

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-20/0867 of 11 February 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS4

Mechanical fastener for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

46 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601-v05, Edition 01/2024

ETA-20/0867 issued on 25 April 2024

Z1901.24

European Technical Assessment ETA-20/0867

English translation prepared by DIBt

Page 2 of 46 | 11 February 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 46 | 11 February 2025

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS4 is an anchor in size 8, 10, 12, 14 and 16 mm made of galvanized and stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B5 to B9, Annex C1, C3, C5 and C7			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2, C4, C6 and C7			
Displacements (static and quasi-static loading)	See Annex C21 to C23			
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C8 to C13 and C24			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	See Annex C14 to C20			

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance				
Durability	See Annex B1				

European Technical Assessment ETA-20/0867

English translation prepared by DIBt

Page 4 of 46 | 11 February 2025

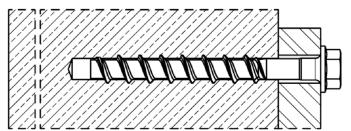
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601-v05 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

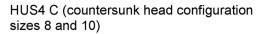
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 11 February 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:

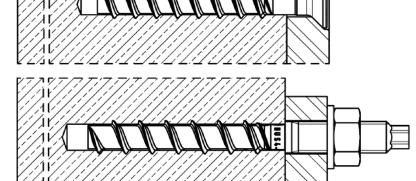
Tempel

Installed condition without adjustment


HUS4-H (hexagon head configuration sizes 8, 10, 12, 14 and 16)

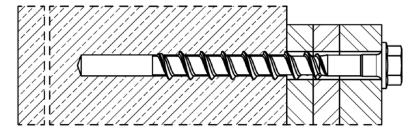
HUS4 T-H (hexagon head configuration sizes 8 and 10)

HUS4-HF (hexagon head configuration sizes 8, 10, 12, 14 and 16)


HUS4 T-HF (hexagon head configuration sizes 8 and 10)

HUS4-HR (hexagon head configuration sizes 6, 8, 10 and 14)

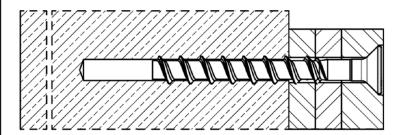
HUS4 T-C (countersunk head configuration sizes 8 and 10)


HUS4-CR (countersunk head configuration size 6, 8 and 10)

HUS4-A (threaded rod connection sizes 10 with M12 and 14 with M16)

HUS4-AF (threaded rod connection sizes 10 with M12 and 14 with M16)

Installed condition with adjustment



HUS4-H (hexagon head configuration sizes 8, 10, 12 and 14)

HUS4 T-H (hexagon head configuration sizes 8 and 10)

HUS4-HF (hexagon head configuration sizes 8, 10, 12 and 14)

HUS4 T-HF (hexagon head configuration sizes 8 and 10)

HUS4-C (countersunk head configuration sizes 8 and 10)

HUS4 T-C (countersunk head configuration sizes 8 and 10)

Hilti screw anchor HUS4

Product description

Installed condition with and without adjustment

Annex A1

Table A1: Screw types

Hilti HUS4-H, sizes 8,10, 12, 14 and 16, hexagonal head configuration, carbon steel galvanized **Hilti HUS4-HF**, sizes 8,10, 12, 14 and 16, hexagonal head configuration, carbon steel multilayer coating

Hilti HUS4 T-H, sizes 8 and 10 hexagonal head configuration, carbon steel galvanized Hilti HUS4 T-HF, sizes 8 and 10, hexagonal head configuration, carbon steel multilayer coating

Hilti HUS4-HR, sizes 6, 8, 10 and 14 hexagonal head configuration, stainless steel

Hilti HUS4-C, sizes 8 and 10, countersunk head configuration, carbon steel galvanized

Hilti HUS4 T-C, sizes 8 and 10, countersunk head configuration, carbon steel galvanized

Hilti HUS4-CR, sizes 6, 8 and 10 countersunk head configuration, stainless steel

Hilti HUS4-A, size 10 with external thread M12 and size 14 with external thread M16, carbon steel galvanized Hilti HUS4-AF, size 10 with external thread M12 and size 14 with external thread M16, carbon steel multilayer coating

Hilti screw anchor HUS4

Product description HUS4 screw types

Annex A2

8.06.01-194/23

Table A2: Hilti filling set (for HUS4 (T)-H(F, R) and HUS4-A (F)) and Hilti injection mortar

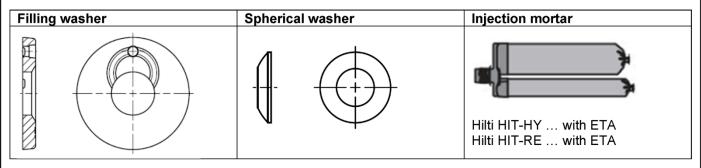


Table A3: Materials

Part	Material
HUS4 (T)-H(F), HUS4 (T)-C and HUS4-A(F) screw anchor	Carbon steel Rupture elongation A₅ ≤ 8%
HUS4-HR and HUS-CR	Stainless steel (A4 grade) Rupture elongation A5 > 8% Stainless steel of corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015 1.4401 or 1.4404 according to EN 10088-1:2014
Hilti Filling set (carbon steel)	Filling washer: Carbon steel Spherical washer: Carbon steel
Hilti Filling set (stainless steel)	Corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015 Filling washer: Stainless steel A4 according to ASTM A240/A 240M:2019 Spherical washer: Stainless steel A4 according to EN 10088-1:2014

ı		
	Hilti screw anchor HUS4	
	Product description HUS4 screw types, Filling set and Hilti injection mortar Materials	Annex A3

Table A4: Filling set dimensions

Filling set size	M10	M12	M16	M20		
Diameter	d _{vs}	[mm]	42	44	52	60
Thickness	h _{vs}	[mm]	5	5	6	6
HUS4 (T)-H (F, R)	8	10	12 + 14	16		
HUS4-A (F)	1111	110	-	10	14	-

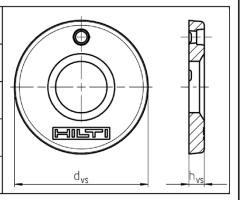
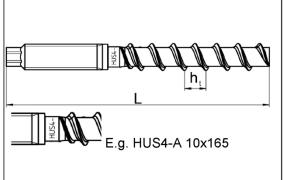



Table A5: Fastener dimensions and marking HUS4-A(F)

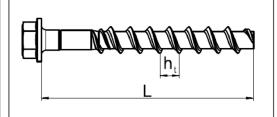
Fastener size HUS4-		A(F) 10		A(F) 14				
Nominal fastener diameter	d	[mm]	10			14		
Metric thread conection				M12		M16		
Pitch of the thread	ht	[mm]	10			14		
Name of any band on a state			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h_{nom}	[mm]	55	75	85	65	85	115
Effective embedment depth	h _{ef}	[mm]	$h_{ef} = 0.85 * (h_{nom} - 5) \le h_{ef,max}$			h _{ef} = 0	= 0,85 * (h _{nom} – 7) ≤ h _{ef,max}	
Limits of effective embedment depth	h _{ef,max}	[mm]	68,0			91,8		
Length of screw min / max	L	[mm]	120 / 165			155 / 205		

