 N/mm²                                                                     | w/w            | w/d  |                    | 0     | ,9         |  |  |
| 7,576 14/111111                                                                   | d/             | d    |                    | 0     | ,9         |  |  |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w            | w/d  |                    | 1     | 2          |  |  |
| 10 / 6 N/IIIII                                                                    | d/             | d    |                    | ı     | ,2         |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | w/w            | w/d  |                    |       | E          |  |  |
| 12,5 / 10 14/111111                                                               | d/             | 1,5  |                    |       |            |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C59 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Terreal Länge L Breite B Höhe H Nennmaße [mm] 500 200 315 [kg/dm<sup>3</sup>] ≥ 0,7 Rohdichte p Mittlere Druckfestigkeit / 2,5 / 2 oder 5 / 4 oder [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) 7,5 / 6 oder 10 / 8 EN 771-1:2011+A1:2015 Norm oder Anhang Steinabmessung siehe auch Anhang B17 6,7 52,5 Tabelle C60.1: Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) M6 M8 M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 12x85 Injektions-Ankerhülse FIS H K 12x50 16x85 16x130 20x85 20x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montagemax T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand $C_{min} = C_{cr}$ 50 80 50 80 100 $s_{\text{min}} \, II$ 500 Scr III [mm] Achsabstand 100 $s_{min} \perp$ 315 $s_{cr} \perp$ Bohrverfahren Hammerbohren mit Hartmetall-Hammerbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C60.2: Gruppenfaktoren M6 | M8 M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 1,1 $\alpha_{g,N}$ (s<sub>min</sub> II) 1,2 $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-[-] faktoren $\alpha_{\text{g,N}} \; \text{($s_{\text{min}} \perp$)}$ 1,1 1,2 $\alpha_{\text{g,V}}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C60 Leistuna

Z203833.24 8.06.04-178/23

Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



### Tabelle C61.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                    |                                    |      | M10   | M12    | M16        |  |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------|------|-------|--------|------------|--|--|--|--|--|--|--|
| Injektions-Anke                                | erhülse Fl                         | SHK  | 18x13 | 30/200 | 22x130/200 |  |  |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                    |      |       |        |            |  |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>              | [Nm] |       | 2      |            |  |  |  |  |  |  |  |
| Allgemeine Installationsparameter              |                                    |      |       |        |            |  |  |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub> |      |       | 8      | 0          |  |  |  |  |  |  |  |
|                                                | s <sub>min</sub> II                |      |       | 10     | 00         |  |  |  |  |  |  |  |
| ام مام مام مام م                               | s <sub>cr</sub> II                 | [mm] |       | 50     | 00         |  |  |  |  |  |  |  |
| Achsabstand                                    | s <sub>min</sub> ⊥                 |      | 100   |        |            |  |  |  |  |  |  |  |
|                                                | s <sub>cr</sub> ⊥                  |      | 315   |        |            |  |  |  |  |  |  |  |
| Bohrverfahren                                  |                                    |      |       |        |            |  |  |  |  |  |  |  |

## Tabelle C61.2: Gruppenfaktoren

Hammerbohren mit Hartmetall-Hammerbohrer

| Ankerstan            | ge                                             |     | M10   | M10 M12 M16 |    |  |  |  |  |  |
|----------------------|------------------------------------------------|-----|-------|-------------|----|--|--|--|--|--|
| Injektions-          | Ankerhülse FIS                                 | нк  | 18x13 | 22x130/200  |    |  |  |  |  |  |
|                      | $\alpha_{\text{g,N}}$ (s <sub>min</sub> II)    |     |       | 1           | ,1 |  |  |  |  |  |
| Gruppen-<br>faktoren | α <sub>g,V</sub> (s <sub>min</sub> II)         | [-] | 1,2   |             |    |  |  |  |  |  |
|                      | α <sub>g,N</sub> (S <sub>min</sub> ⊥)          |     | 1,1   |             |    |  |  |  |  |  |
|                      | $\alpha_{\sf g,V}$ (S <sub>min</sub> $\perp$ ) |     | 1,2   |             |    |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C61



**Tabelle C62.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 | M8  | М6  | М8          |     |             | M8   | M10 | M8  | M10  | -   | •   | M12         | M16 | M12 | M16 |
|-------------------------------|----|-----|-----|-------------|-----|-------------|------|-----|-----|------|-----|-----|-------------|-----|-----|-----|
| Innengewindeanker FIS E       |    |     | _   | М6          | M8  | _           |      | _   |     | M10  | M12 |     |             |     | _   |     |
| Innerige wind during 110 L    |    |     |     | _           | 11) | <b>k</b> 85 |      |     |     |      | 15x | (85 |             |     |     |     |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12> | <b>c</b> 85 |     | 16          | 3x85 |     | 16> | (130 |     | 20  | <b>x</b> 85 |     | 20x | 130 |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                                       | $N_{Rk} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2</sup> |     |     |     |     |     |     |  |  |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz<br>bedin                                                                              |     |     |     |     |     |     |  |  |  |  |  |
| 2 5 / 2 N/mm²                                                                     | w/w                                                                                        | w/d |     |     |     |     |     |  |  |  |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                                         | d,                                                                                         | ′d  |     | 0,5 | 0,6 | 0,5 | 0,6 |  |  |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w                                                                                        | w/d |     |     | 0.9 |     |     |  |  |  |  |  |
| 5 / 4 N/IIIII                                                                     | d,                                                                                         | ′d  | 0,9 |     | 1,2 | 1,2 |     |  |  |  |  |  |
| 7,5 / 6 N/mm <sup>2</sup>                                                         | w/w                                                                                        | w/d |     |     | 1,5 |     |     |  |  |  |  |  |
| 7,576 N/IIIII                                                                     | d,                                                                                         | ′d  |     |     | 1,5 | 1,5 |     |  |  |  |  |  |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w                                                                                        | w/d | 2,0 |     |     |     |     |  |  |  |  |  |
| 10 / 6 N/IIIII-                                                                   | d,                                                                                         | 'd  |     |     | 2,0 |     |     |  |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C62.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                     |                    | M10           | M12                 | M16        |
|-----------------------------------------------------------------------------------|---------------------|--------------------|---------------|---------------------|------------|
| Injektions-Ankerhülse FIS                                                         | SHK                 |                    | 18)           | <b>c130/200</b>     | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                                       | = N <sub>Rk,I</sub> | <sub>o,c</sub> [kN | l]; Temperatu | rbereich 50/80°C 2) |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzı<br>bedin      |                    |               |                     |            |
| 2,5 / 2 N/mm <sup>2</sup>                                                         | w/w                 | w/d                |               |                     | 0,5        |
| 2,5 / 2 14/111111                                                                 | d/                  | ⁄d                 |               |                     | 0,6        |
| 5 / 4 N/mm²                                                                       | w/w                 | w/d                |               |                     | 0.9        |
| 37414/11111                                                                       | d/                  | ⁄d                 |               |                     | 1,2        |
| 7,5 / 6 N/mm²                                                                     | w/w                 | w/d                |               |                     | 1,5        |
| 7,576 N/IIIII                                                                     | d/                  | ⁄d                 |               |                     | 1,5        |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w                 | w/d                |               |                     | 2,0        |
| IU / O IN/ITIITI                                                                  | d/                  | ′d                 |               |                     | 2,0        |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C62 |

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .



**Tabelle C63.1:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 | M8  | М6  | M8  |           |           | M8  | M10 | M8  | M10  |     |            | M12 | M16 | M12 M16 |
|-------------------------------|----|-----|-----|-----|-----------|-----------|-----|-----|-----|------|-----|------------|-----|-----|---------|
| Innengewindeanker FIS E       |    | -   |     |     | M6<br>112 | M8<br>(85 |     | -   |     | -    |     | M12<br>x85 | -   | •   | -       |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12> | (85 |           | 16        | x85 |     | 162 | k130 | 20x |            | x85 |     | 20x130  |

| injendiene z innernance i re                                                      |                                  |           |          |      | ·             |      |      | -0%:00 |
|-----------------------------------------------------------------------------------|----------------------------------|-----------|----------|------|---------------|------|------|--------|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | kN]; Tem                         | peraturbe | ereich 5 | 0/80 | °C und 72/120 | )°C  |      |        |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |           |          |      |               |      |      |        |
| 2,5 / 2 N/mm <sup>2</sup>                                                         | w/w w/d<br>d/d                   | 0,30      | 0,60     | 0,3  | 0,60          | 0,60 | 0,90 | 0,75   |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   | 0,75      | 1,20     | 0,7  | 1,20          | 1,20 | 2,00 | 1,50   |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   | 0,90      | 2,00     | 0,9  | 2,00          | 1,50 | 3,00 | 2,00   |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 1,50      | 2,50     | 1,5  | 2,50          | 2,00 | 4,00 | 3,00   |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C63.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10               | M12               | M16        |
|-----------------------------------------------------------------------------------|----------------------------------|-------------------|-------------------|------------|
| Injektions-Ankerhülse FIS                                                         | HK                               | 18x13             | 0/200             | 22x130/200 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | [kN]; Tem                        | peraturbereich 50 | /80°C und 72/120° | С          |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                   |                   |            |
| 2,5 / 2 N/mm²                                                                     | w/w w/d<br>d/d                   | 0,                | 60                | 0,75       |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                   | 1,:               | 20                | 1,50       |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   | 1,                | 50                | 2,00       |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 2,                | 00                | 3,00       |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C63 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Imery Länge L Breite B Höhe H Nennmaße [mm] 560 200 275 Rohdichte p [kg/dm<sup>3</sup>] ≥ 0,7 Mittlere Druckfestigkeit / 5 / 4 oder 8 / 6 oder 10 / 8 [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) Norm oder Anhang EN 771-1:2011+A1:2015 120 Steinabmessungen 200 siehe auch Anhang B17 10 40 560 Tabelle C64.1: Installationsparameter **Ankerstange M8** M10 M10 M12 M12 **M16** M16 Injektions-Ankerhülse FIS H K 16x130 18x130/200 20x130 22x130/200 Ankerstangen mit Injektions-Ankerhülse Max. Montage-2 max Tinst |[Nm] drehmoment Allgemeine Installationsparameter Randabstand $C_{min} = C_{cr}$ 80 $s_{min} II = s_{cr} II [mm]$ 560 Achsabstand 275 $s_{min} \perp = s_{cr} \perp$ **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer <sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C64.2: Gruppenfaktoren **M8** M10 M10 M12 M12 M16 M16 Ankerstange Injektions-Ankerhülse FIS H K 16x130 18x130/200 20x130 22x130/200 $\alpha_{g,N}$ (s<sub>min</sub> II) $\alpha_{\text{g,V}}$ (s<sub>min</sub> II) Gruppen [-] 2 faktoren $\alpha_{g,N}$ ( $s_{min} \perp$ ) $\alpha_{g,V}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk **Anhang C64** Leistuna Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



**Tabelle C65.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                                                  |                                  | M8                | M10      | M10        | M12               | M12 | M16 | M16        |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------|-------------------|----------|------------|-------------------|-----|-----|------------|--|--|
| Injektions-Ankerhülse FIS H                                                                  | l K                              | 16x130 18x130/200 |          |            | 30/200            | 20x | 130 | 22x130/200 |  |  |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}$ | I <sub>Rk,b,c</sub> [kN          | ]; Tempe          | raturber | eich 50/80 | 0°C <sup>2)</sup> |     |     |            |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>            | Nutz-<br>ungs-<br>bedin-<br>gung |                   |          |            |                   |     |     |            |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                      | w/w w/d                          |                   | 0,9      |            |                   | 1,2 |     |            |  |  |
| 3 / 4 N/IIIII                                                                                | d/d                              |                   | 1,2      |            |                   | 1,5 |     |            |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                                      | w/w w/d                          |                   | 1,5      |            |                   |     | 2,0 |            |  |  |
| 8 / 6 N/IIIII-                                                                               | d/d                              |                   | 1,5      |            |                   |     | 2,0 |            |  |  |
| 10 / 8 N/mm²                                                                                 | w/w w/d                          |                   | 2,0      |            |                   | 2,5 |     |            |  |  |
| 10 / 6 N/IIIII-                                                                              | d/d                              |                   | 2,5      |            |                   |     |     |            |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C65.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                          |                                                                                                                               | M8  | M10 | M10   | M12   | M12    | M16 | M16        |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-------|--------|-----|------------|--|--|--|
| Injektions-Ankerhülse FIS I                          | łΚ                                                                                                                            | 16x | 130 | 18x13 | 0/200 | 20x130 |     | 22x130/200 |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp} [$ | V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |     |     |       |       |        |     |            |  |  |  |
| Mittlere Druckfestigkeit /                           | Nutz-<br>ungs-                                                                                                                |     |     |       |       |        |     |            |  |  |  |

| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |       |
|-----------------------------------------------------------------------------------|----------------------------------|-------|
| 5 / 4 N/mm²                                                                       | w/w w/d                          | 0,9   |
| 8 / 6 N/mm²                                                                       | w/w w/d                          | 1,5   |
| 10 / 8 N/mm²                                                                      | w/w w/d                          | - 2,0 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C65 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .



| Hochlochziegel HLz, EN 7                                                                                                                                                   | 71-1:2011+                         | ·A1:2015                     |                                           |           |                  |                                                             |           |             |       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------|-------------------------------------------|-----------|------------------|-------------------------------------------------------------|-----------|-------------|-------|--|--|
| 120 H                                                                                                                                                                      | lersteller                         |                              |                                           |           |                  | z.B.                                                        | Wiene     | rberge      | er    |  |  |
|                                                                                                                                                                            |                                    |                              |                                           |           | . Lá             | inge L                                                      | Breite    |             | öhe H |  |  |
|                                                                                                                                                                            | lennmaße                           |                              |                                           | [mm]      | ı ⊢              | 255                                                         | 120       | ,           | 118   |  |  |
| N<br>80 R                                                                                                                                                                  | ohdichte ρ                         |                              |                                           | [kg/dn    | 1 <sup>3</sup> ] |                                                             | ≥ 1,0     |             |       |  |  |
| = N                                                                                                                                                                        | littlere Druckfe<br>lindestdruckfe |                              | elstein 1)                                | [N/mm     |                  | 2,5 / 2 od 5 / 4 od 8 / 6 od<br>/ 8 od 12,5 / 10 od 15 / 12 |           |             |       |  |  |
| N                                                                                                                                                                          | lorm oder Anh                      | ang                          |                                           |           |                  | EN 771-1:2011+A1:2015                                       |           |             |       |  |  |
| 255                                                                                                                                                                        | <u> </u>                           |                              |                                           |           |                  |                                                             |           |             |       |  |  |
|                                                                                                                                                                            | 120                                | \$\frac{1}{2}  \frac{12}{12} | Steinabmessungen siehe<br>auch Anhang B18 |           |                  |                                                             |           |             |       |  |  |
| Tabelle C66.1: Installations                                                                                                                                               | parameter                          | -                            | 255                                       | _         |                  |                                                             |           |             |       |  |  |
| Ankerstange                                                                                                                                                                | M6 M8                              | M6 M8                        | -                                         | M8        | M10              |                                                             | -         | M12         | M16   |  |  |
| Innengewindeanker FIS E                                                                                                                                                    | _                                  | _                            | M6 M8                                     |           | _                | M10                                                         | M12       |             | _     |  |  |
| _                                                                                                                                                                          | _                                  | _                            | 11x85                                     |           |                  | 15                                                          | x85       |             |       |  |  |
| Injektions-Ankerhülse FIS H K                                                                                                                                              |                                    | 12x85                        | 162                                       |           |                  |                                                             | 20        | <b>c</b> 85 |       |  |  |
| Ankerstangen und Innengewin                                                                                                                                                | deanker FIS                        | E mit Injektio               | ons-Ankerhül                              | se FIS    | HK               |                                                             |           |             |       |  |  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [Nm]                                                                                                                     |                                    |                              |                                           | 2         |                  |                                                             |           |             |       |  |  |
| Allgemeine Installationsparam                                                                                                                                              | eter                               |                              | _                                         | _         |                  |                                                             |           |             |       |  |  |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>                                                                                                                             | 60                                 |                              |                                           |           |                  |                                                             |           |             |       |  |  |
| Achs- $s_{cr} II = s_{min} II$ [mm] abstand $s_{cr} \bot = s_{min} \bot$                                                                                                   | 255<br>120                         |                              |                                           |           |                  |                                                             |           |             |       |  |  |
| Bohrverfahren                                                                                                                                                              |                                    |                              |                                           |           |                  |                                                             |           |             |       |  |  |
| Hammerbohren mit Hartmetall-H                                                                                                                                              | ammerbohrer                        |                              |                                           |           |                  |                                                             |           |             |       |  |  |
| <sup>1)</sup> Die Mindestdruckfestigkeit des E<br><b>Tabelle C66.2:</b> Gruppenfak                                                                                         |                                    | f nicht wenige               | r als 80% der r                           | mittlerer | n Druck          | festigk                                                     | eit betra | agen.       |       |  |  |
| Ankerstange                                                                                                                                                                | M6 M8                              | M6 M8                        | -                                         | M8        | M10              |                                                             | -         | M12         | M16   |  |  |
| Innengewindeanker FIS E                                                                                                                                                    | _                                  | _                            | M6 M8                                     |           | _                | M10                                                         | M12       |             | _     |  |  |
| _                                                                                                                                                                          |                                    |                              | 11x85                                     |           |                  | 15                                                          | x85       |             |       |  |  |
| Injektions-Ankerhülse FIS H K                                                                                                                                              | 12x50                              | 12x85                        | 162                                       | (85       |                  |                                                             | 20        | <b>(85</b>  |       |  |  |
| Gruppen- faktoren $ \begin{array}{c} \alpha_{g,N} \text{ ($s_{min}$ II)} \\ \alpha_{g,V} \text{ ($s_{min}$ II)} \\ \alpha_{g,N} \text{ ($s_{min}$ \bot)} \end{array} $ [-] |                                    |                              | 2                                         | 2         |                  |                                                             |           |             |       |  |  |
| fischer Injektionssystem FI                                                                                                                                                | S V Plus fü                        | r Mauerwer                   | k                                         |           |                  |                                                             |           |             |       |  |  |
| <b>Leistung</b><br>Hochlochziegel HLz, Abmessun                                                                                                                            | gen, Installatio                   | onsparameter                 | r, Gruppenfakt                            | oren      |                  |                                                             | Anha      | ng C        | 66    |  |  |



**Tabelle C67.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                   | M6 | M8  | M6 | M8  | -         |           | M8 M10 |   | -   |            | M12 | M16 |
|-------------------------------|----|-----|----|-----|-----------|-----------|--------|---|-----|------------|-----|-----|
| Innengewindeanker FIS E       |    | -   |    | -   | M6<br>112 | M8<br><85 |        | - | M10 | M12<br>x85 |     | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | x85 |           | 162       | x85    |   |     | 202        | x85 |     |

| •                                                                                   |                                  |                            |                           |      |
|-------------------------------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|------|
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_R$                                                | $_{k,p,c} = N_{Rk}$              | , <sub>b,c</sub> [kN]; Tem | peraturbereich 50/80°C ¹) |      |
| Mittlere<br>Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein <sup>2)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                            |                           |      |
| 2,5 / 2 N/mm <sup>2</sup>                                                           | w/w w/d                          | 0,4                        | 0,5                       | _3)  |
| 2,57214/11111                                                                       | d/d                              | 0,5                        | 0,5                       | _3)  |
| 5 / 4 N/mm <sup>2</sup>                                                             | w/w w/d                          | 0,9                        | 0,9                       | 0,5  |
| 5 / 4 W/IIIII                                                                       | d/d                              | 0,9                        | 1,2                       | 0,5  |
| 8 / 6 N/mm <sup>2</sup>                                                             | w/w w/d                          | 1,2                        | 1,5                       | 0,75 |
| 6 / 6 N/IIIII                                                                       | d/d                              | 1,5                        | 1,5                       | 0,75 |
| 10 / 8 N/mm²                                                                        | w/w w/d                          | 1,5                        | 2,0                       | 0,9  |
| 10 / 6 N/IIIII                                                                      | d/d                              | 2,0                        | 2,0                       | 0,9  |
| 12,5 / 10 N/mm <sup>2</sup>                                                         | w/w w/d                          | 2,0                        | 2,5                       | 1,2  |
| 12,5 / 10 14/11/11                                                                  | d/d                              | 2,5                        | 2,5                       | 1,2  |
| 15 / 12 N/mm²                                                                       | w/w w/d                          | 2,5                        | 3,0                       | 1,5  |
| 15/ 12 14/111111                                                                    | d/d                              | 3,0                        | 3,5                       | 1,5  |

<sup>1)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk</sub> (72/120°C) = 0,83 · N<sub>Rk</sub> (50/80°C).

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C67 |

<sup>&</sup>lt;sup>2)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>3)</sup> Leistung nicht bewertet.



**Tabelle C68.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                   | М6 | M8            | M6  | M8  | -         |           | M8  | M10        | -   |            | M12 | M16 |
|-------------------------------|----|---------------|-----|-----|-----------|-----------|-----|------------|-----|------------|-----|-----|
| Innengewindeanker FIS E       |    | -             |     | -   | M6<br>112 | M8<br>(85 |     | -          | M10 | M12<br><85 |     | •   |
| Injektions-Ankerhülse FIS H K | 12 | <b>&lt;50</b> | 123 | (85 | 16x85     |           | 202 | <b>(85</b> |     |            |     |     |

| IIIJCKGOIIS-Alikeiiidist                                                            | <u> </u>   |                           |      | 100    |         | 100     | 1000            | 2000 |
|-------------------------------------------------------------------------------------|------------|---------------------------|------|--------|---------|---------|-----------------|------|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{I}$                                           | Rk,c,⊥     | [kN];                     | Temp | eratur | bereicl | า 50/80 | °C und 72/120°C |      |
| Mittlere<br>Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | ung<br>bed | itz-<br>gs-<br>din-<br>ng |      |        |         |         |                 |      |
| 2,5 / 2 N/mm <sup>2</sup>                                                           | w/w<br>d/  | w/d<br>/d                 | 0,60 | 0,75   | 0,60    | 0,75    | 9,0             | 90   |
| 5 / 4 N/mm²                                                                         |            | w/d<br>/d                 | 1,20 | 1,50   | 1,20    | 1,50    | 2,0             | 00   |
| 8 / 6 N/mm²                                                                         | w/w<br>d/  | w/d<br>/d                 | 2,00 | 2,00   | 2,00    | 2,00    | 2,5             | 50   |
| 10 / 8 N/mm²                                                                        |            | w/d<br>/d                 | 2,50 | 3,00   | 2,50    | 3,00    | 3,5             | 50   |
| 12,5 / 10 N/mm²                                                                     | w/w<br>d/  | w/d<br>/d                 | 3,00 | 3,50   | 3,00    | 3,50    | 4,5             | 50   |
| 15 / 12 N/mm²                                                                       | w/w<br>d/  | w/d<br>/d                 | 4,00 | 4,50   | 4,00    | 4,50    | 5,5             | 50   |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C68 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Cermanica Farreny S.A. Länge L Breite B Höhe H Nennmaße [mm] 275 130 94 ≥ 0,8 Rohdichte p [kg/dm<sup>3</sup>] 7,5 / 6 oder 10 / 8 oder Mittlere Druckfestigkeit / $[N/mm^2]$ 15 / 12 oder Mindestdruckfestigkeit Einzelstein 1) 20 / 16 oder 25 / 20 Norm oder Anhang EN 771-1:2011+A1:2015 130 Steinabmessungen siehe auch Anhang B18 20 Tabelle C69.1: Installationsparameter **M6 M8 M6 M8 M8** M10 M12 M16 **Ankerstange M8** M10 M12 **M6** Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 20x85 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-2 max T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand $C_{min} = C_{cr}$ 100 120 $s_{cr} II = s_{min} II [mm]$ 275 Achsabstand 95 $s_{cr} \perp = s_{min} \perp$ **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C69.2: Gruppenfaktoren **M6 M8 M6 M8 M8** M10 M12 M16 Ankerstange M6 **M8** M10 | M12 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 20x85 $\alpha_{g,N}$ (s<sub>min</sub> II) $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-2 [-] faktoren $\alpha_{g,N}$ (Smin $\perp$ ) $\alpha_{g,V}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C69 Leistuna Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



**Tabelle C70.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                   | M6 | M8  | M6 | M8  |           | - M8      |     | M10 |           | -          |             | M16 |
|-------------------------------|----|-----|----|-----|-----------|-----------|-----|-----|-----------|------------|-------------|-----|
| Innengewindeanker FIS E       |    | -   | ,  | -   | M6<br>112 | M8<br>x85 |     | -   | M10<br>15 | M12<br>x85 |             | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | x85 |           | 16        | x85 |     |           | 20)        | <b>k</b> 85 | ·   |

| ,                                                                                 |                                  |              |              |                      |  |
|-----------------------------------------------------------------------------------|----------------------------------|--------------|--------------|----------------------|--|
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} =$ | N <sub>Rk,b,c</sub> [kN          | ]; Temperat  | urbereich 50 | 0/80°C <sup>2)</sup> |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |              |              |                      |  |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   | 0,40<br>0,40 |              | 0,90<br>0,90         |  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 0,50<br>0,60 |              | 1,20<br>1,20         |  |
| 15 / 12 N/mm²                                                                     | w/w w/d<br>d/d                   | 0,75<br>0,90 |              | 1,50<br>2,00         |  |
| 20 / 16 N/mm²                                                                     | w/w w/d<br>d/d                   | 0,90<br>1,20 |              | 2,00<br>2,50         |  |
| 25 / 20 N/mm²                                                                     | w/w w/d<br>d/d                   | 1,20<br>1,50 |              | 3,00<br>3,00         |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C70 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .



**Tabelle C71.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                   | М6 | M8  | M6  | M8  | - M8 M10  |           | - M8 M10 - |   | •                | M12 | M16 |   |
|-------------------------------|----|-----|-----|-----|-----------|-----------|------------|---|------------------|-----|-----|---|
| Innengewindeanker FIS E       |    | -   | _   |     | M6<br>11) | M8<br>(85 |            | - | M10 M12<br>15x85 |     |     | • |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 123 | (85 | 16x       |           | x85        |   |                  | 20) | (85 |   |

| mjektiono Amkernaio                                                       | <del> </del>                     | IZXOO        | 12200         | 1000             | 2000 |
|---------------------------------------------------------------------------|----------------------------------|--------------|---------------|------------------|------|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{I}$                                 | Rk,c,⊥ <b>[kN</b> ]              | ; Temperatur | bereich 50/80 | 0°C und 72/120°C |      |
| Mittlere<br>Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |              |               |                  |      |
| 7,5 / 6 N/mm²                                                             | w/w w/d<br>d/d                   | 1,2          |               | 1,2              |      |
| 10 / 8 N/mm²                                                              | w/w w/d                          | 1,5          |               | 1,5              |      |
| 15 / 12 N/mm²                                                             | w/w w/d                          | 2,0          |               | 2,5              |      |
| 20 / 16 N/mm²                                                             | w/w w/d<br>d/d                   | 3,0          |               | 3,0              |      |
| 25 / 20 N/mm²                                                             | w/w w/d<br>d/d                   | 4,0          |               | 4,0              |      |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C71 |

 $\alpha_{g,V}$  ( $s_{min} \perp$ )



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Perceram Breite B | Höhe H Länge L Nennmaße [mm] 220 190 290 Rohdichte p [kg/dm<sup>3</sup>] ≥ 0,7 Mittlere Druckfestigkeit / 7,5 / 6 oder 10 / 8 oder [N/mm<sup>2</sup>]290 Mindestdruckfestigkeit Einzelstein 1) 12,5 / 10 EN 771-1:2011+A1:2015 Norm oder Anhang 90 <del>수</del> Steinabmessungen siehe auch Anhang B18 **-** 42 **-Tabelle C72.1:** Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M6 | M8 M6 | M8 **M8** M10 M12 M6 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 20x85 20x130 16x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montagemax T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand $c_{min} = c_{cr}$ 110 220 $s_{min} II = s_{cr} II [mm]$ Achsabstand $s_{min} \perp = s_{cr} \perp$ 290 **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer <sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C72.2: Gruppenfaktoren **Ankerstange** M6 | M8 M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 $\alpha_{g,N}$ (s<sub>min</sub> II) $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-2 [-] faktoren $\alpha_{g,N}$ ( $s_{min} \perp$ )

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C72 |



#### Tabelle C73.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                       |       | M10 M12 M16 |        |            |  |  |  |  |  |  |  |
|---------------------------------------------------|-------|-------------|--------|------------|--|--|--|--|--|--|--|
| Injektions-Ankerhülse F                           | SHK   | 18x13       | 30/200 | 22x130/200 |  |  |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K    |       |             |        |            |  |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> | [Nm]  | 2           |        |            |  |  |  |  |  |  |  |
| Allgemeine Installations                          | param | eter        |        |            |  |  |  |  |  |  |  |
| Randabstand c <sub>min</sub> = c <sub>c</sub>     | r     |             | 1′     | 0          |  |  |  |  |  |  |  |
| Achs- s <sub>min</sub> II = s <sub>cr</sub> I     | [mm]  | 220<br>290  |        |            |  |  |  |  |  |  |  |
| abstand $s_{min} \perp = s_{cr} \perp$            | _     |             |        |            |  |  |  |  |  |  |  |
| Bohrverfahren                                     |       |             |        |            |  |  |  |  |  |  |  |

Hammerbohren mit Hartmetall-Hammerbohrer

## Tabelle C73.2: Gruppenfaktoren

| Ankerstang           | е                                                                                                                                                                                              | M16   |        |            |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------|--|--|--|
| Injektions-A         | nkerhülse FIS H K                                                                                                                                                                              | 18x13 | 30/200 | 22x130/200 |  |  |  |
| Gruppen-<br>faktoren | $\begin{array}{c} \alpha_{g,N} \ (s_{min} \ II) \\ \hline \alpha_{g,V} \ (s_{min} \ II) \\ \hline \alpha_{g,N} \ (s_{min} \ \bot) \\ \hline \alpha_{g,V} \ (s_{min} \ \bot) \end{array} \ [-]$ |       | :      | 2          |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C73



3,0

#### Hochlochziegel HLz, EN 771-1:2011+A1:2015

Tabelle C74.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| (                                                                                 |                                  | .9-,  |         |       |      |                |       |                 |     |             |       |     |       |        |       |    |
|-----------------------------------------------------------------------------------|----------------------------------|-------|---------|-------|------|----------------|-------|-----------------|-----|-------------|-------|-----|-------|--------|-------|----|
| Ankerstange                                                                       |                                  | M6    | M8      | М6    | M8   | -              | M8    | M10             | M8  | M10         | -     | IV  | 112 I | M16    | M12 M | 16 |
| Innengewindeanker FIS E                                                           |                                  |       | -       |       | -    | M6 M8<br>11x85 |       | -               |     | -           | M10 N |     | -     |        | -     |    |
| Injektions-Ankerhülse FIS                                                         | njektions-Ankerhülse FIS H K     |       |         | 12x85 |      | 16x85          |       |                 | 162 | <b>c130</b> | 20x85 |     |       | 20x130 |       |    |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} =$                                     | · N <sub>Rk,b,c</sub> [kl        | N]; T | emp     | erat  | urbe | reich 50       | 0/80° | C <sup>2)</sup> |     |             |       |     |       |        |       |    |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |       |         |       |      |                |       |                 |     |             |       |     |       |        |       |    |
| 7,5 / 6 N/mm <sup>2</sup>                                                         | w/w w/d                          | 0     | ,3      | 1     | ,2   |                | 1,2   |                 | 1   | ,5          |       | 1,2 |       |        | 1,5   |    |
| 7,576 N/IIIII                                                                     | d/d                              | 0     | ,4      | 1     | ,5   |                | 1,5   | 1,5             |     | ,5          |       | 1,5 |       | 1,5    |       |    |
| 10 / 8 N/mm²                                                                      | w/w w/d                          | 0     | ,5      | 1     | ,5   |                | 1,5   |                 | 2   | 2,0         |       | 1,5 |       |        | 2,0   |    |
| 10 / 8 N/MM-                                                                      | d/d                              | 0     | 0,5 2,0 |       | ,0   | :              | 2,0   | 0               |     | 2,5         | 2,0   |     | ,0    |        | 2,5   |    |
| 40 F / 40 N/mm²                                                                   | w/w w/d                          | 0     | ,6      | 2     | ,0   | :              | 2,0   |                 | 2   | 2,5         |       | 2,0 |       |        | 2,5   |    |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | -1/-1                            |       | _       | _     | _    |                | ~ -   |                 |     |             |       |     |       |        |       | _  |

<sup>2,5</sup> 1) Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

d/d

0,6

Tabelle C74.2: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

2,5

| Ankerstange                                                                                                                      |                                  | M10 M12 M16       |                            |    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|----------------------------|----|--|--|--|--|
| Injektions-Ankerhülse FIS H                                                                                                      | łΚ                               | 18x13             | 18x130/200 22x13           |    |  |  |  |  |
| $\mathbf{N}_{\mathrm{Rk}} = \mathbf{N}_{\mathrm{Rk,p}} = \mathbf{N}_{\mathrm{Rk,b}} = \mathbf{N}_{\mathrm{Rk,p,c}} = \mathbf{I}$ | N <sub>Rk,b,c</sub> [kl          | N]; Temperaturber | eich 50/80°C <sup>2)</sup> |    |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                                | Nutz-<br>ungs-<br>bedin-<br>gung |                   |                            |    |  |  |  |  |
| 7,5 / 6 N/mm <sup>2</sup>                                                                                                        | w/w w/d                          |                   | 1                          | ,5 |  |  |  |  |
| 7,576 N/IIIII                                                                                                                    | d/d                              |                   | 1                          | ,5 |  |  |  |  |
| 10 / 8 N/mm²                                                                                                                     | w/w w/d                          |                   | 2                          | ,0 |  |  |  |  |
| 10 / 6 N/IIIII                                                                                                                   | d/d                              |                   | 2                          | ,5 |  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                                                                      | w/w w/d                          |                   | 2                          | ,5 |  |  |  |  |
| 12,57 TO N/IIIII-                                                                                                                | d/d                              |                   | 3                          | ,0 |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C74 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>



**Tabelle C75.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| )                                                                                 | ,                                |    |      |      |      |        |       |      |      |     |             |            |     |     |     |      |
|-----------------------------------------------------------------------------------|----------------------------------|----|------|------|------|--------|-------|------|------|-----|-------------|------------|-----|-----|-----|------|
| Ankerstange                                                                       |                                  | M6 | M8   | M6   | M8   | -      |       | M8   | M10  | M8  | M10         | -          | M12 | M16 | M12 | M16  |
| Innengewindeanker FIS E                                                           |                                  |    | -    |      | -    | M6 N   | -     | ,    | -    |     | -           | M12<br>x85 |     | -   |     | -    |
| Injektions-Ankerhülse FIS                                                         | Injektions-Ankerhülse FIS H K    |    | x50  | 12   | x85  |        | 16x85 |      |      | 162 | <b>c130</b> |            | x85 |     | 20: | k130 |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [kN]; Ten                      |                                  |    | turb | erei | ch 5 | 0/80°C | ; u   | nd 7 | 2/12 | 0°C |             |            |     |     |     |      |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |    |      |      |      |        |       |      |      |     |             |            |     |     |     |      |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   | 1  | ,5   | 1    | ,5   |        | 1,    | ,5   |      | 2   | ,5          | 1          | ,5  |     | 2   | 2,0  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 2  | ,0   | 2    | ,0   |        | 2,    | ,0   |      | 3   | ,5          | 2          | ,0  |     | 3   | 3,0  |
| 12,5 / 10 N/mm²                                                                   | w/w w/d<br>d/d                   | 2  | ,5   | 3    | ,0   |        | 3,    | ,0   |      | 4   | ,5          | 3          | ,0  |     | 3   | 3,5  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C75.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10 M12 M16    |                       |            |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|----------------|-----------------------|------------|--|--|--|--|--|
| Injektions-Ankerhülse FIS                                                         | HK                               | 18             | 3x130/200             | 22x130/200 |  |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | kN]; Temp                        | oeraturbereicl | h 50/80°C und 72/120° | °C         |  |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                |                       |            |  |  |  |  |  |
| 7,5 / 6 N/mm²                                                                     | w/w w/d<br>d/d                   | 2,0            |                       |            |  |  |  |  |  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 3,0            |                       |            |  |  |  |  |  |
| 12,5 / 10 N/mm²                                                                   | w/w w/d<br>d/d                   | 3,5            |                       |            |  |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C75 |



#### Hochlochziegel HLz, EN 771-1:2011+A1:2015 Hersteller z.B. Ziegelwerk Brenna Breite B | Höhe H Nennmaße [mm] 253 300 240 [kg/dm<sup>3</sup>] ≥ 0,8 Rohdichte p Mittlere Druckfestigkeit / $[N/mm^2]$ 2.5 / 2 oder 5 / 4 oder 8 / 6 Mindestdruckfestigkeit Einzelstein 1) Norm oder Anhang EN 771-1:2011+A1:2015 Steinabmessungen siehe auch Anhang B18 300 Tabelle C76.1: Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) M6 | M8 M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 20x85 20x130 16x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-2 max T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand $C_{min} = C_{cr}$ 60 255 $s_{min} II = s_{cr} II [mm]$ Achsabstand 240 $s_{min} \perp = s_{cr} \perp$ Bohrverfahren Hammerbohren mit Hartmetall-Hammerbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C76.2: Gruppenfaktoren M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M6 | M8 M6 | M8 M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 16x85 20x85 12x85 16x130 20x130 $\alpha_{\text{g,N}}$ (s<sub>min</sub> II) $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-2 [-] faktoren $\alpha_{g,N}$ (S<sub>min</sub> $\perp$ ) $\alpha_{g,V}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C76 Leistuna

Z203833.24 8.06.04-178/23

Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren



### Tabelle C77.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                           | M10   | M12   | M16        |  |  |
|-------------------------------------------------------|-------|-------|------------|--|--|
| Injektions-Ankerhülse FIS H k                         | 18x13 | 0/200 | 22x130/200 |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K        |       |       |            |  |  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [Nm | 2     |       |            |  |  |
| Allgemeine Installationsparameter                     |       |       |            |  |  |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>        |       | 6     | 0          |  |  |
| Achs- s <sub>min</sub> II = s <sub>cr</sub> II [mm    | ]     | 25    | 55         |  |  |
| abstand $s_{min} \perp = s_{cr} \perp$                |       | 24    | 40         |  |  |
| Bohrverfahren                                         |       |       |            |  |  |

## Tabelle C77.2: Gruppenfaktoren

Hammerbohren mit Hartmetall-Hammerbohrer

| Ankerstang           | е                                                                                                                                                                                                                                        | M10        | M12 | M16        |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|------------|
| Injektions-A         | Ankerhülse FIS H K                                                                                                                                                                                                                       | 18x130/200 |     | 22x130/200 |
| Gruppen-<br>faktoren | $\begin{array}{c} \alpha_{g,N} \left( s_{min} \ II \right) \\ \hline \alpha_{g,V} \left( s_{min} \ II \right) \\ \hline \alpha_{g,N} \left( s_{min} \ \bot \right) \\ \hline \alpha_{g,V} \left( s_{min} \ \bot \right) \end{array} [-]$ |            | :   | 2          |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C77 |



**Tabelle C78.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 | M8  | М6 | М8          | -         | M8  | M10 | М8 | M10  |     | -          | M12 | M16 | M12 | M16 |
|-------------------------------|----|-----|----|-------------|-----------|-----|-----|----|------|-----|------------|-----|-----|-----|-----|
| Innengewindeanker FIS E       |    | -   |    | •           | M8<br>x85 |     | -   |    | -    | M10 | M12<br>x85 |     | -   |     | -   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | <b>k</b> 85 | 16        | x85 |     | 16 | (130 |     | 20         | x85 |     | 20x | 130 |

| $\mathbf{N}_{\mathrm{Rk}} = \mathbf{N}_{\mathrm{Rk,p}} = \mathbf{N}_{\mathrm{Rk,b}} = \mathbf{N}_{\mathrm{Rk,p,c}} = \mathbf{N}_{\mathrm{Rk,p,c}}$ | $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |      |      |      |      |      |      |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                                                  | Nutz-<br>ungs-<br>bedin-<br>gung                                                                       |      |      |      |      |      |      |  |  |  |  |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                                                                                                          | w/w w/d                                                                                                | _2)  | 0,50 | 0,50 | 0,40 | 0,50 | 0,40 |  |  |  |  |  |  |
| 2,5 / 2 N/IIIII                                                                                                                                    | d/d                                                                                                    | 0,30 | 0,50 | 0,50 | 0,50 | 0,50 | 0,50 |  |  |  |  |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                                                                            | w/w w/d                                                                                                | 0,50 | 0,90 | 0,90 | 0,90 | 0,90 | 0,90 |  |  |  |  |  |  |
| 5 / 4 N/IIIII                                                                                                                                      | d/d                                                                                                    | 0,60 | 0,90 | 0,90 | 0,90 | 0,90 | 0,90 |  |  |  |  |  |  |
| 8 / 6 N/mm²                                                                                                                                        | w/w w/d                                                                                                | 0,75 | 1,50 | 1,50 | 1,20 | 1,50 | 1,20 |  |  |  |  |  |  |
|                                                                                                                                                    | d/d                                                                                                    | 0,90 | 1,50 | 1,50 | 1,50 | 1,50 | 1,50 |  |  |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C78.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                           |                               |                           | M10           | M12                 | M16        |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|---------------|---------------------|------------|--|--|
| Injektions-Ankerhülse FIS H                                                                           | Injektions-Ankerhülse FIS H K |                           |               | <b>k130/200</b>     | 22x130/200 |  |  |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk,p,c}$ | N <sub>Rk,b,</sub>            | c [kN                     | l]; Temperatu | rbereich 50/80°C 2) |            |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                     | un<br>bed                     | itz-<br>gs-<br>din-<br>ng |               |                     |            |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                                                             | w/w                           | w/d                       |               |                     | 0,4        |  |  |
| 2,5 / 2 N/IIIII                                                                                       | d,                            | /d                        |               |                     | 0,5        |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                               | w/w                           | w/d                       |               |                     | 0,9        |  |  |
| 3 / 4 N/IIIII                                                                                         | d,                            | /d                        |               |                     | 0,9        |  |  |
| 8 / 6 N/mm²                                                                                           | w/w                           | w/d                       |               | _                   | 1,2        |  |  |
| O / O IN/IIIIII                                                                                       | d                             | /d                        |               |                     | 1,5        |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ . Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C78 |

<sup>2)</sup> Leistung nicht bewertet.

<sup>&</sup>lt;sup>3)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}(72/120^{\circ}C) = 0.83 \cdot N_{Rk}(50/80^{\circ}C)$ .



**Tabelle C79.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

|                               |    |     |    |             |       |     |             | _   |     | _   |       |     |     |     |     |     |
|-------------------------------|----|-----|----|-------------|-------|-----|-------------|-----|-----|-----|-------|-----|-----|-----|-----|-----|
| Ankerstange                   | M6 | M8  | M6 | M8          |       | -   | M8          | M10 | M8  | M10 |       | -   | M12 | M16 | M12 | M16 |
| Innengewindeanker FIS E       |    |     |    |             | M6    | M8  |             |     |     |     | M10   | M12 |     |     |     |     |
| Innengewindeanker FIS E       | -  |     | -  |             | 11x85 |     | ] -         |     |     | -   | 15x85 |     | •   | •   |     | •   |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | <b>k</b> 85 |       | 162 | <b>k</b> 85 |     | 16x | 130 |       | 20  | x85 |     | 20x | 130 |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk}$                                          | k,c,⊥ [kN];                      | Temperaturbereich 50/80°C und 72/120°C |     |
|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|-----|
| Mittlere<br>Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                                        |     |
| 2,5 / 2 N/mm <sup>2</sup>                                                           | w/w w/d<br>d/d                   | 0,5                                    | 0,6 |
| 5 / 4 N/mm²                                                                         | w/w w/d<br>d/d                   | 0,9                                    | 1,2 |
| 8 / 6 N/mm <sup>2</sup>                                                             | w/w w/d<br>d/d                   | 1,5                                    | 1,5 |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C79.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                |                                  | M10               | M12               | M16        |  |  |  |
|----------------------------------------------------------------------------|----------------------------------|-------------------|-------------------|------------|--|--|--|
| Injektions-Ankerhülse                                                      | FIS H K                          | 18x13             | 0/200             | 22x130/200 |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk}$                                 | k,c,⊥ [kN];                      | Temperaturbereich | 50/80°C und 72/12 | 20°C       |  |  |  |
| Mittlere Druckfestigkeit/ Mindestdruckfestigkeit Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                   |                   |            |  |  |  |
| 2,5 / 2 N/mm²                                                              | w/w w/d<br>d/d                   | 0,                | 5                 | 0,6        |  |  |  |
| 5 / 4 N/mm²                                                                | w/w w/d<br>d/d                   | 0,                | 9                 | 1,2        |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                    | w/w w/d<br>d/d                   | 1,                | 5                 | 1,5        |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistung<br>Hochlochziegel HLz, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C79 |



#### Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015 Hersteller z.B. Wienerberger Länge L Breite B Höhe H Nennmaße [mm] 250 440 250 Rohdichte ρ 0.7 [kg/dm<sup>3</sup>] Mittlere Druckfestigkeit / 8 / 6 oder 10 / 8 [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) oder 12,5 / 10 EN 771-1:2011+A1:2015 Norm oder Anhang 8,1 Steinabmessungen siehe auch Anhang B18 125 17,5 Tabelle C80.1: Installationsparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) **Ankerstange** M6 | M8 | M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 M12 M16 M6 | M8 M10 M12 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 20x200 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-2 5 2 5 6 max T<sub>inst</sub> [[Nm] drehmoment Allgemeine Installationsparameter Randabstand $c_{min} = c_{cr}$ 60 $s_{\text{min}} \; II$ 80 250 Scr III[mm] Achsabstand 80 Smin $\perp$ 250 Scr $\perp$ Bohrverfahren Drehbohren mit Hartmetallbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C80.2: Gruppenfaktoren M6 | M8 **M6 M8** M8 M10 M8 M10 M12M16M12M16M12M16 Ankerstange M6 M8 M10 M12 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse 12x50 12x85 16x85 16x130 20x85 20x130 20x200 FIS H K 1,3 $\alpha_{g,N}$ (s<sub>min</sub> II) 1,3 Gruppen- $\alpha_{g,V}$ (s<sub>min</sub> II) [-] faktoren 8.0 $\alpha_{\text{g,N}}$ (s<sub>min</sub> $\perp$ ) 1,3 $\alpha_{\mathsf{g},\mathsf{V}}$ ( $\mathsf{s}_{\mathsf{min}} \perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk Anhang C80 Leistuna Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt; Abmessungen, Installationsparameter, Gruppenfaktoren



#### Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

#### Tabelle C81.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                    |                                    |        | M10   | M12    | M16        |  |  |  |  |  |
|------------------------------------------------|------------------------------------|--------|-------|--------|------------|--|--|--|--|--|
| Injektions-Ankerhülse FIS H K                  |                                    |        | 18x13 | 30/200 | 22x130/200 |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                    |        |       |        |            |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>              | [Nm]   | 5     | 6      |            |  |  |  |  |  |
| Allgemeine Installationsparameter              |                                    |        |       |        |            |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub> |        |       | 60     |            |  |  |  |  |  |
|                                                | s <sub>min</sub> II                |        |       | 80     | )          |  |  |  |  |  |
| Achs-                                          | s <sub>cr</sub> II                 | [mm]   |       | 25     | 0          |  |  |  |  |  |
| abstand                                        | s <sub>min</sub> ⊥                 |        |       | 80     | )          |  |  |  |  |  |
|                                                | s <sub>cr</sub> ⊥                  |        | 250   |        |            |  |  |  |  |  |
| Bohrverfahren                                  |                                    |        |       |        |            |  |  |  |  |  |
| Drehbohren mit                                 | Hartmetall                         | bohrer | •     |        |            |  |  |  |  |  |

#### Tabelle C81.2: Gruppenfaktoren

| Ankerstang   | е                                              | M10   | M12    | M16        |  |  |  |  |  |
|--------------|------------------------------------------------|-------|--------|------------|--|--|--|--|--|
| Injektions-A | Ankerhülse FIS H K                             | 18x13 | 30/200 | 22x130/200 |  |  |  |  |  |
|              | α <sub>g,N</sub> (s <sub>min</sub> II)         | 1,3   |        |            |  |  |  |  |  |
| Gruppen-     | $\alpha_{g,V}$ (S <sub>min</sub> II)           | 1,3   |        |            |  |  |  |  |  |
| faktoren     | $\alpha_{g,N}$ (S <sub>min</sub> $\perp$ ) [-] |       | 0,8    |            |  |  |  |  |  |
|              | $\alpha_{g,V}$ ( $\mathbf{s}_{min} \perp$ )    | 1,3   |        |            |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt;
Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C81



#### Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C82.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6  | M8         | М6 | M8  |    | -         | M8          | M10 | M8  | M10 | -                | M12 M16 | M12M16 | M12 M16 |
|-------------------------------|-----|------------|----|-----|----|-----------|-------------|-----|-----|-----|------------------|---------|--------|---------|
| Innengewindeanker FIS E       |     | •          | ,  | •   | M6 | M8<br>(85 |             | -   |     | -   | M10 M12<br>15x85 | _       | -      | -       |
| Injektions-Ankerhülse FIS H K | 12: | <b>x50</b> | 12 | x85 |    | 162       | <b>k</b> 85 |     | 16x | 130 | 20:              | x85     | 20x130 | 20x200  |

 $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$  [kN]; Temperaturbereich 50/80°C<sup>2)</sup> Nutz-Mittlere Druckfestigkeit/ ungs-Mindestdruckfestigkeit bedin-Einzelstein<sup>1)</sup> gung w/w w/d 0,75 1,50 1,20 1,50 2,50 8 / 6 N/mm<sup>2</sup> d/d 0.90 1,50 1,20 1.50 2,50 w/w w/d 0,90 1,50 1,20 1,50 2,50 10 / 8 N/mm<sup>2</sup> d/d 0,90 2,00 1,50 2,00 3,00 w/w w/d 0,90 2,00 1,50 2,00 3,00 12,5 / 10 N/mm<sup>2</sup> 1,50 d/d 1,20 2,00 2,00 3,50

**Tabelle C82.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                              |                                            | M10                             | M12                 | M16        |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------|---------------------------------|---------------------|------------|--|--|--|--|
| Injektions-Ankerhülse                                                    | FIS H K                                    | 18x13                           | 0/200               | 22x130/200 |  |  |  |  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rl}$                                  | <sub>k,p,c</sub> = <b>N</b> <sub>Rk,</sub> | <sub>b,c</sub> [kN]; Temperatuı | rbereich 50/80°C 2) |            |  |  |  |  |
| Mittlere<br>Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung           |                                 |                     |            |  |  |  |  |
| 8 / 6 N/mm²                                                              | w/w w/d                                    |                                 | 1,                  | 5          |  |  |  |  |
|                                                                          | d/d                                        | 1,5                             |                     |            |  |  |  |  |
| 10 / 8 N/mm²                                                             | w/w w/d                                    |                                 | 1,                  | 5          |  |  |  |  |
| 10 / 0 14/111111                                                         | d/d                                        |                                 | 2,                  | 0          |  |  |  |  |
| 12,5 / 10 N/mm²                                                          | w/w w/d                                    |                                 | 2,                  | 0          |  |  |  |  |
| 12,37 10 14/111111                                                       | d/d                                        |                                 | 2,                  | 0          |  |  |  |  |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                                       |            |
|-------------------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C82 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



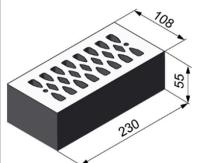
#### Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

**Tabelle C83.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

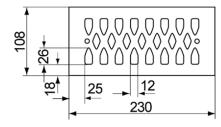
| Ankerstange                                                           |                                  | М6    | M8   | М6    | M8   |       | -     | M8    | M10   | M8   | M10  | -                | M12 M10 | 6 M12 M16 | M12 M16 |
|-----------------------------------------------------------------------|----------------------------------|-------|------|-------|------|-------|-------|-------|-------|------|------|------------------|---------|-----------|---------|
| Innengewindeanker FIS E                                               |                                  | -     |      | -     |      | M6 M8 |       |       | -     |      | -    | M10 M12<br>15x85 | -       | -         | -       |
| Injektions-Ankerhülse                                                 | FIS H K                          | 12    | x50  | 12x85 |      |       | 162   | (85   |       | 16x  | 130  | 20               | x85     | 20x130    | 20x200  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rl}$                            | <sub>k,c,⊥</sub> [kN]            | ; Ter | nper | atur  | bere | ich ( | 50/80 | )°C ι | und 7 | 2/12 | 20°C |                  |         |           |         |
| Mittlere Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |       |      |       |      |       |       |       |       |      |      |                  |         |           |         |
| 8 / 6 N/mm²                                                           | w/w w/d<br>d/d                   |       |      | ·     | 0    | ,9    |       | ·     |       | 1    | ,2   | (                | ),9     | 1,2       | 1,2     |
| 10 / 8 N/mm²                                                          | w/w w/d<br>d/d                   |       |      |       | 0    | ,9    |       |       |       | 1    | ,5   | (                | ),9     | 1,5       | 1,2     |
| 12,5 / 10 N/mm²                                                       | w/w w/d                          |       |      |       | 1    | ,2    |       |       |       | 1    | ,5   | ,                | 1,2     | 1,5       | 1,5     |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C83.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)


| Ankerstange                                                                                                                   |                                  | M10   | M12    | M16        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|--------|------------|--|--|--|--|--|--|
| Injektions-Ankerhülse                                                                                                         | FIS H K                          | 18x13 | 30/200 | 22x130/200 |  |  |  |  |  |  |
| V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |                                  |       |        |            |  |  |  |  |  |  |
| Mittlere Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein 1)                                                         | Nutz-<br>ungs-<br>bedin-<br>gung |       |        |            |  |  |  |  |  |  |
| 8 / 6 N/mm²                                                                                                                   | w/w w/d<br>d/d                   | 1     | ,2     | 1,2        |  |  |  |  |  |  |
| 10 / 8 N/mm²                                                                                                                  | w/w w/d<br>d/d                   | 1     | ,5     | 1,5        |  |  |  |  |  |  |
| 12,5 / 10 N/mm²                                                                                                               | w/w w/d<br>d/d                   | 1     | ,5     | 1,5        |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.


Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                                        |            |
|--------------------------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt; Charakteristischer Widerstand unter Querbeanspruchung | Anhang C83 |





| Hersteller                                                          |                      | 7 R     | \//ienerhe                 | raer    |  |  |
|---------------------------------------------------------------------|----------------------|---------|----------------------------|---------|--|--|
| Tersteller                                                          | z.B. Wienerberger.   |         |                            |         |  |  |
| Nennmaße                                                            | [mm]                 | Länge L | Breite B                   | Höhe H  |  |  |
| Nemmaise                                                            | [mm]                 | 230     | 108                        | 55      |  |  |
| Rohdichte ρ                                                         | [kg/dm³]             |         | ≥ 1,4                      |         |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | l '     | der 5 / 4 c<br>oder 10 / 8 |         |  |  |
| Norm oder Anhang                                                    |                      | EN 771  | -1:2011+                   | A1:2015 |  |  |



Steinabmessungen siehe auch Anhang B18

Tabelle C84.1: Installationsparameter

| Ankerstange                   | М6  | M8    | M6 M8 |             | -     |     | M8 | M10 | M10 - |            | M12 | M16 |
|-------------------------------|-----|-------|-------|-------------|-------|-----|----|-----|-------|------------|-----|-----|
| Innengewindeanker FIS E       | -   |       | -     |             | M6 M8 |     |    | -   |       | M12<br>x85 |     | •   |
| Injektions-Ankerhülse FIS H K | 12: | 12x50 |       | <b>k</b> 85 |       | 16> |    | x85 |       | 202        | (85 |     |

#### Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T<sub>inst</sub> [Nm]

#### Allgemeine Installationsparameter

| Angemente ma      | tanationspara                      | neter |
|-------------------|------------------------------------|-------|
| Randabstand       | c <sub>min</sub> = c <sub>cr</sub> | 60    |
|                   | s <sub>min</sub> II                | 80    |
| Asha shatand      | s <sub>cr</sub> II [mn             | 230   |
| Achs-abstand      | S <sub>min</sub> ⊥                 | 60    |
|                   | S <sub>cr</sub> ⊥                  | 60    |
| Dalamas of alamas | •                                  |       |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C84.2: Gruppenfaktoren

| Ankerstange                            | М6 | M8    | М6 | M8    |       | •   | M8          | M10 | -     |     | M12 | M16 |
|----------------------------------------|----|-------|----|-------|-------|-----|-------------|-----|-------|-----|-----|-----|
| Innongovindoonkov EIS E                | -  |       |    |       | М6    | M8  |             |     | M10   | M12 |     |     |
| Innengewindeanker FIS E                |    |       |    | •     | 11x85 |     |             | -   | 15x85 |     | -   |     |
| Injektions-Ankerhülse FIS H K          | 12 | 12x50 |    | 12x85 |       | 162 | <b>k</b> 85 |     |       | 20) | (85 |     |
| α <sub>g,N</sub> (s <sub>min</sub> II) |    |       |    |       |       |     |             |     |       |     |     |     |

Gruppenfaktoren

| Cog,N (Smin II)                                          |     |
|----------------------------------------------------------|-----|
| α <sub>g,V</sub> (s <sub>min</sub> II)                   |     |
| $lpha_{	extsf{g,N}}$ (s <sub>min</sub> $ot$ )            | [-] |
| $lpha_{	extsf{g,V}}$ ( $	extsf{s}_{	ext{min}}$ $oxdot$ ) |     |

2

#### fischer Injektionssystem FIS V Plus für Mauerwerk

#### Leistung

Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C84** 

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen...



**Tabelle C85.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung <sup>1)</sup>

| Ankerstange                   | M6          | M6 M8 |     | M8 |       | - |     | M10 | M10 -            |  | M12 | M16 |  |  |
|-------------------------------|-------------|-------|-----|----|-------|---|-----|-----|------------------|--|-----|-----|--|--|
| Innengewindeanker FIS E       | -           |       | -   |    | M6 M8 |   |     | -   | M10 M12<br>15x85 |  | -   |     |  |  |
| Injektions-Ankerhülse FIS H K | 12x50 12x85 |       | 16x |    | 5x85  |   | 20x |     | <b>k</b> 85      |  |     |     |  |  |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                                       | N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,b,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>3)</sup> |                |      |      |      |      |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|------|------|------|------|--|--|--|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>2)</sup> |                                                                                                                               | ungs-<br>igung |      |      |      |      |  |  |  |  |  |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                                         | w/w                                                                                                                           | w/d            | 0,30 | 0,90 | 0,75 | 0,50 |  |  |  |  |  |  |  |
| 2,5 / 2 14/111111                                                                 | d                                                                                                                             | /d             | 0,30 | 0,90 | 0,90 | 0,60 |  |  |  |  |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w                                                                                                                           | w/d            | 0.60 | 1.50 | 1.50 | 0.90 |  |  |  |  |  |  |  |
| 5 / 4 N/IIIII                                                                     | d                                                                                                                             | /d             | 0,75 | 2,00 | 1,50 | 1,20 |  |  |  |  |  |  |  |
| 8 / 6 N/mm²                                                                       | w/w                                                                                                                           | w/d            | 0,90 | 2,50 | 2,50 | 1,50 |  |  |  |  |  |  |  |
| 8 / 6 14/111111                                                                   | d                                                                                                                             | /d             | 0,90 | 3,00 | 2,50 | 1,50 |  |  |  |  |  |  |  |
| 10 / 8 N/mm²                                                                      | w/w                                                                                                                           | w/d            | 1,20 | 3,50 | 3,00 | 2,00 |  |  |  |  |  |  |  |
| IU / O IN/IIIII                                                                   | d                                                                                                                             | /d             | 1,50 | 4,00 | 3,50 | 2,50 |  |  |  |  |  |  |  |

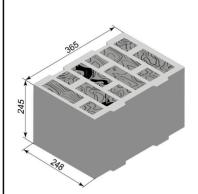
Bei Befestigungen in lochfreien Bereichen der Steine und der Nutzungsbedingung w/w sind die Werte mit dem Faktor 0,64 zu multiplizieren.

**Tabelle C85.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                                       |                 |        | М6      | M8     | M6    | M8    | -      |    | M8  | M10     | -     |     | M12 | M16 |  |
|-----------------------------------------------------------------------------------|-----------------|--------|---------|--------|-------|-------|--------|----|-----|---------|-------|-----|-----|-----|--|
| Innengewindeanker FIS E                                                           |                 | _      |         |        | _     |       | M8     |    | _   | M10 M12 |       |     | _   |     |  |
|                                                                                   |                 |        |         |        |       |       | 11x85  |    |     |         | 15    | x85 |     |     |  |
| Injektions-Ankerhülse FIS                                                         | SHK             |        | 12:     | x50    | 12    | x85   |        | 16 | x85 |         | 20x85 |     |     |     |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | Tem             | peratu | ırberei | ich 50 | /80°C | und 7 | 2/120° | С  |     | •       |       |     |     |     |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutzur<br>bedin |        |         |        |       |       |        |    |     |         |       |     |     |     |  |
| 2,5 / 2 N/mm²                                                                     | w/w<br>d/c      | -      |         |        |       | 0,6   |        |    |     |         |       | 0,4 | 4   |     |  |
|                                                                                   | \A/\A/          | w/d    |         |        |       |       |        |    |     |         |       |     |     |     |  |

| ,            | d/d            | ,   | ,   |
|--------------|----------------|-----|-----|
| 5 / 4 N/mm²  | w/w w/d<br>d/d | 1,2 | 0,9 |
| 8 / 6 N/mm²  | w/w w/d<br>d/d | 1,5 | 1,2 |
| 10 / 8 N/mm² | w/w w/d        | 2,5 | 1,5 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.


| fischer Injektionssystem FIS V Plus für Mauerwerk                                           |            |
|---------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C85 |

<sup>&</sup>lt;sup>2)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>3)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .



#### Hochlochziegel HLz, Mineralwolle gefüllt, EN 771-1:2011+A1:2015



| Hersteller                                                          | z.B. Wienerberger     |         |                  |       |  |  |
|---------------------------------------------------------------------|-----------------------|---------|------------------|-------|--|--|
| Nennmaße                                                            | [mm]                  | Länge L | Länge L Breite B |       |  |  |
| liverimaise                                                         | נווווון               | ≥ 365   | ≥ 248            | ≥ 245 |  |  |
| Rohdichte ρ                                                         | [kg/dm <sup>3</sup> ] |         | 0,6              |       |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm²]               |         | 10 / 8           |       |  |  |
| Norm oder Anhang EN 771-1:2011+A1:20                                |                       |         |                  |       |  |  |

128 97 97 94 7,5 8,0 9

Steinabmessungen siehe auch Anhang B19

Tabelle C86.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| П | ·                             |    |     |       |    |     |     |     |     |     |       |     |     |     |     |
|---|-------------------------------|----|-----|-------|----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|
|   | Ankerstange                   | M6 | M8  | -     |    | M8  | M10 | M8  | M10 | -   |       | M12 | M16 | M12 | M16 |
|   | Innengewindeanker FIS E       | -  |     | М6    | M8 |     | -   |     |     |     | M12   | _   |     | _   |     |
|   |                               |    |     | 11x85 |    |     |     | -   |     | 15x | 15x85 |     |     |     |     |
|   | Injektions-Ankerhülse FIS H K | 12 | x85 | 16x   |    | x85 |     | 16x | 130 | 20  |       | x85 |     | 20x | 130 |

#### Ankerstange und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

| Max. Montage- | max T <sub>inst</sub> [N | ا<br>اmا | 2 | 4 |
|---------------|--------------------------|----------|---|---|
| drehmoment    | THAX THIST [L            | 1        | _ |   |

#### Allgemeine Installationsparameter

| Randabstand | $c_{min} = c_{cr}$                          | 100 |
|-------------|---------------------------------------------|-----|
|             | s <sub>min</sub> II s <sub>cr</sub> II [mm] | 250 |
| abstand     | S <sub>min</sub> ⊥ S <sub>cr</sub> ⊥        | 245 |

#### **Bohrverfahren**

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C86.2: Gruppenfaktoren

| Ankerstan                     | ige                                                                                                                                     | M8    | M8 | M10   | M8 | M10    | M12 | M16   | M12 | M16    |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|----|--------|-----|-------|-----|--------|--|
| Injektions-Ankerhülse FIS H K |                                                                                                                                         | 12x85 |    | 16x85 |    | 16x130 |     | 20x85 |     | 20x130 |  |
| Gruppen-<br>faktoren          | $\frac{\alpha_{g,N} (s_{min} II) =}{\alpha_{g,N} (s_{min} II)}$ $\frac{\alpha_{g,N} (s_{min} \bot) =}{\alpha_{g,N} (s_{min} \bot)}$ [-] |       |    |       |    | :      | 2   |       |     |        |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

#### Leistung

Hochlochziegel HLz; Mineralwolle gefüllt, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C86** 

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



## Hochlochziegel HLz, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

#### Tabelle C87.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                     |                                    |       | M10             | M12   | M16        |  |  |  |  |  |  |
|-------------------------------------------------|------------------------------------|-------|-----------------|-------|------------|--|--|--|--|--|--|
| Injektions-Ankerhülse FIS H K                   |                                    |       | 18x13           | 0/200 | 22x130/200 |  |  |  |  |  |  |
| Ankerstange m                                   | it Injektion                       | s-Ank | erhülse FIS H K |       |            |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment                     | max T <sub>inst</sub>              | [Nm]  |                 | 4     |            |  |  |  |  |  |  |
| Allgemeine Ins                                  | tallationsp                        | arame | eter            |       |            |  |  |  |  |  |  |
| Randabstand                                     | C <sub>min</sub> = C <sub>cr</sub> |       |                 | 100   |            |  |  |  |  |  |  |
| Achs-                                           | S <sub>min</sub> II                | [mm]  |                 | 250   |            |  |  |  |  |  |  |
| bstand $\frac{s_{min} \perp}{s_{cr} \perp}$ 245 |                                    |       |                 |       |            |  |  |  |  |  |  |
| Bohrverfahren                                   |                                    |       |                 |       |            |  |  |  |  |  |  |

#### Tabelle C87.2: Gruppenfaktoren

Hammerbohren mit Hartmetall-Hammerbohrer

| Ankerstang           | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M10         | M12       | M16        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------------|
| Injektions-A         | nkerhülse FIS H k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(</b> 1) | 8x130/200 | 22x130/200 |
| Gruppen-<br>faktoren | $\begin{array}{c} \alpha_{\text{g,N}}\left(\textbf{s}_{\text{min}}\ \textbf{II}\right) \\ \hline \alpha_{\text{g,V}}\left(\textbf{s}_{\text{min}}\ \textbf{II}\right) \\ \hline \alpha_{\text{g,N}}\left(\textbf{s}_{\text{min}}\ \bot\right) \\ \hline \alpha_{\text{g,V}}\left(\textbf{s}_{\text{min}}\ \bot\right) \end{array} \left[ -\frac{1}{2} \left( -\frac{1}{$ | -1          |           | 2          |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                       |            |
|---------------------------------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Mineralwolle gefüllt, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C87 |



**Tabelle C88.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 M8 |     |           |          | M8 M10 |  | M8  | M10 |            | • | M12 | M16 | M12 | M16 | M12 | M16 |
|-------------------------------|-------|-----|-----------|----------|--------|--|-----|-----|------------|---|-----|-----|-----|-----|-----|-----|
| Innengewindeanker<br>FIS E    |       | •   | M6<br>11> | M8<br>85 |        |  |     | •   | M10<br>15> |   | •   | •   | ,   | -   | •   | •   |
| Injektions-Ankerhülse FIS H K | 12)   | (85 | 16x       |          | 16x85  |  | 16x | 130 | 20x8       |   | 35  |     | 20x | 130 | 20x | 200 |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,b,c} = N_{Rk,b,c} [kN];$ Temperaturbereich 50/80°C <sup>2)</sup> |                                  |   |     |     |     |     |     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------|---|-----|-----|-----|-----|-----|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                      | Nutz-<br>ungs-<br>bedin-<br>gung |   |     |     |     |     |     |  |  |  |  |
| 10 / 8 N/mm²                                                                                           | w/w                              | 2 | 1,5 | 2,5 | 2,0 | 2,0 | 3,0 |  |  |  |  |
|                                                                                                        | d/d                              | 2 | 2,0 | 3,0 | 2,0 | 2,0 | 3,0 |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C88.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                                                   |                                  | M10   | M12    | M16        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|--------|------------|--|--|--|
| Injektions-Ankerhülse FIS H                                                                                                   | ΙK                               | 18x13 | 30/200 | 22x130/200 |  |  |  |
| N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,b,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                                  |       |        |            |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                             | Nutz-<br>ungs-<br>bedin-<br>gung |       |        |            |  |  |  |
| 10 / 8 N/mm <sup>2</sup>                                                                                                      | w/w                              | 1     | .5     | 2,0        |  |  |  |
| 10 / 0 14/11111                                                                                                               | d/d                              | 2     | ,0     | 2,0        |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C88 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120° C keine Leistung bewertet



#### Hochlochziegel HLz, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

**Tabelle C89.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6  | M8          |     | •   | M8  | M10 | M8  | M10 |     | •    | M12 | M16 | M12 | M16 | M12 | M16 |
|-------------------------------|-----|-------------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E       | _   |             | M6  | M8  | _   |     | _   |     | M10 | M12  |     |     | _   |     | _   |     |
| Innerige winded interior      |     |             | 11> | (85 |     |     |     |     | 15> | (85  |     |     |     |     |     |     |
| Injektions-Ankerhülse FIS H K | 12: | <b>x</b> 85 |     | 16> | (85 |     | 16x | 130 |     | 20x8 | 85  |     | 20x | 130 | 20x | 200 |

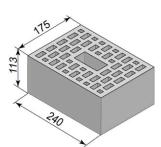
 $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$  [kN]; Temperaturbereich 50/80°C <sup>2)</sup> Nutz-Mittlere Druckfestigkeit / ungs-Mindestdruckfestigkeit bedin-Einzelstein<sup>1)</sup> gung w/w 2,5 3,0 3,0 3,0 1,5 1,5 1,5 1,5 10 / 8 N/mm<sup>2</sup> d/d 2,5 3,0 3,0 3.0 1,5 1.5 1.5 1.5

Tabelle C89.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                  | M10                                    | M12    | M16        |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------|------------|--|--|--|--|
| Injektions-Ankerhülse FIS                                                         | ΗK                               | 18x13                                  | 30/200 | 22x130/200 |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | [kN]; Ten                        | emperaturbereich 50/80°C <sup>2)</sup> |        |            |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                                        |        |            |  |  |  |  |
| 10 / 8 N/mm <sup>2</sup>                                                          | w/w                              | 3                                      | .0     | 1,5        |  |  |  |  |
| 10 / 6 N/IIIII-                                                                   | d/d                              | 3                                      | ,0     | 1,5        |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.


| fischer Injektionssystem FIS V Plus für Mauerwerk                                               |            |
|-------------------------------------------------------------------------------------------------|------------|
|                                                                                                 | Anhona COO |
| Leistung                                                                                        | Anhang C89 |
| Hochlochziegel HLz, Mineralwolle gefüllt, Charakteristischer Widerstand unter Querbeanspruchung |            |
| bearispractions                                                                                 |            |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120° C keine Leistung bewertet

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120° C keine Leistung bewertet





| Hersteller                                                          |          | z.B.    | Wienerbe  | erger  |
|---------------------------------------------------------------------|----------|---------|-----------|--------|
| Nennmaße                                                            | [mm]     | Länge L | Höhe H    |        |
| Nemimaise                                                           | [mm]     | ≥ 240   | ≥ 175     | ≥ 113  |
| Rohdichte ρ                                                         | [kg/dm³] |         | 0,9       |        |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm²]  |         | 12,5 / 10 |        |
| Norm oder Anhang                                                    |          | EN 771  | -1:2011+  | 1:2015 |

Steinabmessungen siehe auch Anhang B19

Tabelle C90.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | M6 | M8  |       | -   | M8  | M10 | M8  | M10 | -   | •   | M12         | M16 | M12 | M16 |
|-------------------------------|----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-------------|-----|-----|-----|
| Innengewindeanker FIS E       |    | _   | М6    | M8  |     |     |     |     | M10 | M12 |             |     |     | _   |
| Illinengewindeanker FIS E     | '  |     | 11x85 |     |     | 15x | 85  | •   |     |     |             |     |     |     |
| Injektions-Ankerhülse FIS H K | 12 | x85 |       | 16: | x85 |     | 16x | 130 |     | 20  | <b>k</b> 85 |     | 20x | 130 |

#### Ankerstange und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

| Max. Montage-<br>drehmoment | max T <sub>inst</sub> [Nm] | 2 |  | 4 |
|-----------------------------|----------------------------|---|--|---|
|-----------------------------|----------------------------|---|--|---|