HUS4:	Hilti Universal Screw 4 th generation									
A: AF:	Thread connection, galvanized Thread connection, multilayer coating									
10:	D: Nominal screw diameter d [mm]									
165:	: Length of screw L [mm]									
8:	Carbon steel									
K:	Ler	gth iden	tification	HUS4-A	10x165					
G	I	КЈ		L	N					
10x120	10x140	10x165	14x155	14x185	14x205					

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A4

Table A6: Fastener dimensions and marking HUS4 (T)-H(F	Table A6:	Fastener	dimensions and	d marking HUS4	(T)-H(F)
--	-----------	----------	----------------	----------------	----------

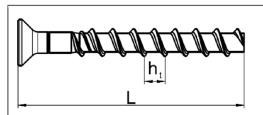
Fastener size HUS	64-		H(F) 8			T-H(F) 8			H(F) 10			T-H(F) 10			
Nominal fastener diameter	d	[mm]		8			8			10			10		
Pitch of the thread	ht	[mm]		8			8			10			10		
Nominal			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
embedment depth	h_{nom}	[mm]	40	60	70	50	60	70	55	75	85	55	75	85	
Effective embedment depth	h _{ef}	[mm]		0,85 * (h _{nom} - 4,0) ≤ h _{ef,max}			$0.85 * (h_{nom} - 5.45)$ $\leq h_{ef,max}$			$0.85 * (h_{nom} - 5.0)$ $\leq h_{ef,max}$			0,85 * (h _{nom} − 6,1) ≤ h _{ef,max}		
Limits of effective embedment depth	h _{ef,max}	[mm]		56,1			54,9		68,0			67,1			
Length of screw min / max	L	[mm]	2	15 / 15	0	55 / 150			60 / 305			60 / 150			


Fastener size HUS	H(F) 12				H(F) 14		H(F) 16				
Nominal fastener diameter	d	[mm]		12			14		16		
Pitch of the thread	ht	[mm]		12			14		13,2		
Nominal			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	
embedment depth	\mathbf{h}_{nom}	[mm]	60	80	100	65	85	115	85	130	
Effective embedment depth	h _{ef}	[mm]	h _{ef} = 0,8	$h_{ef} = 0.85 * (h_{nom} - 6.0) \le h_{ef,max}$			35 * (h _{nom} h _{ef,max}	-7,0)≤	$h_{ef} = 0.85 * (h_{nom} - 6.6) \le h_{ef,max}$		
Limits of effective embedment depth	h _{ef,max}	[mm]	79,9			91,8			104,9		
Length of screw min / max	L	[mm]		70 / 150		75 / 150			100 / 205		

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A5

Table A7: Fastener dimensions and marking HUS4-HR

Fastener size HUS4-		HR 6	HR	8	HF	₹ 10	HR 14		
Nominal fastener diameter	d	[mm]	6	8		10		14	
Pitch of the thread	ht	[mm]	4,75	7,6		8	3,0	9,8	
Nominal			h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
embedment depth	\mathbf{h}_{nom}	[mm]	55	60	80	70	90	70	110
Effective embedment depth	h _{ef}	[mm]	$0.85 * (h_{nom} - 2.37) \le h_{ef,max}$	0,85 * (h _n , ≤ h _{ef}			n _{nom} - 6,4) lef,max	0,85 * (h _{no} h _{ef,}	_{om} − 9,0) ≤ max
Limits of effective embedment depth	h _{ef,max}	[mm]	45	64		71		86	
Length of screw min / max	L	[mm]	60 / 70	65 / 105		75 / 130		80 / 135	


HUS4:	Hilti Universal Screw 4 th generation
(T-)H: (T-)HF: HR:	Hexagonal head, galvanized Hexagonal head, multilayer coating Hexagonal head, stainless steel
10:	Nominal screw diameter d [mm]
100:	Length of screw [mm]

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A6

Fastener size HUS4-		C 8		T-C 8		C 10		T-C 10						
Nominal fastener diameter	d	[mm]	8			8			10			10		
Pitch of the thread	ht	[mm]		8			8 10				10			
Nominal			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
embedment depth	h_{nom}	[mm]	40	60	70	50	60	70	55	75	85	55	75	85
Effective embedment depth	h _{ef}	[mm]		0,85 * (h _{nom} − 4) ≤ h _{ef,max}		$0.85 * (h_{nom} - 0.85 * (h_{nom} - 5.45) \le h_{ef,max}$ $0.85 * (h_{nom} - 5.45) \le h_{ef,max}$			0,85 * (h _{nom} – 6,1) ≤ h _{ef,max}					
Limits of effective embedment depth	h _{ef,max}	[mm]	56,1		54,9		68,0			67,1		·		
Length of screw min / max	L	[mm]	55 / 160			65 / 85 70 / 180		70 / 305						

Fastener size HUS4-			CR 6	CF	CR 8		CR 10		
Nominal fastener diameter	d	[mm]	6	8	8		0		
Pitch of the thread	ht	[mm]	-	7	7,6		,0		
Naminal ambadment denth			h _{nom2}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}		
Nominal embedment depth	h_{nom}	[mm]	55	60	80	70	90		
Effective embedment depth	h _{ef}	[mm]	$0.85 * (h_{nom} - 2.37) \le h_{ef,max}$	$0.85 * (h_{nom} - 4.8) \le h_{ef,max}$		$0.85 * (h_{nom} - 6.4) \le h_{ef,max}$			
Limits of effective embedment depth	h _{ef,max}	[mm]	45	64		1			
Length of screw min / max	L	[mm]	60 / 70	65 / 95 75 / 1		105			

HUS4:	Hilti Universal Screw 4 th generation
(T-)C: CR:	Countersunk head, galvanized Countersunk head, stainless steel
10:	Nominal screw diameter d [mm]
100:	Length of screw L [mm]

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A7

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings
- Seismic action for performance category C1 and C2 for HUS4 (T)-H(F)/-C/-A(F) (carbon steel screw)
- Seismic action for performance category C1: HUS4-HR/-CR (stainless steel screw)
- Fire exposure

Base materials:

- Compacted reinforced or unreinforced normal weight concrete according to EN 206:2013 +A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete.
- The fastener is intended to be used in fibre reinforced concrete according to EN 206:2013+A2:2021 including steel fibres (SFRC) according to EN 14889-1:2006 clause 1, group I. The maximum content of steel fibres is 80 kg/m³.

Use conditions (Environmental conditions):

- · Anchorages subject to dry internal conditions: all screw types
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015
 - Stainless steel according to Annex A3 Table A3, screw types HUS4-HR/-CR: CRC III

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055 edition February 2018.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.
- The design method according to EN 1992-4:2018 applies for use in Steel Fibre Reinforced Concrete (SFRC) with the essential characteristics as specified for plain concrete without fibres.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener (HUS4 (T)-H (F, R) and HUS4 (T)-C/-CR) must be supported on the fixture and is not damaged.
- Hilti filling set is suitable for HUS4 (T)-H (F, R) and HUS4-A (F)

Hilti screw anchor HUS4	
Intended use Specifications	Annex B1

Specifications of intended use: Drilling and cleaning for HUS4 carbon steel

Table B1: HUS4 (T)-H(F)/-C/-A(F) intended use for static and quasi static loading

HUS4 (T)-H(F)/-C/-A(F)	carbon steel	Fastener size and embedment depth hnom				
Cracked and uncracked concrete						
Hammer drilling (HD)1)	Hammer drilling (HD) ¹⁾ cleaned not cleanded		sizes 8 to 16 at all h _{nom}			
Taminer drilling (HD)			sizes 8 to 14 at all h _{nom}			
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) 1)			sizes 12 and 14 at all h _{nom}			
Uncracked concrete						
Diamond coring (DD) DD30-W handheld and with stand DD-EC1 handheld		€ 🕪	sizes 10 to 14 at h _{nom3} (HUS4 T excluded)			

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 10 at hnom2+3 and 12 to 14 at all hnom

Table B2: HUS4 (T)-H(F)/-C/-A(F) intended use for seismic performance category C1

HUS4 (T)-H(F)/-C/-A(F)	carbon steel	Fastener size and embedment depth h _{nom}	
Hammer drilling (HD) ¹⁾	cleaned	~~~	sizes 8 to 16 at all h _{nom} (HUS4 8 at h _{nom1} excluded)
	not cleanded		sizes 8 to 14 at all h _{nom} (HUS4 8 at h _{nom1} excluded)
Hammer drilling with Hilt TE-CD (HDB) 1)	Hammer drilling with Hilti hollow drill bit		sizes 12 and 14 at all h _{nom}

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 10 at hnom2+3 and 12 to 14 at all hnom

Table B3: HUS4 (T)-H(F)/-C/-A(F) intended use for seismic performance category C2

HUS4 (T)-H(F)/-C/-A(F)	carbon steel	Fastener size and embedment depth hnom	
Hammar drilling (HD)1)	Cleaned and	~~~~	sizes 8 to 14 at all h _{nom}
Hammer drilling (HD) ¹⁾	not cleanded	Circu	(HUS4 8 at h _{nom1} excluded)

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 10 at h_{nom2+3} and 12 to 14 at all h_{nom}

Table B4: HUS4 (T)-H(F)/-C/-A(F) intended use for static and quasi static loading under fire exposure

HUS4 (T)-H(F)/-C/-A(F)	carbon steel	Fastener size and embedment depth hnom	
Hammer drilling (HD)1)	cleaned	2222	sizes 8 to 16 at all h _{nom}
Hammer drilling (HD) ¹⁾	not cleanded	كتنت	sizes 8 to 14 at all h _{nom}
Hammer drilling with Hilt TE-CD (HDB) 1)	i hollow drill bit		sizes 12 and 14 at all h _{nom}

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 10 at hnom2+3 and 12 to 14 at all hnom

Hilti screw anchor HUS4	
Intended use Specifications	Annex B2

Table B5: Intended use for HUS4 (T)-H(F)/-C/-A(F) in concrete with SFRC (seismic category C2 is excluded)

HUS4 (T)-H(F)/-C/-A(F) carbon steel			Fastener size and embedment depth hnom				
Cracked and uncracke	d concrete						
Hammer drilling (HD) ¹⁾	cleaned		sizes 8 to 16 at all h _{nom}				
nammer drilling (nD)	not cleanded		sizes 8 to 14 at all h _{nom}				
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) 1)			sizes 12 and 14 at all h _{nom}				
Uncracked concrete							
Diamond coring (DD) DD30-W handheld and with stand DD-EC1 handheld			sizes 10 to 14 at hnom3 (HUS4 T excluded)				

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 10 at hnom2+3 and 12 to 14 at all hnom

Specifications of intended use: Drilling and cleaning for HUS4 stainless steel

Table B6: HUS4-HR/-CR intended use for static and quasi static loading

HUS4-HR/-CR stainless	steel	Fastener size and embedment depth hnom
Cracked and uncracked	d concrete	
Hammer drilling (HD)	cleaned not cleanded	sizes 6 to 14 at all h _{nom}

Table B7: HUS4-HR/-CR intended use for seismic performance category C1

HUS4-HR/-CR stainless steel			Fastener size and embedment depth hnom				
Hammar drilling (HD)	cleaned	5000	sizes 8 to 14 at h _{nom2}				
Hammer drilling (HD) not cleanded			sizes 8 to 14 at h _{nom2}				

Table B8: HUS4-HR/-CR intended use for static and quasi static loading under fire exposure

HUS4-HR/-CR stainless	steel	Fastener size and embedment depth hnom						
Hammer drilling (HD)	cleaned	~~~~	sizes 6 to 14 at all h _{nom}					
Hammer drilling (HD) not	not cleanded		sizes 6 to 14 at all h _{nom}					