#### Allgemeine Installationsparameter

| - mgement mee    |                                                |     |  |  |  |  |  |  |  |  |
|------------------|------------------------------------------------|-----|--|--|--|--|--|--|--|--|
| Randabstand      | c <sub>min</sub> = c <sub>cr</sub>             | 100 |  |  |  |  |  |  |  |  |
| Achs-            | s <sub>min</sub> II<br>s <sub>cr</sub> II [mm] | 240 |  |  |  |  |  |  |  |  |
| Achs-<br>abstand | s <sub>min</sub> ⊥ s <sub>cr</sub> ⊥           | 115 |  |  |  |  |  |  |  |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C90.2: Gruppenfaktoren

| Ankerstan            | ige                                                                                                                                                                                        | M6  | M8       | M8 | M10   | M8 | M10    | M12 | M16   | M12 | M16    |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----|-------|----|--------|-----|-------|-----|--------|--|
| Injektions-          | Ankerhülse FIS H K                                                                                                                                                                         | 12: | 12x85 10 |    | 16x85 |    | 16x130 |     | 20x85 |     | 20x130 |  |
| Gruppen-<br>faktoren | $\begin{array}{c} \alpha_{g,N} (s_{min} II) = \\ \underline{\alpha_{g,V} (s_{min} II)} \\ \hline \alpha_{g,N} (s_{min} \bot) = \\ \underline{\alpha_{g,V} (s_{min} \bot)} \end{array} [-]$ |     |          |    |       | :  | 2      |     |       |     |        |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                    |            |
|--------------------------------------------------------------------------------------|------------|
| Leistung<br>Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C90 |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Tabelle C91.1: Installationparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                   |                                    |          | M10 M12 M16 |      |            |  |  |  |
|-----------------------------------------------|------------------------------------|----------|-------------|------|------------|--|--|--|
| Injektions-Ank                                | njektions-Ankerhülse FIS H K       |          |             | /200 | 22x130/200 |  |  |  |
| Ankerstange mit Injektions-Ankerhülse FIS H K |                                    |          |             |      |            |  |  |  |
| Max. Montage-<br>drehmoment                   | max T <sub>inst</sub>              | [Nm]     | 4           |      |            |  |  |  |
| Allgemeine Ins                                | tallationsp                        | arame    | ter         |      |            |  |  |  |
| Randabstand                                   | C <sub>min</sub> = C <sub>cr</sub> |          | 100         |      |            |  |  |  |
| Achs-                                         | S <sub>min</sub> II                | [mm]     |             | 240  |            |  |  |  |
| abstand                                       | s <sub>min</sub> ⊥                 |          | 115         |      |            |  |  |  |
| Bohrverfahren                                 |                                    | •        |             |      |            |  |  |  |
| Hammerbohren                                  | mit Hartme                         | etall-Ha | mmerbohrer  |      |            |  |  |  |

# Tabelle C91.2: Gruppenfaktoren

| Ankerstang           | е                                                                                                                                                                                                                                                                                                                    | M10   | M10 M12 M1 |            |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|------------|--|--|--|
| Injektions-A         | Ankerhülse FIS H K                                                                                                                                                                                                                                                                                                   | 18x13 | 30/200     | 22x130/200 |  |  |  |
| Gruppen-<br>faktoren | $\begin{array}{c} \alpha_{\text{g,N}} \left( s_{\text{min}} \ II \right) \\ \hline \alpha_{\text{g,V}} \left( s_{\text{min}} \ II \right) \\ \hline \alpha_{\text{g,N}} \left( s_{\text{min}} \ \bot \right) \\ \hline \alpha_{\text{g,V}} \left( s_{\text{min}} \ \bot \right) \end{array} \left[ \text{-} \right]$ |       | :          | 2          |  |  |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                           |            |
|---------------------------------------------------------------------------------------------|------------|
| <b>Leistung</b><br>Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C91 |



**Tabelle C92.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6  | M8          | -    |            | M8   | M10 | M8  | M10 |     | -   | M12 | M16 | M12 | M16 |
|-------------------------------|-----|-------------|------|------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E       |     |             | M6 N | <b>VI8</b> |      |     |     |     | M10 | M12 |     |     |     |     |
|                               |     |             | 11x8 | 5          | '    | •   |     | •   | 15  | x85 |     |     | •   |     |
| Injektions-Ankerhülse FIS H K | 12: | <b>k</b> 85 |      | 16         | 8x85 |     | 16x | 130 |     | 20  | x85 |     | 20x | 130 |

| •                                                                                                      |                                  |     |     |     |     |     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------|-----|-----|-----|-----|-----|--|--|--|--|
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                                  |     |     |     |     |     |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1)                                 | Nutz-<br>ungs-<br>bedin-<br>gung |     |     |     |     |     |  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                                            | w/w                              | 3,5 | 4,0 | 4,5 | 4,5 | 4,0 |  |  |  |  |
| 12,57 10 14/111111                                                                                     | d/d                              | 4   | 4,5 | 5,0 | 5,0 | 4,0 |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C92.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                                                   |                                  | M10 | M12     | M16        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|---------|------------|--|--|--|--|--|--|
| Injektionsankerhülse FIS                                                                                                      | HK                               | 18x | 130/200 | 22x130/200 |  |  |  |  |  |  |
| N <sub>Rk</sub> = N <sub>Rk,p</sub> = N <sub>Rk,b,c</sub> = N <sub>Rk,b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                                  |     |         |            |  |  |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1)                                                        | Nutz-<br>ungs-<br>bedin-<br>gung |     |         |            |  |  |  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                                                                   | w/w                              |     | 4.5     | 4.0        |  |  |  |  |  |  |
| 12,5 / 10 N/IIIII-                                                                                                            | d/d                              |     | 5,0     | 4,0        |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C92 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet



**Tabelle C93.1:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6  | M8          | _         |    | M8  | M10 | M8  | M10 |     | -          | M12 | M16 | M12 | M16 |
|-------------------------------|-----|-------------|-----------|----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|
| Innengewindeanker<br>FIS E    |     | -           | M6<br>11x | M8 |     | -   |     | -   |     | M12<br>x85 |     | -   | -   |     |
| Injektions-Ankerhülse FIS H K | 12: | <b>k</b> 85 | 112       |    | x85 |     | 16x | 130 | 13. |            | x85 |     | 20x | 130 |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung                                                                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 12,5 / 10 N/mm <sup>2</sup>                                                       | w/w                                                                                              | 4,0 | 5,5 | 4,0 | 5,5 | 5,5 | 7,0 | 5,5 | 7,0 | 7,0 | 6,0 | 6,0 | 8,0 | 6,0 | 8,0 |
| 12,37 10 14/11111                                                                 | d/d                                                                                              | 4,0 | 5,5 | 4,0 | 5,5 | 5,5 | 7,0 | 5,5 | 7,0 | 7,0 | 6,0 | 6,0 | 8,0 | 6,0 | 8,0 |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C93.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                      |                                  | M10 M12 M16 |         |            |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------|-------------|---------|------------|--|--|--|--|
| Injektions-Ankerhülse FIS                                                                        | ЭНK                              | 18x1        | 130/200 | 22x130/200 |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                                  |             |         |            |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                | Nutz-<br>ungs-<br>bedin-<br>gung |             |         |            |  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                                                      | w/w                              | 7,0         | 6,0     | 0,8        |  |  |  |  |
| 12,5 / 10 N/IIIII                                                                                | d/d                              | 7.0         | 6.0     | 8.0        |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C93 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C keine Leistung bewertet



#### Langlochziegel LLz, EN 771-1:2011+A1:2015 Hersteller Länge L Breite B | Höhe H Nennmaße [mm] 250 78 248 [kg/dm<sup>3</sup>] ≥ 0,7 Rohdichte p 2,5 / 2 oder 5 / 4 Mittlere Druckfestigkeit / [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) oder 8 / 6 EN 771-1:2011+A1:2015 Norm oder Anhang Steinabmessungen siehe auch Anhang B19 8 40 248 Tabelle C94.1: Installationsparameter **Ankerstange M6 M8** Injektions-Ankerhülse FIS H K 12x50 Ankerstangen mit Injektions-Ankerhülse FIS H K Max. Montagemax T<sub>inst</sub> | [Nm] 2 drehmoment Allgemeine Installationsparameter Randabstand 100 $c_{min} = c_{cr}$ $s_{\text{min}} \; II$ 75 [mm] Achsscr II 250 abstand $s_{min} \perp = s_{cr} \perp$ 250 **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C94.2: Gruppenfaktoren Ankerstange **M6 M8** Injektions-Ankerhülse FIS H K 12x50 1,6 $\alpha_{g,N}$ (s<sub>min</sub> II) 1,1 $\alpha_{g,V}$ (s<sub>min</sub> II) Gruppen-[-] faktoren $\alpha_{g,N}$ (Smin $\perp$ ) 2,0 $\alpha_{\text{g,V}}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk **Anhang C94** Leistuna Langlochziegel LLz, Abmessungen, Installationsparameter, Gruppenfaktoren



#### Langlochziegel LLz, EN 771-1:2011+A1:2015

**Tabelle C95.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                                                              |     |                | M6    | M8 |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|-----|----------------|-------|----|--|--|--|--|
| Injektions-Ankerhülse FIS H K                                                                            |     |                | 12x50 |    |  |  |  |  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |     |                |       |    |  |  |  |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)                                         |     | ungs-<br>ngung |       |    |  |  |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                                                                | w/w | w/d            | 0     | ,5 |  |  |  |  |
| 2,5 / 2 14/111111                                                                                        | C   | l/d            | 0     | ,6 |  |  |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                                  | w/w | w/d            | 0     | ,9 |  |  |  |  |
| 5 / 4 N/IIIII                                                                                            | С   | l/d            | 1,2   |    |  |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                                                  | w/w | w/d            | 1     | ,5 |  |  |  |  |
| O / O N/ITIITI-                                                                                          |     | l/d            | 1     | .5 |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

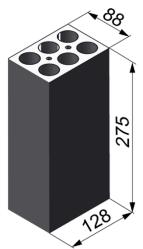
**Tabelle C95.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                      |                           | М6                                  | М8  |  |  |  |  |
|------------------------------------------------------------------|---------------------------|-------------------------------------|-----|--|--|--|--|
| Injektions-Ankerhül                                              | se FIS H K                | 12x50                               |     |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,II}$                  | V <sub>Rk,c,⊥</sub> [kN]; | Temperaturbereich 50/80°C und 72/12 | 0°C |  |  |  |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | Nutzungs-<br>bedingung    |                                     |     |  |  |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                        | w/w w/d<br>d/d            | 0,                                  | 5   |  |  |  |  |
| 5 / 4 N/mm²                                                      | w/w w/d<br>d/d            | 0,                                  | 9   |  |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                          | w/w w/d<br>d/d            | 1,                                  | 5   |  |  |  |  |

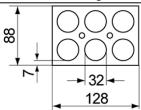
Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

fischer Injektionssystem FIS V Plus für Mauerwerk


Leistung
Langlochziegel LLz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung

Anhang C95


<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).



## Langlochziegel LLz, EN 771-1:2011+A1:2015



| Hersteller                                                          | z.B. Cermanica Farreny S.A. |         |                   |        |  |
|---------------------------------------------------------------------|-----------------------------|---------|-------------------|--------|--|
| Nennmaße                                                            | [mm]                        | Länge L | Breite B          | Höhe H |  |
| Nemmaise                                                            | [mm]                        | 275     | 88                | 128    |  |
| Rohdichte ρ                                                         | [kg/dm <sup>3</sup> ]       |         | ≥ 0,8             |        |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ]        |         | 2,5 / 2           |        |  |
| Norm oder Anhang                                                    |                             | EN 771  | -1:2011+ <i>A</i> | 1:2015 |  |



Steinabmessungen siehe auch Anhang B19

Tabelle C96.1: Installationsparameter

| Ankerstange                           |                       |       | М6                | М8 |  |  |  |
|---------------------------------------|-----------------------|-------|-------------------|----|--|--|--|
| Injektions-Ank                        | erhülse FIS           | SHK   | K 12x50           |    |  |  |  |
| Ankerstangen                          | mit Injektio          | ons-A | nkerhülse FIS H K |    |  |  |  |
| Max. Montage-<br>drehmoment           | max T <sub>inst</sub> | [Nm]  | 2                 | 2  |  |  |  |
| Allgemeine Ins                        | tallationsp           | aram  | eter              |    |  |  |  |
| Randabstand                           | $c_{min} = c_{cr}$    |       | 6                 | 0  |  |  |  |
|                                       | s <sub>min</sub> II   |       | 7                 | 5  |  |  |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | s <sub>cr</sub> II    | [mm]  | 27                | 75 |  |  |  |
| Achsabstand                           | s <sub>min</sub> ⊥    |       | 7                 | 5  |  |  |  |
|                                       | s <sub>cr</sub> ⊥     |       | 13                | 30 |  |  |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C96.2: Gruppenfaktoren

| Ankerstang           | je                                                                  |     | М6    | М8 |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------|-----|-------|----|--|--|--|--|--|
| Injektions-A         | Ankerhülse FIS                                                      | нк  | 12x50 |    |  |  |  |  |  |
|                      | α <sub>g,N</sub> (s <sub>min</sub> II)                              |     | 1     | 3  |  |  |  |  |  |
| Gruppen-<br>faktoren | $\alpha_{\text{g,V}}$ (s <sub>min</sub> II)                         | r 1 | 1     | 5  |  |  |  |  |  |
| faktoren             | $lpha_{	extsf{g},	extsf{N}}$ (s <sub>min</sub> $oldsymbol{\perp}$ ) | [-] | 1     | 3  |  |  |  |  |  |
|                      | $lpha_{	extsf{g,V}}$ (s <sub>min</sub> $oldsymbol{\perp}$ )         |     | 1,5   |    |  |  |  |  |  |

| fischer Injektionssystem FIS V Plus für Mauerwerk                                 |            |
|-----------------------------------------------------------------------------------|------------|
| Leistung Langlochziegel LLz, Abmessungen, Installationsparameter, Gruppenfaktoren | Anhang C96 |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Langlochziegel LLz, EN 771-1:2011+A1:2015

**Tabelle C97.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                              |                                  | М6                                                           | M8 |  |  |  |  |
|--------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|----|--|--|--|--|
| Injektions-Ankerhülse                                                    | FIS H K                          | 12x50                                                        |    |  |  |  |  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk}$                                  | $_{K,p,c} = N_{Rk,}$             | <sub>b,c</sub> [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |    |  |  |  |  |
| Mittlere<br>Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                                                              |    |  |  |  |  |
| 2,5 / 2 N/mm²                                                            | w/w w/d<br>d/d                   | 1,                                                           | 5  |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C97.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                              |                                  | M6                                    | М8   |  |  |  |
|--------------------------------------------------------------------------|----------------------------------|---------------------------------------|------|--|--|--|
| Injektions-Ankerhülse                                                    | FIS H K                          | 12x50                                 |      |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{F}$                                | <sub>Rk,c,⊥</sub> [kN]           | ; Temperaturbereich 50/80°C und 72/12 | 20°C |  |  |  |
| Mittlere<br>Druckfestigkeit/<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                                       |      |  |  |  |
| 2,5 / 2 N/mm²                                                            | w/w w/d<br>d/d                   |                                       | 2    |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Langlochziegel LLz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung

Anhang C97

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>.



| Hohlblock aus Leichtbeto                                                                       | n Hb   | I, E             | N 771-                 | 3:2011      | +A1:201     | 15         |                   |            |           |                       |             |
|------------------------------------------------------------------------------------------------|--------|------------------|------------------------|-------------|-------------|------------|-------------------|------------|-----------|-----------------------|-------------|
| 240                                                                                            | Herste | elle             | r                      |             |             |            |                   |            |           | -                     |             |
|                                                                                                | Nenni  | maí              | <br>کو                 |             |             | ſm         | ml                | Lär        | nge L     | Breite B              | Höhe H      |
|                                                                                                |        |                  |                        |             |             |            |                   | 3          | 62        | 240                   | 240         |
|                                                                                                | Rohdi  |                  | <u> </u>               | :::         |             | [kg/d      | dm <sup>3</sup> ] | 3] ≥ 1,0   |           |                       |             |
| 240                                                                                            | 1      |                  | Druckfest<br>ruckfesti | •           | zelstein 1) | [N/r       | nm²]              |            | 2,5       | / 2 oder 5            | / 4         |
|                                                                                                | Norm   | ode              | er Anhan               | g           |             |            |                   | E          | N 771-    | 3:2011+A              | 1:2015      |
| Tabelle C98.1: Installations (Vorsteck-N                                                       | •      | Norm oder Anhang |                        |             |             |            |                   |            |           | bmessung<br>anhang B1 |             |
| `                                                                                              |        |                  |                        | TRUOTIS 7   |             |            |                   | <b>'</b>   | 1440114   | 40 8440 844           | 0 844 0 844 |
| Ankerstange                                                                                    | M6 N   | M8               | M6   M8                | -<br>M6 M8  | M8 M10      | IVI8 IVI10 | -                 | -<br>M12   |           | 16   W 12   W 1       | 6 M12 M16   |
| Innengewindeanker FIS E                                                                        | -      |                  | -                      | 11x85       | -           | -          | -                 | x85        | -         | -                     | -           |
| Injektions-Ankerhülse FIS H K                                                                  | 12x5   | 50               | 12x85                  | 162         | x85         | 16x130     |                   | 20         | x85       | 20x13                 | 0 20x200    |
| Ankerstangen und Innengewin                                                                    | deanl  | ker              | FIS E mi               | it Injektio | ons-Anke    | rhülse F   | IS H              | K          |           |                       |             |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [Nm]                                         |        |                  |                        |             |             | 2          |                   |            |           |                       |             |
| Allgemeine Installationsparam                                                                  | eter   |                  |                        |             |             |            |                   |            |           |                       |             |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>                                                 |        |                  |                        |             |             | 60         |                   |            |           |                       |             |
| Achs- s <sub>min</sub> II [mm]                                                                 |        |                  |                        |             |             | 100<br>362 |                   |            |           |                       |             |
| abstand $\frac{s_{cr} \Pi}{s_{min} \bot = s_{cr} \bot}$                                        |        |                  |                        |             |             | 240        |                   |            |           |                       |             |
| Bohrverfahren                                                                                  |        |                  |                        |             |             |            |                   |            |           |                       |             |
| Hammerbohren mit Hartmetall-H                                                                  | amme   | erbo             | hrer                   |             |             |            |                   |            |           |                       |             |
| Die Mindestdruckfestigkeit des Tabelle C98.2: Gruppenfak                                       |        |                  | eins darf n            | nicht weni  | ger als 80º | % der mit  | tlere             | n Dru      | ıckfestiç | gkeit betra           | gen.        |
| Ankerstange                                                                                    | M6 N   | M8               | M6 M8                  | -           | M8 M10      | M8 M10     |                   | -          | M12 M     | 16 M12 M1             | 6 M12 M16   |
| Innengewindeanker FIS E                                                                        | -      |                  | -                      | M6 M8       | -           | -          |                   | M12<br>x85 | _         | -                     | -           |
| Injektions-Ankerhülse FIS H K                                                                  | 12x5   | 50               | 12x85                  | 16:         | x85         | 16x130     |                   |            | x85       | 20x13                 | 0 20x200    |
| α <sub>g,N</sub> (s <sub>min</sub> II)                                                         |        |                  |                        |             |             | 1,2        |                   |            |           |                       |             |
| Gruppen- $\alpha_{g,V}$ (s <sub>min</sub> II) [-]                                              |        |                  |                        |             |             | 1,1        |                   |            |           |                       |             |
| faktoren $\frac{\alpha_{g,N}\left(s_{min}\perp\right)}{\alpha_{g,V}\left(s_{min}\perp\right)}$ | 2,0    |                  |                        |             |             |            |                   |            |           |                       |             |
| fischer Injektionssystem FI                                                                    | IS V F | Plu              | s für Ma               | auerwer     | k           |            |                   |            |           |                       |             |
| Leistung Hohlblock aus Leichtbeton Hbl, Gruppenfaktoren                                        | Abme   | ssu              | ngen, Ins              | stallations | sparamete   | er,        |                   |            |           | Anhang                | , C98       |



#### Tabelle C99.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| M10                                            | M12                                   | M16                                                           |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| H K 18x                                        | (130/200                              | 22x130/200                                                    |  |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                       |                                                               |  |  |  |  |  |  |
| Nm]                                            | 2                                     |                                                               |  |  |  |  |  |  |
| arameter                                       |                                       |                                                               |  |  |  |  |  |  |
|                                                | (                                     | 60                                                            |  |  |  |  |  |  |
|                                                | 1                                     | 00                                                            |  |  |  |  |  |  |
| mmj                                            | 362                                   |                                                               |  |  |  |  |  |  |
|                                                | 240                                   |                                                               |  |  |  |  |  |  |
|                                                | H K 18x<br>ns-Ankerhülse FIS H<br>Nm] | H K 18x130/200  ns-Ankerhülse FIS H K  Nm]  arameter  mm] 1 3 |  |  |  |  |  |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C99.2: Gruppenfaktoren

| Ankerstan   | ge                                                                    | M10 M12 M16 |            |   |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------|-------------|------------|---|--|--|--|--|--|
| Injektions- | Ankerhülse FIS H K                                                    | 18x13       | 22x130/200 |   |  |  |  |  |  |
|             | α <sub>g,N</sub> (s <sub>min</sub> II)                                |             | 1          | 2 |  |  |  |  |  |
| Gruppen-    | $\alpha_{g,V}$ (s <sub>min</sub> II)                                  |             | 1          | 1 |  |  |  |  |  |
| faktoren    | $\frac{\alpha_{g,N}(s_{min} \perp)}{\alpha_{g,V}(s_{min} \perp)}$ [-] |             | 2,0        |   |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hohlblock aus Leichtbeton Hbl, Abmessungen, Installationsparameter,
Gruppenfaktoren

Anhang C99



**Tabelle C100.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6  | M8            | M6 | M8  | -         |     | M8  | M10 | M8  | M10  |            |    | M12        | M16 | M12 | M16 | M12 M16 |
|-------------------------------|-----|---------------|----|-----|-----------|-----|-----|-----|-----|------|------------|----|------------|-----|-----|-----|---------|
| Innengewindeanker<br>FIS E    |     | •             |    | -   | M6<br>11x |     | ı   | -   |     | -    | M10<br>15x |    | I          | •   | -   |     | -       |
| Injektions-Ankerhülse FIS H K | 12) | <b>&lt;50</b> | 12 | x85 |           | 16> | (85 |     | 16x | (130 |            | 20 | <b>(85</b> |     | 20x | 130 | 20x200  |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C <sup>2)</sup> |                                  |     |     |     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------|-----|-----|-----|--|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                      | Nutz-<br>ungs-<br>bedin-<br>gung |     |     |     |  |  |  |  |  |
| 2,5 / 2 N/mm <sup>2</sup>                                                                              | w/w w/d                          | 1,2 | 1,5 | 2,5 |  |  |  |  |  |
| 2,5 / 2 14/111111                                                                                      | d/d                              | 1,2 | 1,5 | 2,5 |  |  |  |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                                                | w/w w/d                          | 2,0 | 3,0 | 5,0 |  |  |  |  |  |
| 5 / 4 N/IIIII                                                                                          | d/d                              | 2,5 | 3,0 | 5,5 |  |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C100.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                               | M10                | M12                        | M16    |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------|--------------------|----------------------------|--------|--|--|--|
| Injektions-Ankerhülse FIS                                                         | ΗK                            | 18x13              | 18x130/200 22x130/20       |        |  |  |  |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} =$                                     | N <sub>Rk,b,c</sub> [k        | N]; Temperaturbere | eich 50/80°C <sup>2)</sup> |        |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz<br>ungs<br>bedir<br>gung | -<br> -            |                            |        |  |  |  |
| 2,5 / 2 N/mm²                                                                     | w/w w                         | /d                 |                            | 5<br>5 |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w w                         | //d                |                            | ,0     |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                            |             |
|----------------------------------------------------------------------------------------------|-------------|
| Leistung Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C100 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk,(72/120^{\circ}C)} = 0.83 \cdot N_{Rk,(50/80^{\circ}C)}$ .



**Tabelle C101.1:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6  | M8  | М6 | M8  | -         |     | М8  | M10 | M8  | M10         | -          |     | M12 | M16 | M12 | M16 | M12 M16 |
|-------------------------------|-----|-----|----|-----|-----------|-----|-----|-----|-----|-------------|------------|-----|-----|-----|-----|-----|---------|
| Innengewindeanker FIS E       |     | -   |    | -   | M6<br>11x |     | l   | -   |     | -           | M10<br>15x | _   |     | -   | -   | •   | -       |
| Injektions-Ankerhülse FIS H K | 12) | (50 | 12 | x85 |           | 16> | (85 |     | 16x | <b>c130</b> |            | 20> | (85 |     | 20x | 130 | 20x200  |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]                            | V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |     |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung                                                                                              |     |  |  |  |  |  |  |  |  |  |  |
| 2,5 / 2 N/mm²                                                                     | w/w w/d<br>d/d                                                                                                                | 0,9 |  |  |  |  |  |  |  |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                                                                                                                | 2,0 |  |  |  |  |  |  |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen...