Hilti screw anchor HUS4	
Intended use Specifications	Annex B3

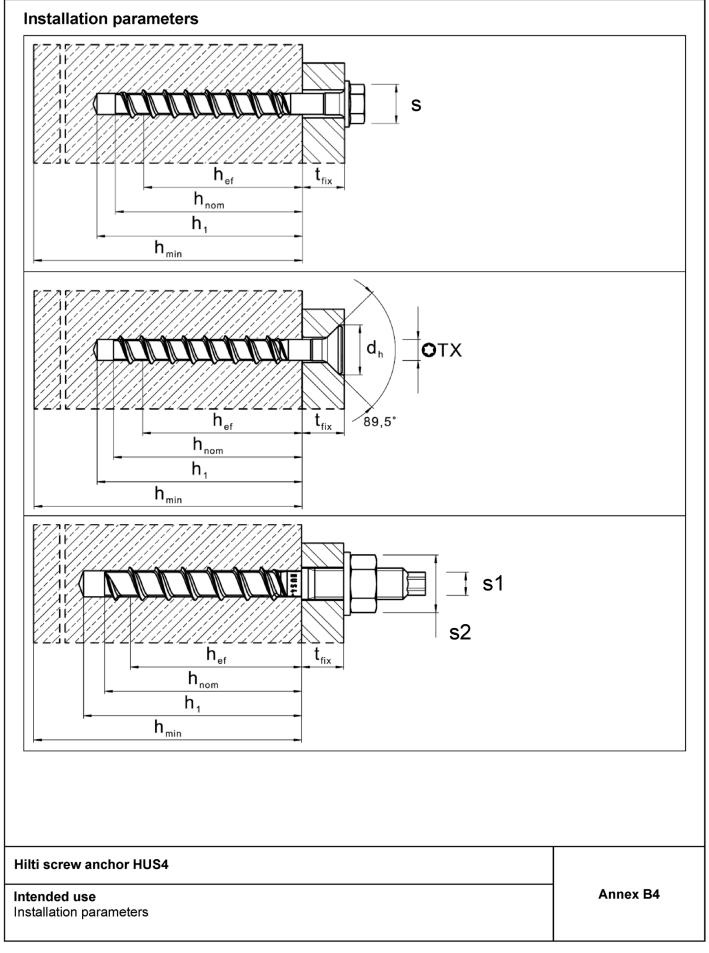


Table B9: Installation parameters HUS4 8 and 10

Fastener size HUS4						8		10			
		F	H(F), C			T-H(F), C			H(F), C, A(F)		
		h _{nom1}	nom1 hom2 hom3 hom1 hom			h _{nom2}	h _{nom3} h _{nom1} h _{nom2}			h _{nom}	
h _{nom}	[mm]	40	60	70	50	60	70	55	75	85	
d ₀	[mm]		8			8		10			
d _{cut} ≤	[mm]		8,45			8,45			10,45	5	
d _{cut} ≤	[mm]		-			-			9,9		
d _f min max	[mm]		11 12			11 12			13		
d _f ≤	[mm]		-			-			14		
s	[mm]		13			13			15		
s1	[mm]		-			-			8		
s2	[mm]		-			-			19		
max T _{inst}	[Nm]							40			
TX	-		45 45					50			
d _h	[mm]		18	8 18				21			
h ₁ ≥	[mm]	50	70	80	(h _{nom} + 10 mm)		65 85 95		95		
		(h		ı _{nom} + 10 mm) + 2 * (do do	 do			
h ₁ ≥	[mm]	66	86	96	76	86	96	85	105	115	
					(h _{nom} + 20 mm)						
h ₁ ≥	[mm]	-	80	90	70	80	90	-	95	105	
		(h _{nom} + 20 mm) + 2 * d ₀									
h ₁ ≥	[mm]	-	96	106	86	96	106	-	115	125	
. .	[1		(h ₁ + 30 mm)								
∏min ≥	[mm]	80	100	120	100	100	120	100	130	140	
s _{min} ≥	[mm]		35		50 ²⁾	50	50		40		
C _{min} ≥	[mm]	35 40 40 4				40	40				
Hilti Setting tool 1)			SIW 4(AT)-22 1/2" SIW 6(AT)-A22 1/2" SIW 6(AT)-22 1/2" gear 1 SIW 6(AT)-22 1/2" gear 1					A 1/2° 1/2"			
	$d_{out} \leq \\ d_{cut} \leq \\ d_f \frac{min}{max} \\ d_f \leq \\ s$ $s1$ $s2$ $max T_{inst}$ TX d_h $h_1 \geq \\ h_1 \geq \\ h_1 \geq \\ h_1 \geq \\ h_min} \geq \\ s_{min} \geq \\ s_{$	$\begin{array}{c cccc} d_0 & [mm] \\ d_{cut} \leq & [mm] \\ \hline d_{cut} \leq & [mm] \\ \hline d_f & \underline{min} & [mm] \\ \hline d_f \leq & [mm] \\ \hline s & [mm] \\ \hline s & [mm] \\ \hline s1 & [mm] \\ \hline s2 & [mm] \\ \hline max T_{inst} & [Nm] \\ \hline TX & - \\ d_h & [mm] \\ \hline h_1 \geq & [mm] \\ \hline \\ h_1 \geq & [mm] \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

¹⁾ Installation with other impact screw driver of equivalent power is possible.

²⁾ s_{min} = 40 mm is possible if $c_{min} \ge 50$ mm.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B5

Table B10: Installation parameters HUS4 10 to 14

Fastener size HUS4			10		12			14					
Туре			т	T-H(F), C			H(F)			H(F), A(F)			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedmenth depth	h_{nom}	[mm]	55	75	85	60	80	100	65	85	115		
Nominal drill hole diameter	d ₀	[mm]		10	•	12			14				
Cutting diameter of drill bit	d _{cut} ≤	[mm]		10,45		,	12,50		14,50				
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		-			12,2			14,2			
Clearance hole diameter through setting	d _f min max	-[mm]		14			16			18			
Clearance hole diameter pre setting (Attype)	d _f ≤	[mm]		-			-			18			
Wrench size (H, HF-type)	s	[mm]		15			17			21			
Wrench size for hex head (A-type)	s1	[mm]		-			-		12				
Wrench size for nut (A-type)	s2	[mm]		-		-			24				
Maximum installation torque (A-type)	max T _{inst}	[Nm]		-			-		80				
Torx size (C-type)	TX	-		50		-			-				
Diameter of countersunk head	dh	[mm]		21			-			-			
Depth of drill hole for cleaned hole hammer drilling, diamond coring or for uncleanded hole when drilling upwards	h₁ ≥	[mm]	65	85	95	(h _{nom}	+ 10 r 90	nm) 110	75	95	125		
Depth of drill hole for uncleanded hole								om + 10	mm)	+ 2 *	d ₀	I	
hammer drilling in wall and floor position	h ₁ ≥	[mm]	85	105	115	94	114	134	103	123	153		
Depth of drill hole (with adjustability) for						(h _{nom} + 20 mm)							
cleaned hole hammer drilling, diamond coring or for uncleanded hole when drilling upwards	h ₁ ≥	[mm]	75	95	105	-	100	120	-	105	135		
Depth of drill hole (with adjustability) for					(h _n	om + 20) mm)	+ 2 *	d ₀		•		
uncleaned hole hammer drilling in wall and floor position	h ₁ ≥	[mm]	95	115	125	-	124	144	-	133	163		
·		f1				(h ₁ + 30 mm)		nm)	1 1				
Minimum thickness of concrete member	n _{min} ≥	[mm]	100	130	140	110	130	150	120	160	200		
Minimum spacing	s _{min} ≥	[mm]	50			50		60					
Minimum edge distance	C _{min} ≥	[mm]		50			50			60			
Hilti Setting tool 1)			SIW 6(AT)-22 1/2" SIW 22T-A 1/2" SIW 22T-A 1/2" SIW 6(AT)-22 SIW 8-22 1/2" 1/2" SIW 9-A22 3/4" SIW 9-A22 3/4")-22 1/2"	SIW 22T-A 1/2" SIW 6(AT)-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4"						

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B6

Table B11: Installation parameters HUS4-16

Fastener size HUS4			16					
Туре			Н	(F)				
			h _{nom1}	h _{nom2}				
Nominal embedmenth depth	h_{nom}	[mm]	85	130				
Nominal drill hole diameter	d ₀	[mm]	1	6				
Cutting diameter of drill bit	d _{cut} ≤	[mm]	16	,50				
Clearance hole diameter through setting	d _f ≤	[mm]	2	20				
Wrench size	s	[mm]	2	24				
Depth of drill hole for cleaned hole	h₁ ≥	[mm]	(h _{nom} +	10 mm)				
hammer drilling or for uncleanded hole when drilling upwards	111 =	[mm]	95	140				
Minimum thickness of concrete member	h _{min} ≥	[mm]	130	195				
Minimum spacing	s _{min} ≥	[mm]	g	00				
Minimum edge distance	C _{min} ≥	[mm]	6	55				
Hilti Setting tool 1)			SIW 6(A ⁻ SIW 8-	T-A 1/2" T)-22 1/2" -22 1/2" A22 3/4"				

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B7

Table B12: Installation parameters HUS4-HR/-CR 6 and 8

Fastener size HUS4		6	8			
Туре			HR, CR	HR,	CR	
			h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment depth	h_{nom}	[mm]	55	60	80	
Nominal drill hole diameter	d ₀	[mm]	6	8	3	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,	45	
Clearance hole diameter	$d_f \leq$	[mm]	9	1	2	
Wrench size (H-type)	s	[mm]	13	1	3	
Torx size (C-type)	TX	[-]	30	4	5	
Diameter of countersunk head	dh	[mm]	11	18		
Depth of drill hole for cleaned hole		f	(h _{nom} +	om + 10mm)		
hammer drilling or for uncleanded hole when drilling upwards	h₁≥	[mm] 	65	70	90	
Depth of drill hole for uncleanded hole	L >	[1	(h _{nom} + 10 n	nm) + 2 * d ₀		
hammer drilling in wall and floor position	h₁ ≥	[mm]	77	86	106	
Minimum third and a second and a second	L >	F	(h ₁ + 3	0 mm)		
Minimum thickness of concrete member	h _{min} ≥	[mm]	100	100	120	
Minimum spacing	s _{min} ≥	[mm]	35	45	50	
Minimum edge distance	c _{min} ≥	[mm]	35	45	50	
Hilti Setting tool 1)			SIW 6(AT)-A22 1/2" SIW 4(AT)- 22 1/2"	SIW 22T-A 1/2" SIW 6(AT)-A22 1/2" SIW 4(AT)- 22 1/2" SIW 6(AT)-22 1/2"		

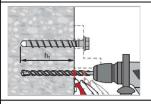
¹⁾ Installation with other impact screw driver of equivalent power is possible.

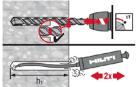
Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B8

Table B13: Installation parameters HUS4-HR/-CR 10 and 14

Fastener size HUS4			1	0	1	4	
Туре			HR,	CR	HR		
			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Nominal embedment depth	h_{nom}	[mm]	70	90	70	110	
Nominal drill hole diameter	d_0	[mm]	1	0	1	4	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10	,45	14	,50	
Clearance hole diameter	d _f ≤	[mm]	1	4	1	8	
Wrench size (H-type)	s	[mm]	1	5	2	1	
Torx size (C-type)	TX	[-]	5	0	-		
Diameter of countersunk head	d h	[mm]	2	1	-		
Depth of drill hole for cleaned hole	h >	[mana]		(h _{nom} +	10mm)		
hammer drilling, diamond coring or for uncleanded hole when drilling upwards	h₁≥	[mm]	80	100	80	120	
Depth of drill hole for uncleanded hole	h. >		$(h_{nom} + 10 \text{ mm}) + 2 * d_0$				
hammer drilling in wall and floor position	h ₁ ≥	[mm] 	100	120	108	148	
Installation Torque	T _{inst}	[Nm]	4	5	65		
Minimum thickness of concrete member	h _{min} ≥	[mm]	120	140	140	160	
Minimum spacing	s _{min} ≥	[mm]	5	50		60	
Minimum edge distance	C _{min} ≥	[mm]	50		50	60	
Hilti Setting tool 1)			SIW 22T-A 1/2" SIW 6(AT)-A22 1/2" SIW 4(AT)- 22 1/2" SIW 6(AT)-22 1/2"		SIW 22T-A 1/2" SIW 6(AT)-22 1/2" SIW 8-22 1/2" gear 1 SIW 9-A22 3/4"		

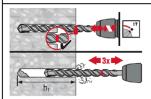
¹⁾ Installation with other impact screw driver of equivalent power is possible.


Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B9


Installation instructions

Hole drilling and cleaning

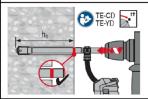
Hammer drilling (HD) all sizes for carbon and stainless steel screw types (size 16 with cleaning only)



Mark drilling depth h_1 for pre or through installation. Details for drilling depth h_1 see table B5 to B9.

Cleaning needed in downward and horizontal installation direction with drill hole depth.

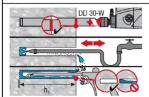
 $h_1 = h_{nom} + 10 \text{ mm}$


No cleaning is allowed in upward installation direction.

No cleaning is allowed in downward and horizontal installation direction when 3x ventilation¹⁾ after drilling is executed.

Drill hole depth $h_1 = h_{nom} + 10 \text{ mm} + 2 * d_0$

¹) moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h₁ is achieved. This procedure shall be done with both revolution and hammer functions activated in the drilling machine. For more details read the relevant installation instruction (MPII).

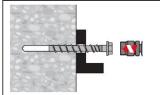

Hammer drilling with Hilti hollow drill bit (HDB) TE-CD size 12 and 14 for carbon steel screw types

No cleaning needed.

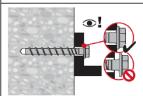
 $h_1 = h_{nom} + 10 \text{ mm}$

Diamond coring with DD-EC1 or DD-30W size 10 to 14 for carbon steel screw types

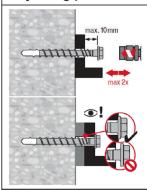
Cleaning needed in all installation directions.


 $h_1 = h_{nom} + 10 \text{ mm}$

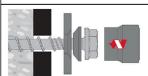
Hilti screw anchor HUS4	
Intended use Installation instructions	Annex B10


Fastener setting without adjustment

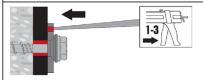
Setting by impact screw driver


Setting parameters listed in Table B5 to B7.

Setting check


Fastener setting with adjustment for carbon steel screw types

Adjusting process



A screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than the required one of h_{nom1} , h_{nom2} or h_{nom3} .

Fastener setting with Hilti filling set

Injection of Hilti HIT mortar and curing time

Fill the annular gap between screw and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY \dots or HIT-RE \dots

Follow the installation instructions supplied with the respective Hilti injection mortar.

Annex B11

After required curing time tcure the fastening can be loaded.

Intended use Installation instructions

Table C1: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 8 and 10

Fastener size HUS4					8			8			10		
Туре				ŀ	H(F), C		T-H(F), T-C			H(F), C, A(F)			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedmer	nt depth	h _{nom}	[mm]	40	60	70	50	60	70	55	75	85	
Adjustment				•									
Total max. thicknes	s of adjustment	t _{adj}	[mm]	-	10	10	-	10	10	-	10	10	
Max. number of adj	ustments	na	[-]	-	2	2	-	2	2	-	2	2	
Steel failure for ter	nsion load												
Characteristic resist	ance	$N_{Rk,s}$	[kN]		36,0			39,2			55,0		
Partial factor		$\gamma_{Ms,N}^{1)}$	[-]		1,5			1,4			1,5		
Pull-out failure													
Characteristic resist uncracked concrete		N _{Rk,p,ucr}	[kN]	≥	N ⁰ Rk,c	3)	9	12	16	13	22	≥ N ⁰ _{Rk,c} ³⁾	
Characteristic resist cracked concrete C		$N_{Rk,p,cr}$	[kN]	5,5	≥ N ^c	Rk,c ³⁾	6	9	12	1	≥ N ⁰ Rk,	c ³⁾	
Increasing factor for N _{Rk,p} = N _{Rk,p} (C20/25) *		Ψ¢	[-]				((f _{ck} /20) ⁽	0,5				
Concrete cone and	d splitting failur	9											
Effective embedme	nt depth	$h_{\text{ef}}^{2)}$	[mm]	30,6	47,6	56,1	40	46,4	54,9	42,5	59,5	68,0	
Factor for	Uncracked	k ucr,N	[-]					11,0					
racioi ioi	Cracked	$k_{\text{cr},N}$	[-]					7,7					
Concrete cone	Edge distance	C _{cr,N}	[mm]					1,5 h _e	f				
failure	Spacing	S _{cr,N}	[mm]					3 h _{ef}					
Characteristic resistance N ⁰ _{Rk,sp} [kN]			[kN]					$N_{Rk,p}$					
Splitting failure	Edge distance	C cr,sp	[mm]		1,5 h _€	ef	60	70	85		1,65 h _{ef}		
	Spacing	S _{cr,sp}	[mm]		3,0 h∈	f	120	140	170		3,30 h	ef	
Installation factor		γinst	[-]				1,0			1,2	1	,0	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C1