**Tabelle C101.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                       |                                                                                                 | M10   | M12    | M16        |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|--------|------------|--|--|--|--|
| Injektions-Ankerhülse FIS                                                         | HK                                                                                              | 18x13 | 30/200 | 22x130/200 |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | $R_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C und 72/120°C |       |        |            |  |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung                                                                |       |        |            |  |  |  |  |
| 2,5 / 2 N/mm²                                                                     | w/w w/d<br>d/d                                                                                  |       | 0,     | 9          |  |  |  |  |
| 5 / 4 N/mm²                                                                       | w/w w/d<br>d/d                                                                                  |       | 2,     | 0          |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                             |             |
|-----------------------------------------------------------------------------------------------|-------------|
| Leistung Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C101 |



| Hohlblock aus Leichtbe                                                                                                                                                                   |         |             |                |               |       |         |      |      |       |              |                   |       |          |               |      |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|----------------|---------------|-------|---------|------|------|-------|--------------|-------------------|-------|----------|---------------|------|------------------|
| 300                                                                                                                                                                                      | H       | erst        | eller          |               |       |         |      |      |       |              |                   | 1     |          | z.B. S        |      | 1101 - 11        |
|                                                                                                                                                                                          | N       | enni        | maße           | )             |       |         |      |      |       | [            | mm]               |       | ige L    | Breit<br>20   |      | Höhe H           |
|                                                                                                                                                                                          | <u></u> | <u>abdi</u> | iohto          |               |       |         |      |      |       | ГІ           | a/dm3             | +     | 00       | <br>≥ 1       |      | 200              |
|                                                                                                                                                                                          | 3 ⊢     |             | ichte<br>re Dr |               | etiak | ait /   |      |      |       |              | g/dm³             |       |          |               | ,0   |                  |
|                                                                                                                                                                                          | УM      | linde       | estdru         | ıckfe         | stigk | eit Ein | zels | tein | 1)    | / <u>[</u> N | l/mm <sup>2</sup> |       |          |               |      | ler 8 / 6        |
| 500                                                                                                                                                                                      | N       | orm         | oder           | Anh           | ang   |         |      |      |       |              |                   | =     | N //1    | -1:20         | 11+A | 1:2015           |
| Tabelle C102.1: Installation                                                                                                                                                             | ons     | spa         | rame           | e <b>te</b> r | 75    | 9 16 13 | 32   |      | 500   |              |                   |       |          | nabm<br>e auc |      | ngen<br>nang B19 |
| Ankerstange                                                                                                                                                                              |         | М6          | M8             | M6            | M8    |         |      | MΩ   | M10   | MΩ           | M10               | M10   | M12      |               |      | M12 M1           |
| Ankerstange                                                                                                                                                                              | +       | IVIO        | IVIO           | IVIO          | IVIO  | M6      | MΩ   | IVIO | IVITO | IVIO         | IVITO             | IVITO | IVITZ    | M10           |      | IVI I Z IVI I    |
| Innengewindeanker FIS E                                                                                                                                                                  |         |             | -              |               | -     | 11x     |      |      | -     |              | -                 |       | -        |               | (85  | -                |
| Injektions-Ankerhülse FIS H                                                                                                                                                              | ĸ       | 12          | x50            | 12            | x85   | 112     | 16)  | (85  |       | 16:          | x130              | 18x1  | 30/200   |               | 20>  |                  |
| Ankerstangen und Innengev                                                                                                                                                                | _       |             |                | FIS I         | E mit | Injek   | tion | s-Ar | ıkerh |              |                   |       |          |               |      |                  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [Nr                                                                                                                                    | Т       |             |                |               |       |         |      |      |       |              |                   | 2     |          |               |      |                  |
| Allgemeine Installationspara                                                                                                                                                             | ıme     | eter        |                |               |       |         |      |      |       |              |                   |       |          |               |      |                  |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>                                                                                                                                           |         |             |                |               |       |         |      |      |       | 100          |                   |       |          |               |      |                  |
| Achs- $s_{min} II = s_{cr} II$ [m] abstand $s_{min} \perp = s_{cr} \perp$                                                                                                                | m]      |             |                |               |       |         |      |      |       | 500<br>200   |                   |       |          |               |      |                  |
| Bohrverfahren                                                                                                                                                                            |         |             |                |               |       |         |      |      |       |              |                   |       |          |               |      |                  |
| Hammerbohren mit Hartmetall                                                                                                                                                              | -На     | amm         | erbo           | hrer          |       |         |      |      |       |              |                   |       |          |               |      |                  |
| Die Mindestdruckfestigkeit on Tabelle C102.2: Gruppen                                                                                                                                    | fak     | ctor        | en             |               |       | cht we  | nige |      |       |              |                   |       |          |               |      |                  |
| Ankerstange                                                                                                                                                                              | _       | M6          | M8             | M6            | M8    | -       |      | M8   | M10   | M8           | M10               | M10   | M12      |               |      | M12 M1           |
| Innengewindeanker FIS E                                                                                                                                                                  |         |             | _              |               | _     | M6      |      |      | _     |              | _                 |       | -        | M10           |      | _                |
|                                                                                                                                                                                          | 1/      | 40          |                | 40            | -05   | 11x     |      |      |       | 40           | 400               | 40.4  | 00/000   |               | (85  | <u> </u>         |
| Injektions-Ankerhülse FIS H                                                                                                                                                              | K       | 12          | x50            | 12            | x85   |         | 16)  | (85  |       | 162          | K130              | 18X1  | 30/200   |               | 20>  | (85              |
| Gruppen- faktoren $ \frac{\alpha_{g,N} \text{ ($s_{min}$ II)}}{\alpha_{g,N} \text{ ($s_{min}$ I]}} $ $ \alpha_{g,N} \text{ ($s_{min}$ \bot)} $ $ \alpha_{g,N} \text{ ($s_{min}$ \bot)} $ | ]       |             |                |               |       |         |      |      |       | 2            |                   |       |          |               |      |                  |
| fischer Injektionssystem                                                                                                                                                                 | FIG     | S \/        | Dlu            | s für         | ·Mə   | IJANA"  | ark  |      |       |              |                   |       |          |               |      |                  |
| Leistung                                                                                                                                                                                 |         | ۷ د<br>—    | rius           | s iur         | ivia  | uerwe   | = IK |      |       |              |                   |       | $\dashv$ | Anh           | ang  | C102             |



**Tabelle C103.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                   | М6 | M8  | М6 | M8  |    | -         | M8  | M10 | M8  | M10 | M10   | M12   | -                | M12 M16 |
|-------------------------------|----|-----|----|-----|----|-----------|-----|-----|-----|-----|-------|-------|------------------|---------|
| Innengewindeanker FIS E       |    | -   |    | -   | M6 | M8<br>x85 |     | -   |     | -   |       | •     | M10 M12<br>15x85 | -       |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12 | x85 |    | 16:       | (85 |     | 16x | 130 | 18x13 | 0/200 | 20               | x85     |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | = <b>N</b> <sub>Rk,b,c</sub>     | [kN]; Temperaturbereich 50/80°C <sup>2</sup> | 2)  |
|------------------------------------------------------------------------|----------------------------------|----------------------------------------------|-----|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                                              |     |
| 2,5 / 2 N/mm <sup>2</sup>                                              | w/w w/d                          |                                              | 0,4 |
| 2,0 / 2 10/11111                                                       | d/d                              |                                              | 0,5 |
| 5 / 4 N/mm²                                                            | w/w w/d                          |                                              | 0,9 |
| 37414/11111                                                            | d/d                              |                                              | 0,9 |
| 8 / 6 N/mm²                                                            | w/w w/d                          |                                              | 1,2 |
| O / O N/IIIIII                                                         | d/d                              |                                              | 1,5 |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

# Tabelle C103.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                   | M6 | M8  | М6  | M8          |       | •   | M8  | M10 | M8  | M10 | M10   | M12   | -       | M12 M16 |
|-------------------------------|----|-----|-----|-------------|-------|-----|-----|-----|-----|-----|-------|-------|---------|---------|
| Innonneciando alkon FIG F     | -  |     |     |             | М6    | M8  |     |     |     |     |       |       | M10 M12 |         |
| Innengewindeanker FIS E       |    |     |     |             | 11x85 |     | -   |     | -   |     | -     |       | 15x85   | •       |
| Injektions-Ankerhülse FIS H K | 12 | x50 | 12: | <b>k</b> 85 |       | 162 | x85 |     | 16x | 130 | 18x13 | 0/200 | 20:     | x85     |

| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c}$                           | <sub>:,⊥</sub> [kN]; 1           | Femperaturbereich 50/80°C und 72/120°C |
|------------------------------------------------------------------------|----------------------------------|----------------------------------------|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                                        |
| 2,5 / 2 N/mm <sup>2</sup>                                              | w/w w/d<br>d/d                   | 0,9                                    |
| 5 / 4 N/mm²                                                            | w/w w/d<br>d/d                   | 1,5                                    |
| 8 / 6 N/mm²                                                            | w/w w/d<br>d/d                   | 2,5                                    |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zug- und
Querbeanspruchung

Anhang C103

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk,(72/120^{\circ}C)} = 0.83 \cdot N_{Rk,(50/80^{\circ}C)}$ .



#### Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015 Hersteller z.B. Roadstone wood Länge L | Breite B | Höhe H Nennmaße [mm] 440 215 215 [kg/dm<sup>3</sup>] ≥ 1,2 Rohdichte p Mittlere Druckfestigkeit / 5 / 4 oder 8 / 6 oder 10 / 8 [N/mm<sup>2</sup>]Mindestdruckfestigkeit Einzelstein 1) oder 12,5 / 10 Norm oder Anhang EN 771-3:2011+A1:2015 Steinabmessungen siehe 215 145 auch Anhang B20 32 Tabelle C104.1: Installationsparameter 440 (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K) M6 M8 M6 | M8 M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange** M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 12x85 Injektions-Ankerhülse FIS H K 12x50 16x85 16x130 20x85 20x130 Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montagemax T<sub>inst</sub> | [Nm] drehmoment Allgemeine Installationsparameter Randabstand 110 $c_{min} = c_{cr}$ Smin II 100 s<sub>cr</sub> II [mm] 440 Achsabstand 100 Smin $\perp$ 215 $\mathbf{s}_{\mathsf{cr}} \, \bot$ Bohrverfahren Hammerbohren mit Hartmetall-Hammerbohrer Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C104.2: Gruppenfaktoren M6 | **M6 M8** M8 M10 M8 M10 M12 M16 M12 M16 **Ankerstange M8** M6 | M8 M10 M12 Innengewindeanker FIS E 11x85 15x85 Injektions-Ankerhülse FIS H K 12x50 12x85 16x85 16x130 20x85 20x130 $\alpha_{g,N}$ (s<sub>min</sub> II) 1.4 2,0 Gruppen- $\alpha_{g,V}$ (s<sub>min</sub> II) [-] faktoren 1.4 $\alpha_{g,N}$ ( $s_{min} \perp$ ) 1,2 $\alpha_{g,V}$ (s<sub>min</sub> $\perp$ ) fischer Injektionssystem FIS V Plus für Mauerwerk **Anhang C104** Leistuna Hohlblock aus Leichtbeton Hbl, Abmessungen, Installationsparameter, Gruppenfaktoren



#### Tabelle C105.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                    |                                    |      | M10   | M12        | M16 |  |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------|------|-------|------------|-----|--|--|--|--|--|--|--|
| Injektions-Ank                                 | erhülse Fl                         | SHK  | 18x13 | 22x130/200 |     |  |  |  |  |  |  |  |
| Ankerstangen mit Injektions-Ankerhülse FIS H K |                                    |      |       |            |     |  |  |  |  |  |  |  |
| Max. Montage-<br>drehmoment                    | max T <sub>inst</sub>              | [Nm] |       | 2          |     |  |  |  |  |  |  |  |
| Allgemeine Ins                                 | Allgemeine Installationsparameter  |      |       |            |     |  |  |  |  |  |  |  |
| Randabstand                                    | C <sub>min</sub> = C <sub>cr</sub> |      |       | 1          | 10  |  |  |  |  |  |  |  |
|                                                | s <sub>min</sub> II                |      |       | 10         | 00  |  |  |  |  |  |  |  |
| Achs-                                          | s <sub>cr</sub> II                 | [mm] |       | 44         | 40  |  |  |  |  |  |  |  |
| abstand                                        | s <sub>min</sub> ⊥                 |      | 100   |            |     |  |  |  |  |  |  |  |
|                                                | s <sub>cr</sub> ⊥                  |      |       | 215        |     |  |  |  |  |  |  |  |
| Bohrverfahren                                  | 1                                  |      |       |            |     |  |  |  |  |  |  |  |

#### Tabelle C105.2: Gruppenfaktoren

Hammerbohren mit Hartmetall-Hammerbohrer

| Ankerstang           | je                                             |     | M10   | M10 M12 M16 |     |  |  |  |  |  |  |
|----------------------|------------------------------------------------|-----|-------|-------------|-----|--|--|--|--|--|--|
| Injektions-A         | Ankerhülse FIS                                 | нК  | 18x13 | 22x130/200  |     |  |  |  |  |  |  |
|                      | α <sub>g,N</sub> (s <sub>min</sub> II)         |     |       | 1           | ,4  |  |  |  |  |  |  |
| Gruppen-             | $\alpha_{g,V}$ (s <sub>min</sub> II)           | r 1 |       | 2           | 0,0 |  |  |  |  |  |  |
| Gruppen-<br>faktoren | α <sub>g,N</sub> (S <sub>min</sub> ⊥)          | [-] |       | ,4          |     |  |  |  |  |  |  |
|                      | $\alpha_{\sf g,V}$ (S <sub>min</sub> $\perp$ ) |     | 1,2   |             |     |  |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Hohlblock aus Leichtbeton Hbl, Abmessungen, Installationsparameter,
Gruppenfaktoren

Anhang C105



**Tabelle C106.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | М6  | M8         | М6 | M8  |           | -         | M8  | M10 | M8                | M10 | M10   | M12 | -                | M12 | M16 |
|-------------------------------|-----|------------|----|-----|-----------|-----------|-----|-----|-------------------|-----|-------|-----|------------------|-----|-----|
| Innengewindeanker FIS E       |     | •          |    | -   | M6<br>112 | M8<br>x85 | ,   | -   |                   | -   |       | =   | M10 M12<br>15x85 |     | -   |
| Injektions-Ankerhülse FIS H K | 12: | <b>x50</b> | 12 | x85 | 16x       |           | x85 |     | 16x130   18x130/2 |     | 0/200 | 20  | x85              |     |     |

| ,                                                                      |                                  |                 |                  |    |     |
|------------------------------------------------------------------------|----------------------------------|-----------------|------------------|----|-----|
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | $= N_{Rk,b,c}$                   | [kN]; Temperatu | rbereich 50/80°C | 2) |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                 |                  |    |     |
| 5 / 4 N/mm²                                                            | w/w w/d                          | 0,9             | 1,2              |    | 2,0 |
|                                                                        | d/d                              | 1,2             | 1,5              |    | 2,0 |
| 8 / 6 N/mm <sup>2</sup>                                                | w/w w/d                          | 1,5             | 2.0              |    | 3.0 |
| 0 / 0 N/IIIII                                                          | d/d                              | 1,5             | 2,0              |    | 3,0 |
| 10 / 8 N/mm²                                                           | w/w w/d                          | 2,0             | 2,5              |    | 3,5 |
| TO / O IN/ITILIT                                                       | d/d                              | 2,0             | 3,0              |    | 4,0 |
| 12,5 / 10 N/mm²                                                        | w/w w/d                          | 2,5             | 3,0              |    | 4,5 |
| 12,5 / 10 N/IIIII                                                      | d/d                              | 3,0             | 3,5              |    | 5,0 |

<sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C106.2:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                            |                                  | M10              | M12                | M16        |
|------------------------------------------------------------------------|----------------------------------|------------------|--------------------|------------|
| Injektions-Ankerhülse Fl                                               | IS H K                           | 18x′             | 130/200            | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | = N <sub>Rk,b,c</sub>            | [kN]; Temperatur | bereich 50/80°C 2) |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                  |                    |            |
| 5 / 4 N/mm <sup>2</sup>                                                | w/w w/d                          |                  | 1,2                | 2,0        |
| 5 / 4 N/IIIII                                                          | d/d                              | •                | 1,5                | 2,0        |
| 8 / 6 N/mm <sup>2</sup>                                                | w/w w/d                          | 2                | 2.0                | 3,0        |
| 0 / 0 N/IIIII                                                          | d/d                              | 2                | 2,0                | 3,0        |
| 10 / 8 N/mm²                                                           | w/w w/d                          | 2                | 2,5                | 3,5        |
| 10 / 6 N/IIIII                                                         | d/d                              | ;                | 3,0                | 4,0        |
| 12,5 / 10 N/mm²                                                        | w/w w/d                          |                  | 3,0                | 4,5        |
| 12,5 / 10 N/MM-                                                        | d/d                              | ;                | 3,5                | 5,0        |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                            |             |
|----------------------------------------------------------------------------------------------|-------------|
| Leistung Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C106 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk(72/120^{\circ}C)} = 0.83 \cdot N_{Rk(50/80^{\circ}C)}$ .



**Tabelle C107.1:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

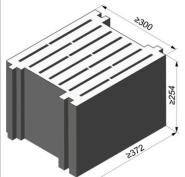
| Ankerstange                   | М6  | M8          | M6  | M8    |       | -   | M8       | M10 | M8  | M10 | -     | M    | 12 | M16 | M12 | M16 |
|-------------------------------|-----|-------------|-----|-------|-------|-----|----------|-----|-----|-----|-------|------|----|-----|-----|-----|
| Innengewindeanker FIS E       |     |             |     |       | М6    | M8  |          |     |     |     | M10 M | 12   |    |     |     |     |
|                               | -   |             | -   |       | 11x85 |     | <b>-</b> |     | _   |     | 15x8  | 5    | _  |     | '   | -   |
| Injektions-Ankerhülse FIS H K | 12) | <b>x</b> 50 | 12) | 12x85 |       | 162 |          |     | 16> | 130 | :     | 20x8 | 5  |     | 20x | 130 |

V<sub>Rk</sub> = V<sub>Rk,b</sub> = V<sub>Rk,c,ll</sub> = V<sub>Rk,c,⊥</sub> [kN] abhängig von der Druckfestigkeit; Montage und Nutzung w/w, w/d, d/d: (Temperaturbereich 50/80°C und 72/120°C

| Montage und Nutzun                                              | g w/w, w/                        | d, d/c | t; (Te | mpe  | ratur | berei | ch 50/80°C und 72/120°C) |
|-----------------------------------------------------------------|----------------------------------|--------|--------|------|-------|-------|--------------------------|
| Mittlere Druckfestigkeit/ Mindestdruckfestigkeit Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |        |        |      |       |       |                          |
| 5 / 4 N/mm²                                                     | w/w w/d<br>d/d                   | 0,75   | 1,20   | 0,75 | 1,20  | 0,75  | 1,20                     |
| 8 / 6 N/mm <sup>2</sup>                                         | w/w w/d<br>d/d                   | 1,20   | 2,00   | 1,20 | 2,00  | 1,20  | 2,00                     |
| 10 / 8 N/mm²                                                    | w/w w/d<br>d/d                   | 1,50   | 2,50   | 1,50 | 2,50  | 1,50  | 2,50                     |
| 12,5 / 10 N/mm²                                                 | w/w w/d<br>d/d                   | 2,00   | 3,00   | 2,00 | 3,00  | 2,00  | 3,00                     |

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C107.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)


| Ankerstange                                                                 |                                  | M10              | M12                                    | M16        |  |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------|------------------|----------------------------------------|------------|--|--|--|--|--|
| Injektions-Ankerhülse                                                       | FIS H K                          | 18x1             | 30/200                                 | 22x130/200 |  |  |  |  |  |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V$                                       | ′ <sub>Rk,c,⊥</sub> [kN]         | ; Temperaturbere | Temperaturbereich 50/80°C und 72/120°C |            |  |  |  |  |  |
| Mittlere<br>Druckfestigkeit /<br>Mindestdruckfestig-<br>keit Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                  |                                        |            |  |  |  |  |  |
| 5 / 4 N/mm²                                                                 | w/w w/d<br>d/d                   |                  |                                        | 1,2        |  |  |  |  |  |
| 8 / 6 N/mm²                                                                 | w/w w/d<br>d/d                   |                  | ;                                      | 2,0        |  |  |  |  |  |
| 10 / 8 N/mm²                                                                | w/w w/d<br>d/d                   |                  | :                                      | 2,5        |  |  |  |  |  |
| 12,5 / 10 N/mm²                                                             | w/w w/d<br>d/d                   |                  |                                        | 3,0        |  |  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                    |             |
|------------------------------------------------------------------------------------------------------|-------------|
| <b>Leistung</b> Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C107 |



# Vollblock aus Leichtbeton Vbl, EN 771-3:2011+A1:2015 Hersteller



| Hersteller                                                          | z.B. Sepa            |         |          |         |  |
|---------------------------------------------------------------------|----------------------|---------|----------|---------|--|
| Nennmaße                                                            | [mm]                 | Länge L | Breite B | Höhe H  |  |
| Neminase                                                            | [mm]                 | ≥ 372   | ≥ 300    | ≥ 254   |  |
| Rohdichte ρ                                                         | [kg/dm³]             |         | ≥ 0,6    |         |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] |         | 2,5 / 2  |         |  |
| Norm oder Anhang                                                    |                      | EN 771  | -3:2011+ | A1:2015 |  |

372

Steinabmessungen siehe auch Anhang B20

#### Tabelle C108.1: Installationsparameter

| Ankerstange                   | M8     | M10 | M10        | M12 | M12    | M16 | M16        | M12 | M16 |
|-------------------------------|--------|-----|------------|-----|--------|-----|------------|-----|-----|
| Injektions-Ankerhülse FIS H K | 16x130 |     | 18x130/200 |     | 20x130 |     | 22x130/200 | 20x | 200 |

#### Ankerstangen mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T<sub>inst</sub> [Nm] 4

#### Allgemeine Installationsparameter

| Angement  | e mstanationsp                        | araiii | <del>ete</del> i |
|-----------|---------------------------------------|--------|------------------|
| Randabsta | $nd 	 c_{min} = c_{cr}$               |        | 130              |
| Achs-     | s <sub>min</sub>    = s <sub>cr</sub> | [mm]   | 370              |
| abstand   | $s_{min} \perp = s_{cr} \perp$        |        | 250              |

#### **Bohrverfahren**

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C108.2: Gruppenfaktoren

| Ankerstang                    | j <b>e</b>                                                                                                                                                                                                                |   | M8     | M10 | M10        | M12 | M12    | M16 | M16        | M12    | M16 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|-----|------------|-----|--------|-----|------------|--------|-----|
| Injektions-Ankerhülse FIS H K |                                                                                                                                                                                                                           | K | 16x130 |     | 18x130/200 |     | 20x130 |     | 22x130/200 | 20x200 |     |
| Gruppen-<br>faktoren          | $\begin{array}{c} \alpha_{g,N} \text{ ($s_{min}$ II)} \\ \hline \alpha_{g,V} \text{ ($s_{min}$ II)} \\ \hline \alpha_{g,N} \text{ ($s_{min}$ \bot)} \\ \hline \alpha_{g,V} \text{ ($s_{min}$ \bot)} \end{array} \text{[}$ | ] |        |     |            |     | :      | 2   |            |        |     |

fischer Injektionssystem FIS V Plus für Mauerwerk

#### Leistung

Vollblock aus Leichtbeton Vbl, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C108** 

<sup>&</sup>lt;sup>1)</sup> Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Ankerstange