 $^{^{2)}}$ In case h_{nom} > h_{nom1} and < h_{nom3} the actual h_{ef} for concrete failure can be calculated according to Tables A5, A6 or A8 $^{3)}$ $N^0_{\text{RK,c}}$ according to EN 1992-4:2018

Table C1 continued

Fastener size HUS4				8			8			10		
Туре	Туре			H(F), C			T-H(F), T-C			H(F), C, A(F)		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h_{nom}	[mm]	40	60	70	50	60	70	55	75	85	
Steel failure for shear load									•			
Characteristic resistance	V^0 Rk,s	[kN]	18	18,8 21,9		19,0		22,0	22,0 28		32,0	
Partial factor	γ _{Ms,V} 1)	[-]		1,25		1,50		1,25		•		
Ductility factor	k ₇	[-]					0,8					
Characteristic resistance	M ⁰ Rk,s	[Nm]		32		46			64			
Concrete pry-out failure												
Pry-out factor	k ₈	[-]	1,0	2	,0	1,0	2	,0	1,0	2	,0	
Concrete edge failure												
Effective length of fastener	lf	[mm]	40	60	70	50	60	70	55	75	85	
Outside diameter of fastener	d _{nom}	[mm]		8		8			10			

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C2

Table C2: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 10 to 14

Fastener size HUS4			10			12			14			
Туре			T-H(F), T-C			H(F)			H(F), A(F)			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmer	nt depth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115
Adjustment				•	•	•	•			•		•
Total max. thicknes adjustment layers	s of	t _{adj}	[mm]	-	10	10	10	10	10	10	10	10
Max. number of adj	ustments	na	[-]	-	2	2	2	2	2	2	2	2
Steel failure for ter	nsion load											
Characteristic resist	tance	N _{Rk,s}	[kN]		62,2			79,0			101,5	
Partial factor		γ _{Ms,N} 1)	[-]		1,4				1	,5		
Pull-out failure							•					
Characteristic resist uncracked concrete		$N_{Rk,p,ucr}$	[kN]	12	20	32			≥ N ^o	Rk,c ³⁾		
Characteristic resist cracked concrete C		$N_{Rk,p,cr}$	[kN]	9	15	19	10		2	≥ N ⁰ Rk,c	3)	
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} *$		Ψc	[-]				(f _{ck} /20) ⁰	,5			
Concrete cone and	d splitting fai	lure										
Effective embedmen	nt depth	$h_{\text{ef}}^{2)}$	[mm]	41,6	58,6	67,1	45,9	62,9	79,9	49,3	66,3	91,8
Fastantan	Uncracked	k ucr,N	[-]					11,0				
Factor for	Cracked	$\mathbf{k}_{cr,N}$	[-]	7,7								
Concrete cone	Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
failure	Spacing	S _{cr,N}	[mm]				3 h _{ef}					
Characteristic resist	Characteristic resistance N ⁰ _{Rk,sp} [kN]							$N_{Rk,p}$				
Splitting failure	Edge distance	C cr,sp	[mm]	65	90	110		1,65 h _e	f		1,60 h _e	f
. •	Spacing	S cr,sp	[mm]	130	180	220	;	3,30 h _e	f		3,20 h _e	f
Installation factor		γinst	[-]					1,0				

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C3

²⁾ In case $h_{nom} > h_{nom1}$ and h_{nom3} the actual h_{ef} for concrete failure can be calculated according to Tables A5, A6 or A8

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Table C2 continued

Fastener size HUS4				10			12			14		
Туре			Т-	H(F), 1	Г-С	H(F)			H(F), A(F)			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115	
Steel failure for shear load												
Characteristic resistance	V^0 Rk,s	[kN]	:	30 34		38	3,9	44,9	55		62	
Partial factor	γ _{Ms,V} 1)	[-]		1,50		1,25						
Ductility factor	k ₇	[-]					0,8					
Characteristic resistance	M ⁰ Rk,s	[Nm]		92			120			186		
Concrete pry-out failure												
Pry-out factor	k ₈	[-]	1,0	2	.,0			2	2,0			
Concrete edge failure												
Effective length of fastener	If	[mm]	55	75	85	60	80	100	65	85	115	
Outside diameter of fastener	d _{nom}	[mm]		10		12			14			

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C4

Table C3: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 16

Fastener size HUS4				16	.
Туре				H(F	=)
				h _{nom1}	h _{nom2}
Nominal embedment de	epth	h _{nom}	[mm]	85	130
Adjustment			•		
Total max. thickness of layers	adjustment	t adj	[mm]	-	-
Max. number of adjustments		na	[-]	-	-
Steel failure for tensio	n load		•		
Characteristic resistanc	е	$N_{Rk,s}$	[kN]	107	7,7
Partial factor		γMs,N ¹⁾	[-]	1,	5
Pull-out failure					
Characteristic resistance in uncracked concrete C20/25		$N_{Rk,p,ucr}$	[kN]	22	46
Characteristic resistanc concrete C20/25	e in cracked	$N_{Rk,p,cr}$	[kN]	16	32
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_c$		Ψc	[-]	(f _{ck} /20	O) ^{0,5}
Concrete cone and sp	litting failure				
Effective embedment de	epth	$h_{\text{ef}}^{2)}$	[mm]	66,6	104,9
F16	Uncracked	k ucr,N	[-]	11,	0
Factor for	Cracked	k cr,N	[-]	7,7	7
Company to a sound fall to the	Edge distance	C cr,N	[mm]	1,5	h _{ef}
Concrete cone failure	Spacing	S cr,N	[mm]	3 h	ef
Characteristic resistance		N^0 Rk,sp	[kN]	N _{Rk}	s,p
Calitting failure	Edge distance	C _{cr,sp}	[mm]	1,60	h _{ef}
Splitting failure	Spacing	S _{cr,sp}	[mm]	3,20	h _{ef}
Installation factor		γinst	[-]	1,0)

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C5

²⁾ In case h_{nom} > h_{nom1} and < h_{nom2} the actual h_{ef} for concrete failure can be calculated according to Table A6

Table C3 continued

Fastener size HUS4			1	6				
Туре			H(F)					
			h _{nom1}	h _{nom2}				
Nominal embedment depth	h_{nom}	[mm]	85	130				
Steel failure for shear load		·						
Characteristic resistance	V^0 Rk,s	[kN]	65,1	73,1				
Partial factor	γ _{Ms,V} 1)	[-]	1,	25				
Ductility factor	k ₇	[-]	0,8					
Characteristic resistance	M ⁰ Rk,s	[Nm]	24	40				
Concrete pry-out failure		·						
Pry-out factor	k ₈	[-]	2	,0				
Concrete edge failure		·						
Effective length of fastener	lf	[mm]	85	130				
Outside diameter of fastener	d _{nom}	[mm]	1	6				

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C6

Table C4: Essential characteristics under static and quasi-static load in concrete for **HUS4** stainless steel

Fastener size HUS4			6	:	8		0	14	4	
Туре				HR, CR	HR.	, CR	HR,	CR	н	R
				h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	hnom2
Nominal embedment	depth	h _{nom}	[mm]	55	60	80	70	90	70	110
Steel failure for tens	ion and shear lo	oad								
Characteristic resistar	nce	$N_{Rk,s}$	[kN]	24,0	34	1,0	52	2,6	102	2,2
Partial factor		γ _{Ms,N} 1)	[-]				1,4			
Characteristic resistar	nce	$V_{Rk,s}$	[kN]	17,0	26	3,0	33	3,0	55,0	77,0
Partial factor		$\gamma_{Ms,V}{}^{1)}$	[-]				1,5			
Ductility factor		k ₇	[-]				1,0			
Characteristic resistar	nce	M ⁰ Rk,s	[Nm]	19	3	86	6	6	193	
Pull-out failure										
Characteristic resistar concrete C20/25		$N_{Rk,p,cr}$	[kN]	5	8,5	15	12	16	12	25
Characteristic resistar concrete C20/25	nce in uncracked	$N_{Rk,p,ucr}$	[kN]	9	12 16 16 25			≥N ⁰ Rk,c ³⁾		
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_0$		ψc	[-]	(fck/20) ^{0,5}						
Concrete cone and s	splitting failure									
Effective anchorage d	lepth	$h_{\text{ef}}^{2)}$	[mm]	45	47	64	54	71	52	86
Factor for	Cracked	k _{cr,N}	[-]				7,7			
1 actor for	Uncracked	k _{ucr,N}	[-]				11,0		102 55,0 19 12 ≥N ⁰ 52 1,8 3,6 1,	
Concrete cone failure	Edge distance	C cr,N	[mm]			1	,5 h _{ef}			
Concrete cone fallare	Spacing	S cr,N	[mm]				3 h _{ef}			
Calitting failure	Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef}	1,5	h _{ef}	1,8	h _{ef}	1,8	h _{ef}
Splitting failure	Spacing	S cr,sp	[mm]	3 h _{ef}	3	h _{ef}	3,6	h _{ef}	3,6	h _{ef}
Robustness		γinst	[-]	1,4	1,0	1,2	1,2	1,0	1,	2
Concrete pry-out fai	lure									
Pry-out factor k ₈		k ₈	[mm]	1,5			2,0	0		
Concrete edge failur	е									
Effective length of and	chor	lf	[mm]	55	60	80	70	90	70	110
Effective diameter of a	anchor	d _{nom}	[mm]	6		8	1	0	14	4

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C7

 $^{^{1)}}$ In absence of other national regulations. $^{2)}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom2}$ the actual h_{ef} for concrete failure can be calculated according to Tables A7 or A8 $^{3)}$ $N^0_{RK,c}$ according to EN 1992-4:2018

Table C5: Essential characteristics for seismic performance category C1 in concrete for HUS4 carbon steel size 8 to 10

Fastener size HUS4				8				10		
			H(F), C	T-I	H(F), 1	Г-С	H(F), C, A(F		
			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
epth	h _{nom}	[mm]	60	70	50	60	70	55	75	85
		'			•	•	•			
f adjustment	t _{adj}	[mm]	10	10	-	10	10	-	10	10
ments	na	[-]	2	2	-	2	2	1	2	2
on and shear lo	ad									
ce	N _{Rk,s,C1}	[kN]	36	5,0		39,2			55,0	
	γ _{Ms,N} 1)	[-]	1,	,5		1,4		1,5		
ce	V _{Rk,s,C1}	[kN]	18	3,8		16,5		26,1	26,1 26,7	
	γ _{Ms,V} 1)	[-]	1,2	25	1,5			1,25		
ar gap unfilled	$lpha_{\sf gap}$	[-]	0,5							
	$lpha_{ extsf{gap}}$	[-]	1,0							
ce in cracked	N _{Rk,p,C1}	[kN]	≥ N ⁰	Rk,c ³⁾	6	9	12	≥	≥ N ⁰ Rk,c ³⁾	
•										
lepth	$h_{\text{ef}}^{2)}$	[mm]	47,6	56,1	40	46,4	54,9	42,5	59,5	68,0
Edge distance	C _{cr,N}	[mm]				1,5 h _e	f			
Spacing	S cr,N	[mm]				3 h _{ef}				
	γinst	[-]		1	,0			1,2	1	,0
ıre										
	k 8	[-]	2	,0	1,0 2,0			1,0 2,0		
•										
ener	If	[mm]	60	70	50	60	70	55	75	85
	ce ce ce car gap unfilled co ar gap filled ce in cracked depth Edge distance Spacing	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C8

 $^{^{2)}}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to Tables A5, A6 or A8

³⁾ N⁰Rk,c according to EN 1992-4:2018

Table C6: Essential characteristics for seismic performance category C1 in concrete for HUS4 carbon steel size 10 to 14

Fastener size HUS4	er size HUS4					10				14		
Туре			T-H(F), T-C			H(F)			H(F), A(F)			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
Nominal embedment de	pth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115
Adjustment									•			
Total max. thickness of layers	adjustment	t _{adj}	[mm]	-	10	10	10	10	10	10	10	10
Max. number of adjustm	nents	na	[-]	-	2	2	2	2	2	2	2	2
Steel failure for tensio	n and shear loa	d										
Characteristic resistance	е	N _{Rk,s,C1}	[kN]		62,2			79,0			101,5	
Partial factor		γ _{Ms,N} 1)	[-]					1,5				
Characteristic resistance	е	V _{Rk,s,C1}	[kN]		25,7		33,2	38	3,9		46,0	
Partial factor		γ _{Ms,V} 1)	[-]		1,5			•	1,	25		
Reduction factor acc. to 4:2018 annular gap unfilled	EN 1992-	Ωgap	[-]					0,5				
Reduction factor acc. to 4:2018 annular gap filled	EN 1992-	$lpha_{\sf gap}$	[-]					1,0				
Pull-out failure												
Characteristic resistance concrete	e in cracked	$N_{Rk,p,C1}$	[kN]	9	15	19			≥ N ⁰	⁰ Rk,c ³⁾		
Concrete cone failure												
Effective embedment de	epth	$h_{\text{ef}}^{2)}$	[mm]	41,6	58,6	67,1	45,9	62,9	79,9	49,3	66,3	91,8
Concrete cone failure	Edge distance	C _{cr,N}	[mm]					1,5 h _e	f			
Concrete cone failure	Spacing	S _{cr,N}	[mm]					3 h _{ef}				
Installation factor		γinst	[-]					1,0				
Concrete pry-out failu	re											
Pry-out factor	k ₈	[-]	1,0 2,0 2,0									
Concrete edge failure												
Effective length of faste	ner	lf	[mm]	55	75	85	60	80	100	65	85	115
Outside diameter of fast	ener	d _{nom}	[mm]		10			12	•	14		
										-		

¹⁾ In absence of other national regulations.