#### Vollblock aus Leichtbeton Vbl, EN 771-1:211+A1:2015

**Tabelle C109.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                            |                                  | M8       | M10     | M10      | M12     | M12              | M16 | M16        | M12 | M16 |
|------------------------------------------------------------------------|----------------------------------|----------|---------|----------|---------|------------------|-----|------------|-----|-----|
| Injektions-Ankerhülse Fl                                               | SHK                              | 16x      | 130     | 18x13    | 30/200  | 20x              | 130 | 22x130/200 | 20x | 200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | = N <sub>Rk,b,c</sub>            | [kN]; Te | mperatı | ırbereic | h 50/80 | °C <sup>2)</sup> |     |            |     |     |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |          |         |          |         |                  |     |            |     |     |
| 2,5 / 2 N/mm <sup>2</sup>                                              | w/w w/d                          |          | 2,0     | 0        |         |                  | 2,  | 5          | 3,  | ,0  |
| 2,9 / 2 N/IIIII                                                        | d/d                              |          | 2,0     | 0        |         |                  | 3,  | 0          | 4   | ,0  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**M8** 

Tabelle C109.2: Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

M10

| Injektions-Ankerhülse Fl                                               | IS H K                           | 16x130         | 18x130/200     | 20x130   | 22x130/200 | 20x200 |
|------------------------------------------------------------------------|----------------------------------|----------------|----------------|----------|------------|--------|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c}$                           | ,⊥ [kN]; T                       | emperaturberei | ch 50/80°C und | 72/120°C |            |        |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                |                |          |            |        |
| 2,5 / 2 N/mm²                                                          | w/w w/d                          |                | 4,5            |          | 6,         | 5      |

M10

M12

M12

M16

M16

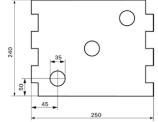
M12

M16

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Vollblock aus Leichtbeton Vbl, Charakteristischer Widerstand unter Zug- und
Querbeanspruchung


Anhang C109

<sup>2)</sup> Für den Temperaturbereich 72/120°C: N<sub>Rk (72/120°C)</sub> = 0,83 · N<sub>Rk (50/80°C)</sub>

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Vollblock aus Leichtbeton Vbl, EN 771-3:2011+A1:2015 Hersteller **KLB** Breite B | Höhe H Länge L Nennmaße [mm] ≥ 250 ≥ 240 ≥ 239 Rohdichte p [kg/dm<sup>3</sup>] ≥ 1,6 Mittlere Druckfestigkeit / 5 / 4 oder 8 / 6 oder 10 / 8 $[N/mm^2]$ Mindestdruckfestigkeit Einzelstein 1) Norm oder Anhang EN 771-3:2011+A1:2015



Steinabmessungen siehe auch Anhang B20

Tabelle C110.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                   | М6 | M8            | М6 | M8  |    | •                | M8  | M10 | M8  | M10 | -     |     | M12 | M16 | M12 | M16 | M12 I | M16 |
|-------------------------------|----|---------------|----|-----|----|------------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-------|-----|
| Innengewindeanker FIS E       |    | •             |    | -   | M6 | M8<br><b>(85</b> |     | •   |     | -   | M10 M | _   |     | •   |     | •   | -     |     |
| Injektions-Ankerhülse FIS H K | 12 | <b>&lt;50</b> | 12 | x85 |    | 16>              | (85 |     | 16x | 130 |       | 20> | (85 |     | 20x | 130 | 20x2  | 200 |

#### Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T<sub>inst</sub> [Nm] 4

#### Allgemeine Installationsparameter

| Randabstar | nd c <sub>min</sub> = c <sub>cr</sub>  |      | 130 |
|------------|----------------------------------------|------|-----|
| Achs-      | smin II = scr II                       | [mm] | 250 |
| abstand    | s <sub>min</sub> ⊥ = s <sub>cr</sub> ⊥ |      | 250 |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

#### Tabelle C110.2: Gruppenfaktoren

 $rac{lpha_{\sf g,N}~({\sf S}_{\sf min}~\perp)}{lpha_{\sf g,V}~({\sf S}_{\sf min}~\perp)}$ 

| Ankerstange                                                                               | М6  | M8            | M6 | M8  |    | -         | M8         | M10 | M8  | M10 | -                | M12 | M16 | M12 M | 16 M1 | 2 M16 |
|-------------------------------------------------------------------------------------------|-----|---------------|----|-----|----|-----------|------------|-----|-----|-----|------------------|-----|-----|-------|-------|-------|
| Innengewindeanker FIS E                                                                   |     | •             |    | -   | M6 | M8<br>x85 |            | •   |     | •   | M10 M12<br>15x85 | -   | •   | -     |       | -     |
| Injektions-Ankerhülse FIS H K                                                             | 12> | <b>&lt;50</b> | 12 | x85 |    | 162       | <b>(85</b> |     | 16x | 130 | 20               | x85 |     | 20x13 | 0 20  | x200  |
| Gruppen- faktoren $ \frac{\alpha_{g,N} (s_{min}   II)}{\alpha_{g,V} (s_{min}   II)} $ [-] |     |               |    |     |    |           |            |     | 2   | ,0  |                  |     |     |       |       |       |

#### fischer Injektionssystem FIS V Plus für Mauerwerk

#### Leistung

Vollblock aus Leichtbeton Vbl, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C110** 

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



#### Tabelle C111.1: Installationsparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

| Ankerstange                                            | M10               | M12    | M16        |
|--------------------------------------------------------|-------------------|--------|------------|
| Injektions-Ankerhülse FIS H K                          | 18x13             | 30/200 | 22x130/200 |
| Ankerstangen mit Injektions-A                          | nkerhülse FIS H K |        |            |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [Nm] |                   | 2.     | 0          |
| Allgemeine Installationsparam                          | eter              |        |            |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>         |                   | 13     | 30         |
| Achs- s <sub>min</sub> II = s <sub>cr</sub> II [mm]    |                   | 25     | 50         |
| abstand $s_{min} \perp = s_{cr} \perp$                 |                   | 25     | 50         |
| Bohrverfahren                                          |                   |        |            |

Hammerbohren mit Hartmetall-Hammerbohrer

# Tabelle C111.2: Gruppenfaktoren

| Ankerstang           | е                                                                                                                                          | M10   | M12    | M16        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------|
| Injektions-A         | Ankerhülse FIS H K                                                                                                                         | 18x13 | 30/200 | 22x130/200 |
| Gruppen-<br>faktoren | $ \frac{\alpha_{g,N} (s_{min} II)}{\alpha_{g,V} (s_{min} II)} $ $ \frac{\alpha_{g,N} (s_{min} \bot)}{\alpha_{g,V} (s_{min} \bot)} $ $ [-]$ |       | 2      | ,0         |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung

Vollblock aus Leichtbeton Vbl, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C111** 



**Tabelle C112.1:** Charakt. Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

| Ankerstange                   | M6 I | М8 | М6  | М8          |           | •         | M8  | M10 | M8  | M10 | -              | M12        | M16 | M12 | M16 | M12 | M16 |
|-------------------------------|------|----|-----|-------------|-----------|-----------|-----|-----|-----|-----|----------------|------------|-----|-----|-----|-----|-----|
| Innengewindeanker FIS E       | -    |    |     | -           | M6<br>11) | M8<br>(85 |     | -   | ,   | -   | <br>M12<br>x85 |            | -   |     | -   | •   | •   |
| Injektions-Ankerhülse FIS H K | 12x  | 50 | 12> | <b>k</b> 85 |           | 16        | (85 |     | 16x | 130 | 20>            | <b>(85</b> |     | 20x | 130 | 20x | 200 |

| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | = N <sub>Rk,b,c</sub> [          | kN]; Te | mpera | turbereich 50/80° | C <sup>2)</sup> |   |    |  |
|------------------------------------------------------------------------|----------------------------------|---------|-------|-------------------|-----------------|---|----|--|
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |         |       |                   |                 |   |    |  |
| 5 / 4 N/mm <sup>2</sup>                                                | w/w w/d                          | 1,2     | 2,0   | 2,5               |                 | 3 | ,0 |  |
| 5 / 4 N/IIIII                                                          | d/d                              | 2,0     | 3,5   | 4,0               |                 | 5 | ,0 |  |
| 8 / 6 N/mm <sup>2</sup>                                                | w/w w/d                          | 1,5     | 3,0   | 4,0               |                 | 5 | ,0 |  |
| O / O IN/IIIIII                                                        | d/d                              | 3,0     | 5,0   | 6,5               |                 | 7 | ,5 |  |
| 10 / 8 N/mm <sup>2</sup>                                               | w/w w/d                          | 2,0     | 4,0   | 5,0               |                 | 6 | ,5 |  |
| 10 / 6 N/IIIII                                                         | d/d                              | 4,0     | 7,0   | 8,5               |                 | 9 | ,0 |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C112.2:** Charakt. Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                            |                                  | M10             | M12                 | M16        |
|------------------------------------------------------------------------|----------------------------------|-----------------|---------------------|------------|
| Injektions-Ankerhülse FIS                                              | нк                               | 18x             | 130/200             | 22x130/200 |
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | = N <sub>Rk,b,c</sub>            | [kN]; Temperatu | rbereich 50/80°C 2) |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                 |                     |            |
| 5 / 4 N/mm <sup>2</sup>                                                | w/w w/                           | d               | 2,5                 | 3,0        |
| 5 / 4 N/IIIII                                                          | d/d                              |                 | 4,0                 | 5,0        |
| 8 / 6 N/mm <sup>2</sup>                                                | w/w w/                           | d               | 4,0                 | 5,0        |
| O / O IN/ITITIT                                                        | d/d                              |                 | 6,5                 | 7,5        |
| 10 / 8 N/mm <sup>2</sup>                                               | w/w w/                           | d               | 5,0                 | 6,5        |
| 10 / 6 N/IIIII                                                         | d/d                              |                 | 8,5                 | 9,0        |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen...

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                            |             |
|----------------------------------------------------------------------------------------------|-------------|
| Leistung Vollblock aus Leichtbeton Vbl, Charakteristischer Widerstand unter Zugbeanspruchung | Anhang C112 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk,(72/120^{\circ}C)} = 0.83 \cdot N_{Rk,(50/80^{\circ}C)}$ .

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).



**Tabelle C113.1:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

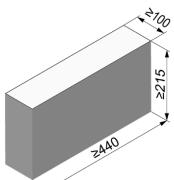
| Ankerstange                   | М6  | M8  | М6  | M8          | -         |                  | M8  | M10 | M8  | M10 | -     |     | M12 M16 |   | M12 M16 |    | M12 M16 |
|-------------------------------|-----|-----|-----|-------------|-----------|------------------|-----|-----|-----|-----|-------|-----|---------|---|---------|----|---------|
| Innengewindeanker FIS E       |     | •   |     | •           | M6<br>11) | M8<br><b>(85</b> |     | -   |     | -   | M10 N |     |         | • | -       |    | -       |
| Injektions-Ankerhülse FIS H K | 12: | x50 | 12: | <b>k</b> 85 |           | 16)              | (85 |     | 16x | 130 |       | 20× | (85     |   | 20x13   | 30 | 20x200  |

| Injektions-Ankernuise i is it k                                                                                               |                                  |     | X OU | 12  | X05 |     | 1000 | 102 130 | 20.000 | 20X 130 | 200200 |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|------|-----|-----|-----|------|---------|--------|---------|--------|
| V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |                                  |     |      |     |     |     |      |         |        |         |        |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1)                                                        | Nutz-<br>ungs-<br>bedin-<br>gung |     |      |     |     |     |      |         |        |         |        |
| 5 / 4 N/mm²                                                                                                                   | w/w w/d<br>d/d                   | 2,0 | 3,0  | 2,0 | 3,0 | 2,0 | 3,5  |         | 4      | ,5      |        |
| 8 / 6 N/mm²                                                                                                                   | w/w w/d<br>d/d                   | 3,0 | 4,5  | 3,0 | 4,5 | 3,0 | 5,5  |         | 6      | ,5      |        |
| 10 / 8 N/mm²                                                                                                                  | w/w w/d<br>d/d                   | 4,0 | 6,0  | 4,0 | 6,0 | 4,0 | 7,0  |         | 8      | ,5      |        |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C113.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)

| Ankerstange                                                                                                                   |                                  | M10  | M12    | M16        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------|--------|------------|--|--|--|
| Injektions-Ankerhülse FIS H K                                                                                                 |                                  | 18x1 | 30/200 | 22x130/200 |  |  |  |
| V <sub>Rk</sub> = V <sub>Rk,b</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |                                  |      |        |            |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1)                                                        | Nutz-<br>ungs-<br>bedin-<br>gung |      |        |            |  |  |  |
| 5 / 4 N/mm²                                                                                                                   | w/w w/d<br>d/d                   | 3    | 3,5    | 4,5        |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                                                                       | w/w w/d<br>d/d                   | 5    | i,5    | 6,5        |  |  |  |
| 10 / 8 N/mm²                                                                                                                  | w/w w/d<br>d/d                   | 7    | 7,0    | 8,5        |  |  |  |


Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                             |             |
|-----------------------------------------------------------------------------------------------|-------------|
| Leistung Vollblock aus Leichtbeton Vbl, Charakteristischer Widerstand unter Querbeanspruchung | Anhang C113 |



## Vollblock aus Leichtbeton Vbl, EN 771-3:2011+A1:2015



| Hersteller                                                       |                      | Roadstone wood                                 |            |        |  |
|------------------------------------------------------------------|----------------------|------------------------------------------------|------------|--------|--|
| Nennmaße                                                         | [mm]                 | Länge L                                        | Breite B   | Höhe H |  |
| Nemmaise                                                         | [mm]                 | ≥ 440                                          | ≥ 100      | ≥ 215  |  |
| Rohdichte ρ                                                      | [kg/dm³]             | ≥ 2,0                                          |            |        |  |
| Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | 5 / 4 oder 8 / 6 oder 10 / 8<br>oder 12,5 / 10 |            |        |  |
| Norm oder Anhang                                                 |                      | EN 771                                         | I-3:2011+A | 1:2015 |  |

## Tabelle C114.1: Installationsparameter

| Ankerstange                         |                                         |      | M6 |    | M8 |    | M10 |    | M12 |    | M16 |    |
|-------------------------------------|-----------------------------------------|------|----|----|----|----|-----|----|-----|----|-----|----|
| Ankerstangen o                      | Ankerstangen ohne Injektions-Ankerhülse |      |    |    |    |    |     |    |     |    |     |    |
| Effektive<br>Verankerungs-<br>tiefe | h <sub>ef</sub>                         | [mm] | 50 | 70 | 50 | 70 | 50  | 70 | 50  | 70 | 50  | 70 |
| Max. Montage-<br>drehmoment         | max T <sub>inst</sub>                   | [Nm] | 4  |    | 10 |    |     |    |     |    |     |    |

### Allgemeine Installationsparameter

| Randabstand      | C <sub>min</sub> = C <sub>cr</sub> |      | 100                |
|------------------|------------------------------------|------|--------------------|
|                  | s <sub>min</sub> II                |      | 75                 |
| Achs-            | s <sub>cr</sub> II                 | [mm] | 3x h <sub>ef</sub> |
| Achs-<br>abstand | S $_{min} oldsymbol{\perp}$        |      | 75                 |
| _                | scr⊥                               |      | 3x h <sub>ef</sub> |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

### Tabelle C114.2: Gruppenfaktoren

| Ankerstang | е                                                  |      | М6  | M8  | M10 | M12 | M16 |  |  |  |  |
|------------|----------------------------------------------------|------|-----|-----|-----|-----|-----|--|--|--|--|
|            | α <sub>g,N</sub> (s <sub>min</sub> II)             |      |     | 1,6 |     |     |     |  |  |  |  |
| Gruppen-   | α <sub>g,V</sub> (s <sub>min</sub> II)             | ., [ |     |     | 1,3 |     |     |  |  |  |  |
|            | $\alpha_{\sf g,N}$ ( ${\sf s}_{\sf min}$ $\perp$ ) | [-]  |     |     | 1,4 |     |     |  |  |  |  |
|            | α <sub>g,V</sub> (S <sub>min</sub> ⊥)              |      | 1,3 |     |     |     |     |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

#### Leistung

Vollblock aus Leichtbeton Vbl, Abmessungen, Installationsparameter, Gruppenfaktoren

**Anhang C114** 

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



## Vollblock aus Leichtbeton Vbl, EN 771-3:2011+A1:2015

**Tabelle C115.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                            |                          | M6        | M8                                                    | M10            | M12               | M16 |  |  |  |
|------------------------------------------------------------------------|--------------------------|-----------|-------------------------------------------------------|----------------|-------------------|-----|--|--|--|
| $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$                            | = N <sub>R</sub>         | k,b,c     | kN]; Temperat                                         | urbereich 50/8 | 0°C <sup>2)</sup> |     |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nut<br>ung<br>bed<br>gur | s-<br>in- | Effektive Verankerungstiefe h <sub>ef</sub> [mm] ≥ 50 |                |                   |     |  |  |  |
| 5 / 4 N/mm <sup>2</sup>                                                | w/w                      | w/d       | 1,2                                                   |                |                   | ,2  |  |  |  |
| 3 / 4 IN/IIIII                                                         | d/d                      | k         | 2,0                                                   |                | 2                 | ,0  |  |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                | w/w                      | w/d       | 1,5                                                   |                | 2                 | ,0  |  |  |  |
| 0 / 0 14/111111                                                        | d/d                      | k         | 3,0                                                   | 3,0            |                   |     |  |  |  |
| 10 / 8 N/mm²                                                           | w/w                      | w/d       | 2,0                                                   |                | 2                 | ,5  |  |  |  |
| TO / O IN/IIIIII                                                       | d/d                      | k         | 4,0                                                   |                | 4                 | ,5  |  |  |  |
| 12,5 / 10 N/mm <sup>2</sup>                                            | w/w                      | w/d       | 3,0                                                   |                | 3                 | ,5  |  |  |  |
| 12,57 TO N/IIIII                                                       | d/d                      | k         | 5,0                                                   |                | 5                 | ,5  |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C115.2:** Charakt. Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                            |                                  | М6             | M8                                                    | M10      | M12 | M16 |  |  |  |
|------------------------------------------------------------------------|----------------------------------|----------------|-------------------------------------------------------|----------|-----|-----|--|--|--|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,c}$                         | ⊥ [kN]; Te                       | emperaturberei | ich 50/80°C und                                       | 72/120°C |     |     |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein 1) | Nutz-<br>ungs-<br>bedin-<br>gung |                | Effektive Verankerungstiefe h <sub>ef</sub> [mm] ≥ 50 |          |     |     |  |  |  |
| 5 / 4 N/mm²                                                            | w/w w/d<br>d/d                   | 1,2            | 1,5                                                   | 1,5      | 1,5 | 1,5 |  |  |  |
| 8 / 6 N/mm²                                                            | w/w w/d<br>d/d                   | 2,0            | 2,0                                                   | 2,5      | 2,5 | 2,5 |  |  |  |
| 10 / 8 N/mm²                                                           | w/w w/d<br>d/d                   | 2,5            | 2,5                                                   | 3,0      | 3,0 | 3,5 |  |  |  |
| 12,5 / 10 N/mm²                                                        | w/w w/d<br>d/d                   | 3,0            | 3,5                                                   | 4,0      | 4,0 | 4,5 |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                      |             |
|--------------------------------------------------------------------------------------------------------|-------------|
| Leistung Vollblock aus Leichtbeton Vbl, Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C115 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk,(72/120^{\circ}C)} = 0.83 \cdot N_{Rk,(50/80^{\circ}C)}$ .



#### Vollblock aus Leichtbeton Vbl, EN 771-3:2011+A1:2015 Hersteller Tramac Breite B Länge L Höhe H Nennmaße [mm] ≥ 440 ≥ 95 ≥ 215 Rohdichte ρ [kg/dm<sup>3</sup>] ≥ 2,0 Mittlere Druckfestigkeit / 7,5 / 6 oder 10 / 8 oder 12,5 / [N/mm<sup>2</sup>]10 oder 15 / 12 Mindestdruckfestigkeit Einzelstein 1) EN 771-3:2011+A1:2015 Norm oder Anhang

## Tabelle C116.1: Installationsparameter

| Ankerstange                                       |      | М6 |    | M  | 8 M10 |    | 10 | M12 |    | M16 |    |
|---------------------------------------------------|------|----|----|----|-------|----|----|-----|----|-----|----|
| Ankerstangen ohne Injektions-Ankerhülse           |      |    |    |    |       |    |    |     |    |     |    |
| Effektive<br>Verankerungstiefe h <sub>ef</sub>    | [mm] | 50 | 70 | 50 | 70    | 50 | 70 | 50  | 70 | 50  | 70 |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> | [Nm] | 4  | 1  |    |       |    | 1  | 0   |    |     |    |

#### Allgemeine Installationsparameter

| Randabstand       | C <sub>min</sub> = C <sub>cr</sub> |      | 60                 |    |
|-------------------|------------------------------------|------|--------------------|----|
|                   | s <sub>min</sub> II                |      | 75                 |    |
| Achs-             | s <sub>cr</sub> II                 | [mm] | 3x h <sub>ef</sub> |    |
| Achs<br>abstand _ | S <sub>min</sub> ⊥                 |      |                    | 75 |
|                   | Scr⊥                               |      | 3x h <sub>ef</sub> |    |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

## Tabelle C116.2: Gruppenfaktoren

| Ankerstang | e                                         | M6 | M8  | M10 | M12 | M16 |  |  |  |
|------------|-------------------------------------------|----|-----|-----|-----|-----|--|--|--|
|            | α <sub>g,N</sub> (s <sub>min</sub> II)    |    |     | 1,9 |     |     |  |  |  |
| Gruppen-   | α <sub>g,V</sub> (s <sub>min</sub> II)    | 1  | 1,4 |     |     |     |  |  |  |
| faktoren   |                                           | .] |     | 1,9 |     |     |  |  |  |
|            | $lpha_{	extsf{g,V}}$ (s <sub>min</sub> 上) |    | 1,4 |     |     |     |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Vollblock aus Leichtbeton Vbl, Abmessungen, Installationsparameter, Gruppenfaktoren

Anhang C116

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen...



### Vollblock aus Leichtbeton Vbl, EN 771-3:2011+A1:2015

**Tabelle C117.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

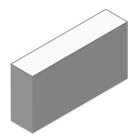
| Ankerstange                                                                                                           |                         |       | M6                  |         | M8      |          | M10             |          | M12      |     | M16 |     |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------|-------|---------------------|---------|---------|----------|-----------------|----------|----------|-----|-----|-----|
| $\mathbf{N}_{\mathrm{Rk}} = \mathbf{N}_{\mathrm{Rk,p}} = \mathbf{N}_{\mathrm{Rk,b}} = \mathbf{N}_{\mathrm{Rk,p,c}} =$ | N <sub>Rk,b,</sub>      | c [kN | ]; Tem <sub>l</sub> | peratur | bereich | 50/80°   | C <sup>2)</sup> |          |          |     |     |     |
| Mittlere Druckfestigkeit /                                                                                            | 1                       | tz-   |                     |         | Eff     | ektive V | eranke          | rungstie | fe hef[n | nm] |     |     |
| Mindestdruckfestigkeit Einzelstein <sup>1)</sup>                                                                      | ungs-<br>bedin-<br>gung |       | 50                  | 70      | 50      | 70       | 50              | 70       | 50       | 70  | 50  | 70  |
| 7,5 / 6 N/mm²                                                                                                         | w/w                     | w/d   | 1,5                 | 2,0     | 1,5     | 2,0      | 1,5             | 2,0      | 1,5      | 2,0 | 1,5 | 2,0 |
| 7,576 N/IIIII-                                                                                                        | d/d                     |       | 2,5                 | 3,5     | 2,5     | 3,5      | 2,5             | 3,5      | 2,5      | 3,5 | 2,5 | 3,5 |
| 10 / 8 N/mm <sup>2</sup>                                                                                              | w/w                     | w/d   | 2,0                 | 2,5     | 2,0     | 2,5      | 2,0             | 3,0      | 2,0      | 3,0 | 2,0 | 3,0 |
| 10 / 6 N/MM                                                                                                           | d/                      | ⁄d    | 3,5                 | 4,5     | 3,5     | 4,5      | 3,5             | 5,0      | 3,5      | 5,0 | 3,5 | 5,0 |
| 42 E / 40 N/mm²                                                                                                       | w/w                     | w/d   | 2,5                 | 3,5     | 2,5     | 3,5      | 2,5             | 3,5      | 2,5      | 3,5 | 2,5 | 3,5 |
| 12,5 / 10 N/mm²                                                                                                       | d/                      | ⁄d    | 4,5                 | 6,0     | 4,5     | 6,0      | 4,5             | 6,0      | 4,5      | 6,0 | 4,5 | 6,0 |
| 15 / 12 N/mm <sup>2</sup>                                                                                             | w/w                     | w/d   | 3,0                 | 4,0     | 3,0     | 4,0      | 3,0             | 4,5      | 3,0      | 4,5 | 3,0 | 4,5 |
| 15 / 12 N/MM                                                                                                          | d/                      | /d    | 5,0                 | 7,0     | 5,0     | 7,0      | 5,0             | 7,5      | 5,0      | 7,5 | 5,0 | 7,5 |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C117.2: Charakteristischer Widerstand lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                                       |                                  | М6             | M8                                        | M10      | M12 | M16 |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------|----------------|-------------------------------------------|----------|-----|-----|--|--|--|
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$                                | [kN]; Tem                        | peraturbereich | 50/80°C und                               | 72/120°C |     |     |  |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup> | Nutz-<br>ungs-<br>bedin-<br>gung |                | Effektive Verankerungstiefe hef [mm] ≥ 50 |          |     |     |  |  |  |
| 7,5 / 6 N/mm²                                                                     | w/w w/d                          | 2,0            | 2,0                                       | 2,0      | 1,5 | 1,5 |  |  |  |
| 10 / 8 N/mm²                                                                      | w/w w/d<br>d/d                   | 2,5            | 2,5                                       | 3,0      | 2,5 | 2,5 |  |  |  |
| 12,5 / 10 N/mm²                                                                   | w/w w/d<br>d/d                   | 3,5            | 3,5                                       | 4,0      | 3,0 | 3,0 |  |  |  |
| 15 / 12 N/mm²                                                                     | w/w w/d<br>d/d                   | 4,0            | 4,0                                       | 4,5      | 3,5 | 3,5 |  |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.


Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                      |             |
|--------------------------------------------------------------------------------------------------------|-------------|
| Leistung Vollblock aus Leichtbeton Vbl, Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C117 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk (72/120^{\circ}C)} = 0.83 \cdot N_{Rk (50/80^{\circ}C)}$ .



## Porenbeton (zylindrisches Bohrloch), EN 771-4:2011+A1:2015



| 11                                                                  |                      |         | D \/(1    |        |  |  |
|---------------------------------------------------------------------|----------------------|---------|-----------|--------|--|--|
| Hersteller                                                          | z.B. Ytong           |         |           |        |  |  |
| Rohdichte ρ                                                         | [kg/dm³]             | 0,35    | 0,5       | 0,65   |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ] | 2,5 / 2 | 5/4       | 8/6    |  |  |
| Norm oder Anhang                                                    |                      | EN 771  | -4:2011+A | 1:2015 |  |  |

## Tabelle C118.1: Installationsparameter

| Ankerstange                    |                      |       | N    | 16     | N   | 18     | М      | 10    | M     | 12   | M   | 16  |    | •  |     | •   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
|--------------------------------|----------------------|-------|------|--------|-----|--------|--------|-------|-------|------|-----|-----|----|----|-----|-----|--|---|--|---|--|---|--|---|--|---|--|---|--|---|--|---|--|-----|--|---|--|---|--|--|--|---|--|---|--|---|--|---|--|------------|
| Innengewindeanker FIS E        |                      | =     |      |        |     | _      |        |       |       | -    |     |     | М6 | M8 | M10 | M12 |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| innengewindeank                | er rio i             | -     | -    |        |     |        |        | -   - |       |      |     | -   |    | _  |     | _   |  | _ |  | _ |  | _ |  | - |  | - |  | _ |  | - |  | - |  | - [ |  | - |  | - |  |  |  | [ |  | - |  | - |  | - |  | <b>(85</b> |
| Ankerstangen und               | d Innen              | gewin | dean | ker Fl | SEo | hne Ir | jektio | ns-A  | nkerh | ülse |     |     |    |    |     |     |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| Effektive<br>Verankerungstiefe | h <sub>ef</sub>      | [mm]  | 100  | 200    | 100 | 200    | 100    | 200   | 100   | 200  | 100 | 200 | 85 |    |     |     |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| Max. Montage-<br>drehmoment m  | ax T <sub>inst</sub> | [Nm]  | 1    | 4      | 1   | 8      | 2      | 12    | 2     | 16   | 2   | 20  |    | 1  | 2   | 2   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| Allgemeine Install             | ations               | aram  | eter |        |     |        |        |       |       |      |     |     |    |    |     |     |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| Randabstand c <sub>m</sub>     | nin = Ccr            |       |      |        |     |        |        |       | 10    | 00   |     |     |    |    |     |     |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| s <sub>cr</sub> II             | = s <sub>min</sub>   |       |      | 250    |     |        |        |       |       |      |     |     |    |    |     |     |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |
| h <sub>ef</sub> =              | =200mm               | ]     |      |        |     |        |        |       |       | ^    |     |     |    |    |     |     |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |     |  |   |  |   |  |  |  |   |  |   |  |   |  |   |  |            |

| Randabsta | and c <sub>min</sub> = c <sub>cr</sub>   |      | 100                |
|-----------|------------------------------------------|------|--------------------|
|           | s <sub>cr</sub> II = s <sub>min</sub> II |      | 250                |
|           | h <sub>ef</sub> =200mm                   |      | 80                 |
|           | Smin II                                  |      |                    |
|           | h <sub>ef</sub> =200mm                   |      | 3x h <sub>ef</sub> |
| Achs-     | s <sub>cr</sub> II                       | [mm] | SA Her             |
| abstand   | $s_{cr} \perp = s_{min} \perp$           |      | 250                |
|           | h <sub>ef</sub> =200mm                   |      | 80                 |
|           | S <sub>min</sub> ⊥                       |      | 80                 |
|           | h <sub>ef</sub> =200mm                   |      | 3x h <sub>ef</sub> |
|           | <b>s</b> cr ⊥                            |      | SX Nef             |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung
Porenbeton (zylindrisches Bohrloch), Abmessungen, Installationsparameter

Anhang C118

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



| Tabelle C119.1: Gruppenfaktoren für Porenbeton     |
|----------------------------------------------------|
| (Mindestdruckfestigkeit des Einzelstein = 2 N/mm²) |

| Anker           | stange                                                       |     | М6  | - | -   |     |   |       |         |  |
|-----------------|--------------------------------------------------------------|-----|-----|---|-----|-----|---|-------|---------|--|
| Innone          | gewindeanker FIS E                                           |     |     | _ | _   |     |   | M6 M8 | M10 M12 |  |
| milené          | gewilldealiker FIS E                                         |     | -   | - | _   | •   | - | 11x85 | 15x85   |  |
| _               | $h_{ef}$ =200 $\alpha_{g,N}$ ( $s_{min}$ II)                 |     |     |   | 1,6 |     |   | _1)   | _1)     |  |
| ore             | h <sub>ef</sub> =200 α <sub>g,V</sub> (s <sub>min</sub> II)  |     | 1,1 |   |     |     |   | _1)   | _1)     |  |
| fakt            | $\alpha_{g,N} \text{ II}, \alpha_{g,V} \text{ (s_{min} II)}$ |     |     |   |     | 2,0 |   |       |         |  |
| ben             | h <sub>ef</sub> =200 $lpha_{g,N}$ ( $s_{min}$ $\perp$ )      | [-] |     |   | 1,6 |     |   | _1)   | _1)     |  |
| Gruppenfaktoren | h <sub>ef</sub> =200 $\alpha_{g,V}$ ( $s_{min} \perp$ )      |     | 0,8 |   |     |     |   |       | _1)     |  |
| U U             | $\alpha_{g,N} \perp, \alpha_{g,V} (s_{min} \perp)$           |     | 2,0 |   |     |     |   |       |         |  |

<sup>1)</sup> Leistung nicht bewertet.

**Tabelle C119.2:** Gruppenfaktoren für Porenbeton (Mindestdruckfestigkeit des Einzelstein = 4 N/mm²)

| Anker           | stange                                                                     | M6  | M8  | M10 | M12 | M16 | .   | •     |     | -   |
|-----------------|----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------|-----|-----|
| lnnana          | nowindoonkor FIC F                                                         |     |     |     |     |     | M6  | M8    | M10 | M12 |
| ınnenç          | gewindeanker FIS E                                                         | -   | •   | -   | -   | -   | 11) | 11x85 |     | x85 |
| u               | h <sub>ef</sub> =200 α <sub>g,N</sub> (s <sub>min</sub> II)                |     | 0,7 |     |     |     | 1)  | _     | 1)  |     |
| ore             | h <sub>ef</sub> =200 α <sub>gV</sub> ( <b>s</b> <sub>min</sub> II)         |     |     | 2,0 |     |     | _1) |       | _1) |     |
| fakt            | $\alpha_{g,N} \parallel, \alpha_{gV} (s_{min} \parallel)$ [-]              |     |     |     | 2,0 |     |     |       |     |     |
| pen             | h <sub>ef</sub> =200 $\alpha_{\rm g,N}$ ( $\mathbf{s}_{\rm min}$ $\perp$ ) |     |     | 0,7 |     |     | _   | 1)    | -   | 1)  |
| Gruppenfaktoren | h <sub>ef</sub> =200 α <sub>g,V</sub> (s <sub>min</sub> ⊥)                 | 1,2 |     |     |     |     | _   | 1)    | _   | 1)  |
| ഗ               | $\alpha_{g,N} \perp, \alpha_{gV}(s_{min} \perp)$                           | 2,0 |     |     |     |     |     | •     |     |     |

<sup>1)</sup> Leistung nicht bewertet.

**Tabelle C119.3:** Gruppenfaktoren für Porenbeton (Mindestdruckfestigkeit des Einzelstein = 6 N/mm²)

| Anker           | stange                                                                                                                    | M6  | M6 M8 M10 M12 M16 |     |     |   |     |       |     | -           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|-----|-------------------|-----|-----|---|-----|-------|-----|-------------|
| Innone          | gewindeanker FIS E                                                                                                        |     |                   |     |     |   |     | M8    | M10 | M12         |
| ııııeııç        | gewilldealiker FIS E                                                                                                      | _   | -                 | -   | -   | - | 11x | 11x85 |     | <b>k</b> 85 |
| _               | h <sub>ef</sub> =200 α <sub>g,N</sub> (s <sub>min</sub> II)                                                               |     |                   | 0,7 |     |   | _1  | )     |     | 1)          |
| Gruppenfaktoren | h <sub>ef</sub> =200 α <sub>g,V</sub> (s <sub>min</sub> II)                                                               |     | 2,0               |     |     |   |     | )     | _1) |             |
| aktc            | $\alpha_{g,N} \text{ II}, \alpha_{g,V} \text{ (smin II)}$                                                                 |     |                   |     | 2,0 |   |     |       |     |             |
| enf             | $\frac{\log_{\text{N}}(N,\log_{\text{N}}(S_{\text{min}} \perp))}{\log 200 \alpha_{\text{g,N}}(S_{\text{min}} \perp)} [-]$ |     |                   | 0,7 |     |   | _1  | )     |     | 1)          |
| ddn             | h <sub>ef</sub> =200 $\alpha_{g,V}$ ( $s_{min} \perp$ )                                                                   | 1,2 |                   |     |     |   |     | )     |     | 1)          |
| ပြ              | $\alpha_{g,N}\perp$ , $\alpha_{g,V}(S_{min}\perp)$                                                                        | 2,0 |                   |     |     |   |     |       |     |             |

<sup>1)</sup> Leistung nicht bewertet.

| fischer Injektionssystem FIS V Plus für Mauerwerk             |             |
|---------------------------------------------------------------|-------------|
| Leistung Porenbeton (zylindrisches Bohrloch), Gruppenfaktoren | Anhang C119 |



## Porenbeton (zylindrisches Bohrloch), EN 771-4:2011+A1:2015

**Tabelle C120.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                                                                         |                                 |                           |                                                                    | М6         |            | M8         |            | M10        |            | M12        | l N        | M16 -      |     |           |            |            |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|--------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|-----------|------------|------------|
| Innengewindeanker FIS E                                                                                             |                                 |                           |                                                                    | -          |            | -          |            | -          |            | -          |            | -          |     | M8<br>(85 | M10<br>15> | M12<br>(85 |
| $\mathbf{N}_{\mathrm{Rk}} = \mathbf{N}_{\mathrm{Rk,p}} = \mathbf{N}_{\mathrm{Rk,b}} = \mathbf{N}_{\mathrm{Rk,p,c}}$ | Rk,b,c                          | [kN];                     | Ten                                                                | npera      | aturbe     | reich      | 50/80      | °C 3)      |            |            |            |            |     |           |            |            |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                   | un<br>bed                       | itz-<br>gs-<br>din-<br>ng | -   100   200   100   200   100   200   100   200   100   200   85 |            |            |            |            |            |            |            | 35         |            |     |           |            |            |
| 2,5 / 2 N/mm²                                                                                                       | w/w<br>d                        | w/d<br>/d                 | 1,2<br>1,5                                                         | 1,2<br>3,0 | 1,5<br>1,5 | 2,0<br>3,0 | 1,5<br>1,5 | 3,0<br>3,5 | 1,5<br>2,0 | 3,0<br>4,0 | 2,0<br>2,0 | 3,0<br>4,0 |     |           |            | ,5<br>,5   |
| 5 / 4 N/mm²                                                                                                         |                                 | w/d<br>/d                 | 1,2<br>1,5                                                         | _1)<br>_1) | 2,0<br>2,0 | 1,5<br>3,0 | 2,5<br>3,0 | 3,5<br>5,0 | 2,5<br>2,5 | 3,5<br>5,0 | 2,0<br>2,0 | 3,5<br>5,0 | 2,0 |           | 1,5<br>1,5 |            |
| 8 / 6 N/mm²                                                                                                         | 8 / 6 N/mm <sup>2</sup> w/w w/d |                           | 1,5                                                                | _1)        | 3,0        | 2,5        | 4,5        | 5,0        | 4,5        | 7,0        | 3,0        | 8,5        | 3,  |           | 2,         |            |

Leistung nicht bewertet

5,0

7,0

5,0 9,0

11,5

2,5

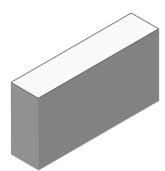
d/d

**Tabelle C120.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                        |                         | M6   |        | M8    |       | M10  |       | M12   |        | M16     |         | -     |     | -     |     |
|----------------------------------------------------|-------------------------|------|--------|-------|-------|------|-------|-------|--------|---------|---------|-------|-----|-------|-----|
| Innengewindeanker FIS I                            | =                       |      |        |       |       |      |       |       |        | _       |         | М6    | M8  | M10   | M12 |
| illileligewilldealiker Fi5 i                       | _                       | ·    |        | -     |       | -    |       | _     |        | -       |         | 11x85 |     | 15x85 |     |
| $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,.}$     | ⊥ [kN]; To              | empe | raturk | ereic | h 50/ | 80°C | und 7 | 2/120 | °C     |         |         |       |     |       |     |
| Mittlere Druckfestigkeit / Nutz- Effektive Veranke |                         |      |        |       |       |      |       |       | rungst | tiefe h | lef [mn | [ו    |     |       |     |
| Mindestdruckfestigkeit Einzelstein <sup>1)</sup>   | ungs-<br>bedin-<br>gung | 100  | 200    | 100   | 200   | 100  | 200   | 100   | 200    | 100     | 200     | 85    |     |       |     |
| 2,5 / 2 N/mm²                                      | w/w w/d<br>d/d          | 1,2  | 1,2    | 1,2   | 1,2   | 1,2  | 1,2   | 1,5   | 1,2    | 1,2     | 1,2     |       | 1,2 |       | 1,5 |
| 5 / 4 N/mm²                                        | w/w w/d<br>d/d          | 2,0  | _1)    | 2,5   | 2,0   | 2,0  | 2,0   | 2,5   | 2,0    | 2,0     | 2,0     | 2,0   |     |       | 2,5 |
| 8 / 6 N/mm²                                        | w/w w/d<br>d/d          | 2,5  | _1)    | 3,0   | 2,5   | 3,0  | 3,0   | 3,5   | 4,0    | 4,5     | 4,5     |       | 2,5 |       | 3,5 |

<sup>1)</sup> Leistung nicht bewertet

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                            |             |
|--------------------------------------------------------------------------------------------------------------|-------------|
| Leistung Porenbeton (zylindrisches Bohrloch), Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C120 |


Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>&</sup>lt;sup>3)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.



## Porenbeton (konisches Bohrloch mit Spezialbohrer PBB), EN 771-4:2011+A1:2015



| Hersteller                                                          |                       |         | z.B. Ytong |      |  |  |
|---------------------------------------------------------------------|-----------------------|---------|------------|------|--|--|
| Rohdichte ρ                                                         | [kg/dm <sup>3</sup> ] | 0,35    | 0,5        | 0,65 |  |  |
| Mittlere Druckfestigkeit /<br>Mindestdruckfestigkeit Einzelstein 1) | [N/mm <sup>2</sup> ]  | 2,5 / 2 | 5/4        | 8/6  |  |  |
| Norm oder Anhang                                                    | EN 771-4:2011+A1:2015 |         |            |      |  |  |

## Tabelle C121.1: Installationsparameter

| Ankerstange                                                         | , I    | <b>/</b> 18 | М   | 10  | М     | 12  | -              |  |  |  |
|---------------------------------------------------------------------|--------|-------------|-----|-----|-------|-----|----------------|--|--|--|
| Innengewindeanker FIS E                                             | -      | -           | -   | -   | -     | -   | M6 M8<br>11x85 |  |  |  |
| Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse |        |             |     |     |       |     |                |  |  |  |
| Effektive<br>Verankerungstiefe h <sub>ef</sub> [m                   | m] 75  | 95          | 75  | 95  | 75 95 |     | 85             |  |  |  |
| Max. Montage-<br>drehmoment max T <sub>inst</sub> [N                | m]     |             |     | 2   |       |     |                |  |  |  |
| Allgemeine Installationspar                                         | ameter |             |     |     |       |     |                |  |  |  |
| Randabstand c <sub>min</sub> = c <sub>cr</sub>                      | 120    | 150         | 120 | 150 | 120   | 150 | 150            |  |  |  |
| Achs- s <sub>cr</sub> II = s <sub>min</sub> II [m                   | m] 240 | 300         | 240 | 300 | 240   | 300 | 300            |  |  |  |
| abstand s   - s                                                     | 240    | 250         | 240 | 250 | 240   | 250 | 250            |  |  |  |

#### Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

## Tabelle C121.2: Gruppenfaktoren

| Ankerstan            | ge                                                                                                                                        | N | <b>/</b> 18 | М | 10 | M12 |   |           | -         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|---|----|-----|---|-----------|-----------|
| Innengewi            | ndeanker FIS E                                                                                                                            | - | -           | - | -  | -   | - | M6<br>112 | M8<br>x85 |
| Gruppen-<br>faktoren | $ \frac{\alpha_{g,N} (s_{min} II)}{\alpha_{g,V} (s_{min} II)} $ $ \frac{\alpha_{g,N} (s_{min} \perp)}{\alpha_{g,N} (s_{min} \perp)} $ [-] |   |             |   | 2  |     |   |           |           |

| fischer Injektionssystem FIS V Plus für Mauerwerk               |             |
|-----------------------------------------------------------------|-------------|
| Leistung Porenbeton (konisches Bohrloch mit Spezialbohrer Pbb), | Anhang C121 |
| Abmessungen, Installationsparameter, Gruppenfaktoren            |             |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.



## Porenbeton (konisches Bohrloch mit Spezialbohrer PBB), EN 771-4:2011+A1:2015

**Tabelle C122.1:** Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

| Ankerstange                                                                                           |                         | IV        | 18                                   | M         | 10  | M   | -   |           |     |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------|-----------|--------------------------------------|-----------|-----|-----|-----|-----------|-----|--|--|
| Innengewindeanker FIS E                                                                               |                         | -         | -                                    | -         | -   | -   | -   | M6<br>11x | M8  |  |  |
| $\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk,p,c}$ | I <sub>Rk,b,c</sub> [kN | ]; Temper | aturbereio                           | h 50/80°C | 2)  |     |     | 112       | .03 |  |  |
| Mittlere Druckfestigkeit /                                                                            | Nutz-<br>ungs-          |           | Effektive Verankerungstiefe hef [mm] |           |     |     |     |           |     |  |  |
| Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                                   | bedin-<br>gung          | 75        | 95                                   | 75        | 95  | 75  | 95  | 8:        | 5   |  |  |
| 2 F / 2 N/mm²                                                                                         | w/w w/d                 | 2,0       | 2,5                                  | 2,0       | 2,5 | 2,0 | 2,5 | 2,        | 0   |  |  |
| 2,5 / 2 N/mm²                                                                                         | d/d                     | 2,0       | 2,5                                  | 2,0       | 2,5 | 2,0 | 2,5 | 2,        | 0   |  |  |
| 5 / 4 N/mm²                                                                                           | w/w w/d                 | 3,0       | 3,5                                  | 3,0       | 3,5 | 3,0 | 3,5 | 3,        | 0   |  |  |
| 5 / 4 N/MM*                                                                                           | d/d                     | 3,0       | 3,5                                  | 3,0       | 3,5 | 3,0 | 3,5 | 3,        | 0   |  |  |
| 9 / C N/mm²                                                                                           | w/w w/d                 | 3,5       | 4,0                                  | 3,5       | 4,0 | 3,5 | 4,0 | 3,        | 5   |  |  |
| 8 / 6 N/mm <sup>2</sup>                                                                               | d/d                     | 4,0       | 4,5                                  | 4,0       | 4,5 | 4,0 | 4,5 | 4,        | 0   |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

**Tabelle C122.2:** Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

| Ankerstange                                                                                               |                       |     | M     | 18  | M           | 10         | M                         | 12  | -     |     |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------|-----|-------|-----|-------------|------------|---------------------------|-----|-------|-----|--|--|
| Innengewindeanker FIS E                                                                                   |                       |     |       |     | -           |            |                           | -   | M6 M8 |     |  |  |
| V <sub>Rk</sub> = V <sub>Rk,c,II</sub> = V <sub>Rk,c,⊥</sub> [kN]; Temperaturbereich 50/80°C und 72/120°C |                       |     |       |     |             |            |                           |     |       | 605 |  |  |
| Mittlere Druckfestigkeit /                                                                                | Nutz                  |     |       | . Е | ffektive Ve | erankerung | stiefe h <sub>ef</sub> [r | nm] |       |     |  |  |
| Mindestdruckfestigkeit<br>Einzelstein <sup>1)</sup>                                                       | ungs<br>bedir<br>gung | n-  | 75 95 |     | 75          | 95         | 75                        | 95  | 85    |     |  |  |
| 2,5 / 2 N/mm²                                                                                             | v/d                   | 2,5 |       |     |             |            |                           |     |       |     |  |  |
| 5 / 4 N/mm²                                                                                               | w/w w                 | v/d |       |     |             | 4,5        |                           |     |       |     |  |  |
| 5 / 4 N/IIIII                                                                                             | d/d                   |     |       |     |             | 4,5        |                           |     |       |     |  |  |
| 8 / 6 N/mm²                                                                                               | w/w w                 | -   | 6,0   |     |             |            |                           |     |       |     |  |  |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C123.

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                                              |             |
|--------------------------------------------------------------------------------------------------------------------------------|-------------|
| Leistung Porenbeton (konisches Bohrloch mit Spezialbohrer PBB), Charakteristischer Widerstand unter Zug- und Querbeanspruchung | Anhang C122 |

<sup>&</sup>lt;sup>2)</sup> Für den Temperaturbereich 72/120°C:  $N_{Rk}$  (72/120°C) = 0,83 ·  $N_{Rk}$  (50/80°C).



## β-Faktoren für Baustellenversuche; Verschiebungen

## Tabelle C123.1: β-Faktoren für Baustellenversuche

| Nutzungsbedingung              |                    | w/w u | nd w/d   | d/d   |        |  |  |  |  |  |  |
|--------------------------------|--------------------|-------|----------|-------|--------|--|--|--|--|--|--|
| Temperaturbereich [°C]         |                    | 50/80 | 72/120   | 50/80 | 72/120 |  |  |  |  |  |  |
| Material                       | Größe              |       | β-Faktor |       |        |  |  |  |  |  |  |
|                                | M6                 | 0,55  | 0,46     |       |        |  |  |  |  |  |  |
|                                | M8                 | 0,57  | 0,51     |       |        |  |  |  |  |  |  |
|                                | M10                | 0,59  | 0,52     |       |        |  |  |  |  |  |  |
| Vollsteine                     | M12<br>FIS E 11x85 | 0,60  | 0,54     | 0,96  | 0,80   |  |  |  |  |  |  |
|                                | M16<br>FIS E 15x85 | 0,62  | 0,52     |       |        |  |  |  |  |  |  |
|                                | FIS H 16x85 K      | 0,55  | 0,46     |       |        |  |  |  |  |  |  |
| Lochsteine                     | Alle Größen        | 0,86  | 0,72     | 0,96  | 0,8    |  |  |  |  |  |  |
| Porenbeton,<br>zyl. Bohrloch   | Alle Größen        | 0,73  | 0,73     | 0,81  | 0,81   |  |  |  |  |  |  |
| Porenbeton, konisches Bohrloch | Alle Größen        | 0,66  | 0,59     | 0,73  | 0,66   |  |  |  |  |  |  |

## Tabelle C123.2: Verschiebungen

| Material                                            | N<br>[k <b>N</b> ]                    | δ <b>N</b> ₀<br>[mm] | δ <b>N</b> ∞<br>[mm] | V<br>[kN]                             | δ <b>V</b> ₀<br>[mm] | δV∞<br>[mm] |
|-----------------------------------------------------|---------------------------------------|----------------------|----------------------|---------------------------------------|----------------------|-------------|
| Vollsteine und Porenbeton<br>h <sub>ef</sub> =100mm | N <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 0,03                 | 0,06                 | V <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 0,82                 | 0,88        |
| Lochsteine                                          | N <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 0,48                 | 0,06                 | V <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 1,71                 | 2,56        |
| Vollstein Mz NF<br>Anhang C4 - C7                   | N <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 0,74                 | 1,48                 | V <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 1,23                 | 1,85        |
| Vollstein KS NF<br>Anhang C14 / C15                 | N <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 0,20                 | 0,40                 |                                       | 0,91                 | 1,37        |
| AAC h <sub>ef</sub> =200 mm<br>Anhang C118 - C120   | N <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 1,03                 | 2,06                 |                                       | 1,25                 | 1,88        |
| Stein<br>Anhang C102 / C103                         | N <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 0,03                 | 0,06                 | V <sub>Rk</sub> 1,4 * γ <sub>Mm</sub> | 6,44                 | 9,66        |

Für Verankerung in Porenbeton (AAC) ist der Teilsicherheitsbeiwert  $\gamma_{MAAC}$  anstelle von  $\gamma_{Mm}$  zu verwenden.

| fischer Injektionssystem FIS V Plus für Mauerwerk                    |             |
|----------------------------------------------------------------------|-------------|
| <b>Leistung</b><br>β-Faktoren für Baustellenversuche; Verschiebungen | Anhang C123 |



## Charakteristische Werte bei Zug- und Querbeanspruchung unter Brandeinwirkung (einzelner Anker)

**Tabelle C124.1:** Charakteristische Werte bei Zug- und Querbeanspruchung unter Brandeinwirkung; alle Versagensarten berücksichtigt

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |            | וומוכ  | ueiii                             | VVIII     | ung,        | and                                | , vei      | Sayı       |                                | ai lei          | ושכו                                            | ucks                   | SICITE     | ıgı                            |             |                 |       |                        |      |                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|--------|-----------------------------------|-----------|-------------|------------------------------------|------------|------------|--------------------------------|-----------------|-------------------------------------------------|------------------------|------------|--------------------------------|-------------|-----------------|-------|------------------------|------|-----------------|--|
| Stein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |            | N<br>g | ollzieg<br>Iz, NI<br>gemä<br>hang | F,<br>ß   | voll:<br>NF | ilksar<br>stein<br>, gem<br>iang ( | KS,<br>näß | ste        | sand<br>ein Ks<br>gemä<br>nang | SL,<br>ß        | Hochloch-<br>ziegel HLz,<br>gemäß<br>Anhang C28 |                        | zie<br>(   | ochlo<br>gel H<br>gemä<br>nang | ILz,<br>ß   |                 | gen   | beton<br>näß<br>g C11  |      |                 |  |
| mittlere<br>Druckfe<br>Mindes<br>druckfe<br>Einzels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | ≥ 1        | 5/≥    | 12                                | ≥ 15/≥ 12 |             |                                    | 2          | ≥ 10 / ≥ 8 |                                |                 | ≥ 5 / ≥ 4                                       |                        |            | 7,5 / ≥                        | ≥ 6         |                 | ≥ 2,5 | /≥2                    |      |                 |  |
| Größe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |            | M8     | M10                               | M12       | M8 M10 M12  |                                    |            | M8         | M10                            | M12             | M8                                              | M10                    | M12        | M8                             | M10         | M12             | M8    | M10                    | M12  | M16             |  |
| Injektio<br>Ankerh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |            |        | -                                 |           |             | -                                  |            | 16x        | 130                            | 20x<br>130      | 16x                                             | 130                    | 20x<br>130 | 16                             | <b>k</b> 85 | 20x<br>85       |       |                        | -    |                 |  |
| Injektio<br>hülse fi<br>tragend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ür nicht                        | <u>t</u> - |        | -                                 |           |             | -                                  |            | -          | -                              | 20x<br>200      |                                                 | -                      | 20x<br>200 | 16x                            | 130         | 20x<br>130      |       | -                      |      |                 |  |
| h <sub>ef</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |            |        |                                   |           | ≥ 50        |                                    |            |            | ≥ 130                          | )               |                                                 | ≥ 130                  |            |                                | ≥ 85        |                 | ≥ 100 |                        |      |                 |  |
| Charakteristischer Widerstand gegen Versagen unter Zugbeanspruchung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |            |        |                                   |           |             |                                    |            |            |                                |                 |                                                 |                        |            |                                |             |                 |       |                        |      |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R30                             |            |        | 0,82                              |           |             | 0,32                               |            | 1,07       | 1,09                           | 1,10            |                                                 | 0,31                   |            | 0,28                           | 0,30        | 0,35            | 0,84  | 0,82                   | 0,80 | 0,80            |  |
| NRK,s,fi = NRK,p,fi = 098 RK,p,fi = 0098 RK,p,fi = | R60                             | [kN]       |        | 0,73                              |           |             | 0,31                               |            | 0,66       | 0,61                           | 0,56            |                                                 | 0,22                   |            | 0,19                           | 0,22        | 0,22            | 0,71  | 0,67                   | 0,63 | 0,63            |  |
| N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R90                             | נעואן      |        | 0,64                              |           |             | 0,29                               |            | 0,25       | 0,13                           | - <sup>1)</sup> |                                                 | 0,13                   |            | 0,10                           | 0,10        | 0,10            | 0,58  | 0,51                   | 0,45 | 0,45            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R120                            |            |        | 0,59                              |           |             | 0,28 -1) -                         |            | _ 1)       | - <sup>1)</sup>                |                 | _ 1)                                            |                        | _ 1)       | _ 1)                           | _ 1)        | _ 1)            | _ 1)  | _ 1)                   | _ 1) |                 |  |
| Charak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kteristi                        | scher      | Wide   | ersta                             | nd g      | egen        | Vers                               | sage       | n unt      | er Q                           | uerb            | eans                                            | pruc                   | hung       | 2)                             |             |                 |       |                        |      |                 |  |
| ohne F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lebela                          | rm         |        |                                   |           |             |                                    |            |            |                                |                 |                                                 |                        |            |                                |             |                 |       |                        |      |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R30                             |            |        | 0,82                              |           |             | 0,32                               |            | 1,07       | 1,09                           | 1,10            |                                                 | 0,31                   |            | 0,28                           | 0,30        | 0,35            | 1,10  | 1,75                   | 2,54 | 4,74            |  |
| J,S,f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R60                             | ]<br>      |        | 0,73                              |           |             | 0,31                               |            | 0,66       | 0,61                           | 0,56            |                                                 | 0,22                   |            | 0,19                           | 0,22        | 0,22            | 0,86  | 1,37                   | 1,99 | 3,71            |  |
| V <sub>Rk,s,fi</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R90                             | [kN]       |        | 0,64                              |           |             | 0,29                               |            | 0,25       | 0,13                           | - <sup>1)</sup> |                                                 | 0,13                   |            | 0,10                           | 0,10        | 0,10            | 0,62  | 0,99                   | 1,44 | 2,68            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R120                            | ]          |        | 0,59                              |           |             | 0,28                               |            | _ 1)       | _ 1)                           | - <sup>1)</sup> |                                                 | <b>-</b> <sup>1)</sup> |            | _ 1)                           | _ 1)        | - <sup>1)</sup> | _ 1)  | <b>-</b> <sup>1)</sup> | _ 1) | - <sup>1)</sup> |  |
| mit He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | belarm                          | 1          | •      |                                   |           |             |                                    |            |            |                                |                 |                                                 |                        |            |                                |             |                 |       |                        |      |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R30                             |            | 0,83   | 1,05                              | 1,27      | 0,33        | 0,42                               | 0,50       | 1,09       | 1,40                           | 1,71            | 0,32                                            | 0,40                   | 0,48       | 0,29                           | 0,39        | 0,54            | 1,12  | 2,26                   | 3,95 | 10,0            |  |
| k,s,fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R60                             | ] <u>.</u> | 0,74   | 0,93                              | 1,13      | 0,31        | 0,39                               | 0,47       | 0,67       | 0,78                           | 0,86            | 0,22                                            | 0,28                   | 0,34       | 0,19                           | 0,28        | 0,34            | 0,87  | 1,77                   | 3,20 | 7,87            |  |
| M <sup>0</sup> Rk,s,fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R90                             | [Nm]       | 0,65   | 0,82                              | 0,99      | 0,29        | 0,37                               | 0,44       | 0,26       | 0,17                           | _ 1)            | 0,13                                            | 0,16                   | 0,20       | 0,10                           | 0,12        | 0,15            | 0,63  | 1,28                   | 2,24 | 5,69            |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R120                            | 1          | 0,60   |                                   |           |             |                                    |            |            |                                |                 |                                                 |                        | _ 1)       |                                |             |                 |       | _ 1)                   | _ 1) | _ 1)            |  |
| Allgem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |            |        |                                   |           |             |                                    |            |            |                                | <u> </u>        |                                                 |                        |            |                                |             | <u> </u>        |       |                        |      |                 |  |
| Achs-<br>und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>C</b> cr,fi                  | [          |        | 100                               |           |             | 60                                 |            |            | 80                             |                 |                                                 | 80                     |            |                                | 100         |                 | 200   |                        |      |                 |  |
| Rand-<br>abstän                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | de <sup>S<sub>cr,fi</sub></sup> | [mm]       |        | 320                               |           |             | 200                                |            |            | 520                            |                 |                                                 | 340                    |            | 520                            |             |                 | 400   |                        |      |                 |  |
| 1) <b>K</b> oi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | امنما مم                        | una a ba   | worto  | 1                                 |           |             |                                    |            |            |                                |                 |                                                 |                        |            |                                |             |                 |       |                        |      |                 |  |

Keine Leistung bewertet.

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Falls keine abweichenden nationalen Regelungen vorliegen, ist der empfohlene Teilsicherheitsbeiwert  $\gamma_{M,fi} = 1,0$ .

| fischer Injektionssystem FIS V Plus für Mauerwerk                                                       |             |
|---------------------------------------------------------------------------------------------------------|-------------|
| Leistung Charakteristische Werte bei Zug- und Querbeanspruchung unter Brandeinwirkung (einzelner Anker) | Anhang C124 |

 $V_{Rk,b,fi} = N_{Rk,b,fi}.$ 



# Charakteristische Werte bei Zugbeanspruchung unter Brandeinwirkung (Ankergruppe)

**Tabelle C125.1:** Charakteristische Werte bei Zugbeanspruchung unter Brandeinwirkung; Steinausbruchversagen<sup>3)</sup>

|                                           | Otemausb                                                                                    | TUCITY | Craage                | <i>/</i> 111 ′ |                      |     |                             |            |                            |            |                             |            |                     |            |                             |                          |              |                             |
|-------------------------------------------|---------------------------------------------------------------------------------------------|--------|-----------------------|----------------|----------------------|-----|-----------------------------|------------|----------------------------|------------|-----------------------------|------------|---------------------|------------|-----------------------------|--------------------------|--------------|-----------------------------|
|                                           | weithless David                                                                             |        | ਰ                     |                | N                    | 18  |                             |            | М                          | 10         |                             |            | M                   | 12         |                             |                          | M1           | 16                          |
| Stein                                     | mittlere Druck-<br>festigkeit /<br>Mindestdruck-<br>festigkeit<br>Einzelstein <sup>2)</sup> |        | Achsabstand           | 34             | <b>№</b> Rk,b,fi(90) | 5   | N <sup>9</sup> Rk,b,fi(120) | 54         | М <sup>э</sup> Rk,b,fi(90) | 3          | N <sup>®</sup> Rk,b,fi(120) |            | I V − Rk, b, fi(90) | 3          | N <sup>9</sup> Rk,b,fi(120) | N <sup>9</sup> bb b 5000 | (90) II (90) | N <sup>g</sup> Rk,b,fi(120) |
| Anker                                     | anzahl einer Gr                                                                             | uppe:  |                       | 2              | 4                    | 2   | 4                           | 2          | 4                          | 2          | 4                           | 2          | 4                   | 2          | 4                           | 2                        | 4            | 2 4                         |
| [-]                                       | [N/mm <sup>2</sup> ]                                                                        | [mm]   | [-]                   |                |                      |     | •                           |            | •                          |            | [k                          | N]         |                     |            | •                           |                          |              | •                           |
| Vollziegel<br>MZ, NF<br>gemäß             | ≥ 15 / ≥ 12                                                                                 | ≥ 80   | s <sub>cr,fi</sub> II | 1,1<br>1,4     | 2,1                  | 0,8 | 1,7                         | 1,3<br>1,7 | 2,5                        | 1,0<br>1,3 | 2,0                         | 1,5<br>2,0 | 2,9                 | 1,2<br>1,6 | 2,4                         |                          | _            | 1)                          |
| Anhang C4 Kalksandvollstein KS, NF, gemäß | ≥ 15 / ≥ 12                                                                                 | ≥ 50   | S <sub>cr,fi</sub> II | 0,3            | 0,6                  | 0,2 |                             | 0,3        | 0,6                        | 0,2        | 0,5                         | 0,3        | 0,6                 | 0,2        | 0,5                         |                          | _            | 1)                          |
| Anhang C14                                |                                                                                             |        | S <sub>cr,fi</sub> ⊥  | 0,9            |                      | 0,7 |                             | 0,9        |                            | 0,7        |                             | 0,9        |                     | 0,7        |                             |                          |              |                             |
| Kalksandloch-<br>stein KSL,               | ≥ 10 / ≥ 8                                                                                  | ≥ 130  | S <sub>cr,fi</sub> II | 1,4            | 2,7                  | 1,1 | 2,2                         | 1,4        | 2,7                        | 1,1        | 2,2                         | 1,4        | 2,7                 | 1,1        | 2,2                         | _ 1)                     |              | 1)                          |
| gemäß<br>Anhang C24                       |                                                                                             |        | Scr,fi ⊥              | 1,8            | ,                    | 1,5 | '                           | 1,8        | ,                          | 1,5        | ĺ                           | 1,8        | ·                   | 1,5        | ĺ                           |                          |              |                             |
| Hochloch-<br>ziegel HLz,                  | ≥ 7,5 / ≥ 6                                                                                 | ≥ 85   | S <sub>cr,fi</sub> II | 0,4            | 0,9                  | 0,4 | 0,7                         | 0,4        | 0,9                        | 0,4        | 0,7                         | 0,5        | 1,1                 | 0,4        | 0,9                         |                          |              | 1)                          |
| gemäß<br>Anhang C30                       |                                                                                             |        | S <sub>cr,fi</sub> ⊥  | 0,4            |                      | 0,4 | 1 '                         | 0,4        | ,                          | 0,4        |                             | 0,5        | ,                   | 0,4        | ,                           |                          |              |                             |
| Hochloch-<br>ziegel HLz,                  | ≥ 5 / ≥ 4                                                                                   | ≥ 130  | s <sub>cr,fi</sub> II | 0,4            | 0,4                  | 0,3 | 0,3                         | 0,4        | 0,4                        | 0,3        | 0,3                         | 0,5        | 0,5                 | 0,4        | 0,4                         |                          |              | 1)                          |
| gemäß<br>Anhang C28                       | 20724                                                                                       | _ 100  | S <sub>cr,fi</sub> ⊥  | 0,4            | 0,4                  | 0,3 | 1 ′                         | 0,4        | 0,4                        | 0,3        | 0,5                         | 0,5        | 0,0                 | 0,4        | 0,4                         |                          |              |                             |
|                                           | Ankers                                                                                      | tange  |                       |                |                      | 18  |                             |            | M10                        |            |                             | M12        |                     |            | M16                         |                          |              |                             |
| Porenbeton,                               | ≥ 2,5 / ≥ 2                                                                                 | ≥ 100  | Scr,fi Ⅱ              | 1,1<br>1,1     | 2,1                  | 0,8 | 117                         | 1,1<br>1,1 | 2,1                        | 0,8        | 1,7                         | 1,1<br>1,1 | 2,1                 | 0,8        | 1,7                         | 1,4<br>1,4               | 2,8          | 1,1<br>1,1                  |
| gemäß<br>Anhang C118                      | Innengewinde                                                                                | eankei | r FIS E               |                | 11x8                 | 5 M | 8                           | 1          | 15x85 M10                  |            | 0                           | 15x85 M12  |                     | 2          | -                           |                          |              |                             |
|                                           | ≥ 2,5 / ≥ 2                                                                                 | ≥ 85   | Scr.fi                | 0,9            | 1,8                  | 0,7 | 1,4                         | 0,9        | 1,8                        | 0,7        | 1,4                         | 0,9        | 1,8                 | 0,7        | 1,4                         |                          | _            | 1)                          |
|                                           | ≥ 2,5 / ≥ 2                                                                                 | ≥ 85   | S <sub>cr,fi</sub> ⊥  | 0,9            | 1,8                  | 0,7 | 1,4                         | 0,9        | 1,8                        | 0,7        | 1,4                         | 0,9        | 1,8                 | 0,7        | 1,4                         |                          | -            | 1)                          |

<sup>1)</sup> Keine Leistung bewertet.

Falls keine abweichenden nationalen Regelungen vorliegen, ist der empfohlene Teilsicherheitsbeiwert  $\gamma_{M,fi} = 1,0$ .

| fischer Injektionssystem FIS V Plus für Mauerwerk                                         |             |
|-------------------------------------------------------------------------------------------|-------------|
| Leistung Charakteristische Werte bei Zugbeanspruchung unter Brandeinwirkung (Ankergruppe) | Anhang C125 |

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

<sup>3)</sup> Alle weiteren Nachweise sind mit dem Einzelanker nach TR 054 zuführen



## Achs- und Randabstände unter Brandeinwirkung (Ankergruppe)

Tabelle C126.1: Achs- und Randabstände unter Brandeinwirkung; Steinausbruchversagen

mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 15 / ≥ 12 N/mm²

| Ankerstange                 |                       |      | N   | 18  | M   | 10  | M12 |     |  |
|-----------------------------|-----------------------|------|-----|-----|-----|-----|-----|-----|--|
| Effektive Verankerungstiefe | h <sub>ef</sub>       |      | 80  | 200 | 80  | 200 | 80  | 200 |  |
| Charakteristischer          | s <sub>cr,fi</sub> II | [mm] | 80  | 320 | 80  | 320 | 80  | 320 |  |
| Achsabstand                 | S <sub>cr,fi</sub> ⊥  | [mm] | 100 | 100 | 100 | 100 | 100 | 100 |  |
| Randabstand                 | C <sub>cr,fi</sub>    |      | 160 | 400 | 160 | 400 | 160 | 400 |  |

### Kalksandvollstein KS, NF, gemäß Anhang C14

mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 15 / ≥ 12 N/mm²

| <u> </u>                    |                      |      |     |     |     |     |     |     |
|-----------------------------|----------------------|------|-----|-----|-----|-----|-----|-----|
| Ankerstange                 | N                    | 18   | М   | 10  | M12 |     |     |     |
| Effektive Verankerungstiefe | h <sub>ef</sub>      |      | 50  | 100 | 50  | 200 | 50  | 200 |
| Charakteristischer          | Scr,fi II            | [mm] | 107 | 107 | 107 | 107 | 107 | 107 |
| Achsabstand                 | S <sub>cr,fi</sub> ⊥ | [mm] | 200 | 400 | 200 | 800 | 200 | 800 |
| Randabstand                 | C <sub>cr,fi</sub>   |      | 100 | 200 | 100 | 400 | 100 | 400 |

Kalksandlochstein KSL, gemäß Anhang C24 mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 10 / ≥ 8 N/mm²

| Ankerstange / Injektions-A  | hkerh                 | ülse   | M8 / 16x130 | M10 / 16x130 | M12 / 20x130 |
|-----------------------------|-----------------------|--------|-------------|--------------|--------------|
| Effektive Verankerungstiefe | h <sub>ef</sub>       |        | 130         | 130          | 130          |
| Charakteristischer          | S <sub>cr,fi</sub> II | [mama] | 133         | 133          | 133          |
| Achsabstand                 | S <sub>cr,fi</sub> ⊥  | [mm]   | 153         | 153          | 153          |
| Randabstand                 | C <sub>cr,fi</sub>    |        | 260         | 260          | 260          |

#### Hochlochziegel HLz, gemäß Anhang C30

mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 7,5 / ≥ 6 N/mm²

| Ankerstange / Injektions-Ankerhülse |                       |      | M8 / 16x85 | M10 / 16x85 | M12 / 20x85 |
|-------------------------------------|-----------------------|------|------------|-------------|-------------|
| Effektive Verankerungstiefe         | h <sub>ef</sub>       |      | 85         | 85          | 85          |
| Charakteristischer                  | s <sub>cr,fi</sub> II | [mm1 | 320        | 320         | 320         |
| Achsabstand                         | S <sub>cr,fi</sub> ⊥  | [mm] | 153        | 153         | 153         |
| Randabstand                         | C <sub>cr,fi</sub>    |      | 170        | 170         | 170         |

### Hochlochziegel HLz, gemäß Anhang C28

mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 5 / ≥ 4 N/mm²

| · · · · · · · · · · · · · · · · · · · |                    |      |             |              |              |  |  |  |  |  |  |
|---------------------------------------|--------------------|------|-------------|--------------|--------------|--|--|--|--|--|--|
| Ankerstange / Injektions-Ankerhülse   |                    |      | M8 / 16x130 | M10 / 16x130 | M12 / 20x130 |  |  |  |  |  |  |
| Effektive Verankerungstiefe           | h <sub>ef</sub>    |      | 130         | 130          | 130          |  |  |  |  |  |  |
| Charakteristischer                    | Scr,fi II          | [mm] | 133         | 133          | 133          |  |  |  |  |  |  |
| Achsabstand                           | Scr,fi ⊥           | [mm] | 133         | 133          | 133          |  |  |  |  |  |  |
| Randabstand                           | C <sub>cr,fi</sub> |      | 260         | 260          | 260          |  |  |  |  |  |  |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung

Achs- und Randabstände unter Brandeinwirkung (Ankergruppe)

**Anhang C126** 



## Achs- und Randabstände unter Brandeinwirkung (Ankergruppe)

### Tabelle C127.1: Achs- und Randabstände unter Brandeinwirkung; Steinausbruchversagen

Porenbeton gemäß Anhang C118

mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 2,5 / ≥ 2 N/mm²

| Ankerstange                 |                       |      | M8  |     | M10 |     | M12 |     | M16 |     |
|-----------------------------|-----------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Effektive Verankerungstiefe | h <sub>ef</sub>       |      | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 |
| Charakteristischer          | s <sub>cr,fi</sub> II | [mm] | 333 | 107 | 333 | 107 | 333 | 107 | 333 | 107 |
| Achsabstand                 | Scr,fi ⊥              | [mm] | 333 | 107 | 333 | 107 | 333 | 107 | 333 | 107 |
| Randabstand                 | C <sub>cr,fi</sub>    |      | 200 | 400 | 200 | 400 | 200 | 400 | 200 | 400 |

Porenbeton gemäß Anhang C118

mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein ≥ 2,5 / ≥ 2 N/mm²

| Innengewindeanker           | FIS E                 |      | 11x85 M8 | 15x85 M10 | 15x85 M12 |
|-----------------------------|-----------------------|------|----------|-----------|-----------|
| Effektive Verankerungstiefe | h <sub>ef</sub>       |      | 85       | 85        | 85        |
| Charakteristischer          | s <sub>cr,fi</sub> II | [mm] | 333      | 333       | 333       |
| Achsabstand                 | s <sub>cr,fi</sub> ⊥  | [mm] | 333      | 333       | 333       |
| Randabstand                 | C <sub>cr,fi</sub>    |      | 170      | 170       | 170       |

fischer Injektionssystem FIS V Plus für Mauerwerk

Leistung

Achs- und Randabstände unter Brandeinwirkung (Ankergruppe)

**Anhang C127**