³⁾ N⁰Rk,c according to EN 1992-4:2018

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C9

 $^{^{2)}}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to Tables A5, A6 or A8

Table C7: Essential characteristics for seismic performance category C1 in concrete for HUS4 carbon steel size 16

Fastener size HUS4			16		
Туре				H	l(F)
				h _{nom1}	h _{nom2}
Nominal embedment de	epth	h _{nom}	[mm]	85	130
Steel failure for tension	on and shear loa	d	•		
Characteristic resistanc	е	N _{Rk,s,C1}	[kN]	1	07,7
Partial factor		γMs,N ¹⁾	[-]		1,5
Characteristic resistanc	:e	V _{Rk,s,C1}	[kN]	42,9	25,3
Partial factor	γ _{Ms,V} 1)	[-]	1	1,25	
Reduction factor acc. to 4:2018 annular gap unfilled	αgap	[-]		0,5	
Reduction factor acc. to 4:2018 annular gap filled	EN 1992-	$lpha_{\sf gap}$	[-]		1,0
Pull-out failure					
Characteristic resistand concrete	e in cracked	N _{Rk,p,C1}	[kN]	7,5	19,0
Concrete cone failure					
Effective embedment d	epth	h _{ef} ²⁾	[mm]	66,6	104,9
Concrete cone failure	Edge distance	C _{cr,N}	[mm]	1,	5 h _{ef}
Concrete cone failule	Spacing	S _{cr,N}	[mm]	3	3 h _{ef}
Installation factor		γinst	[-]		1,0
Concrete pry-out failu	re				
Pry-out factor		k ₈	[-]		2,0
Concrete edge failure					
Effective length of faste	ner	If	[mm]	85	130
Outside diameter of fas	tener	d _{nom}	[mm]		16

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C10

²⁾ In case h_{nom} > h_{nom1} and < h_{nom2} the actual h_{ef} for concrete failure can be calculated according to Table A6

Table C8: Essential characteristics for seismic performance category C1 in concrete for HUS4 stainless steel

Fastener size H	IUS4			8	10	14
Туре				HR, CR	HR, CR	HR
				h _{nom2}	h _{nom2}	h _{nom2}
Nominal embed	ment depth	h _{nom}	[mm]	80	90	110
Steel failure for	r tension and she	ar load	·			
Characteristic re	esistance	N _{Rk,s,C1}	[kN]	34,0	52,6	102,2
Partial factor		γMs,N ¹⁾	[-]		1,4	
Characteristic re	esistance	V _{Rk,s,C1}	[kN]	11,1	17,9	53,9
Partial factor		γ _{Ms,V} 1)	[-]		1,5	
Pull-out failure						
Characteristic recracked concret		N _{Rk,p,C1}	[kN]	7,7	12,5	17,5
Concrete cone	failure					
Effective embed	ment depth	h _{ef}	[mm]	64	71	86
Concrete cone	Edge distance	C _{cr,N}	[mm]		1,5 h _{ef}	
failure	Spacing	S _{cr,N}	[mm]		3 h _{ef}	
Robustness		γinst	[-]	1,2	1,0	1,2
Concrete pry-o	ut failure					
Pry-out factor		k ₈	[-]		2,0	
Concrete edge	failure					
Effective length	of fastener	$I_f = h_{ef}$	[mm]	64	71	86
Outside diamete	er of fastener	d _{nom}	[mm]	8	10	14

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C11

Table C9: Essential characteristics for seismic performance category C2 in concrete for HUS4 carbon steel size 8 to 10

Fastener size HUS4	4				8 8	_	8 LI/E) T	·-C	 	10 E\ C A	(E)
Туре				h _{nom2}	h _{nom3}	h _{nom1}	-H(F), T	h _{nom3}	h _{nom1}	F), C, A	h _{nom3}
Nominal embedmen	t depth	h _{nom}	[mm]	60	70	50	60	70	55	75	85
Adjustment	- · · · · · · · · · · · · · · · · · · ·										
Total max. thickness layers	s of adjustment	t _{adj}	[mm]	10	10	-	10	10	-	10	10
Max. number of adju	ıstments	na	[-]	2	2	-	2	2	-	2	2
Steel failure for ten	sion								•	•	
Characteristic resista	ance	N _{Rk,s,C2}	[kN]	36	5,0		39,2			55,0	
Partial factor		γ _{Ms,N} 1)	[-]	1	,5		1,4			1,5	
Steel failure for she	ear load					•					
Partial factor		γ _{Ms,V} 1)	[-]	1,	25		1,5			1,25	
Installation with Hilti	filling set (HUS	4-H and H	US4-A)			'			•		
Characteristic resistance		V _{Rk,s,C2}	[kN]	8,7	16,0	9,2 14,7		15,1		23,2	
Partial factor annula	r gap filled	αgap	[-]	1,0							
Installation without F	Hilti filling set										
Characteristic resista	ance	V _{Rk,s,C2}	[kN]	8,7	10,8	9,2 10,8			14,8		
Partial factor annula	r gap not filled	αgap	[-]			'	0	,5			
Pull-out failure											
Characteristic resista cracked concrete	ance in	N _{Rk,p,C2}	[kN]	1,8	2,7	2,3	2,8	3,2	2,6	3,6	5,4
Concrete cone failu	ure										
Effective embedmen	nt depth	$h_{\text{ef}}^{2)}$	[mm]	47,6	56,1	40	46,4	54,9	42,5	59,5	68,0
Concrete cone	Edge distance	C _{cr,N}	[mm]				1,5	h _{ef}			
failure	Spacing	Scr,N	[mm]				3	h _{ef}			
Installation factor		γinst	[-]			1,0			1,2	1	,0
Concrete pry-out fa	ailure										
Pry-out factor		k 8	[-]	2	,0	1,0 2,0			1,0	2	,0
Concrete edge failı	ure										
Effective length of fa	stener	I f	[mm]	60	70	50	60	70	55	75	85
Outside diameter of	fastener	d _{nom}	[mm]		8		8			10	

¹⁾ In absence of other national regulations.

 $^{^{2)}}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to Tables A5, A6 or A8

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C2 in concrete	Annex C12

Table C10: Essential characteristics for seismic performance category C2 in concrete for HUS4 carbon steel size 10 to 14

Fastener size HUS			Т-	10 H(F), T	-c		12 H(F)		н	14 (F), A(l	F)	
, , , , , , , , , , , , , , , , , , ,			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
Nominal embedme	nt depth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115
Adjustment					ı				ı			
Total max. thicknes adjustment layers	ss of	t _{adj}	[mm]	-	10	10	10	10	10	10	10	10
Max. number of adj	justments	na	[-]	-	2	2	2	2	2	2	2	2
Steel failure for te	nsion											
Characteristic resis	tance	N _{Rk,s,C2}	[kN]		62,2			79,0			101,5	
Partial factor		γ _{Ms,N} 1)	[-]		1,4				1,	,5		
Steel failure for sh	near load											
Partial factor	γMs,V ¹⁾	[-]		1,5				1,:	25			
Installation with Hilt	ti filling set (Hl	JS4-H and	HUS4-A	()								
Characteristic resis	tance	V _{Rk,s,C2}	[kN]	13,3 25,6			20,0 28,6			29,2 46,		
Partial factor annul	αgap	[-]	1,0									
Installation without	Hilti filling set											
Characteristic resis	tance	$V_{\text{Rk},\text{s},\text{C2}}$	[kN]	13	13,3 17,7 20,0 23,7			29	9,2	34,4		
Partial factor annula filled	ar gap not	$lpha_{\sf gap}$	[-]	0,5								
Pull-out failure												
Characteristic resis cracked concrete	tance in	$N_{Rk,p,C2}$	[kN]	2,8	5,4	6,4	5,7	8,5	11,4	5,4	8,9	17,7
Concrete cone fai	lure											
Effective embedme		h _{ef} ²⁾	[mm]	41,6	58,6	67,1	45,9	62,9	79,9	49,3	66,3	91,8
Concrete cone failure	Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
	Spacing	S _{cr,N}	[mm]					3 h _{ef}				
Installation factor		γinst	[-]					1,0				
Concrete pry-out	failure						.					
Pry-out factor k ₈				1,0	2	,0			2,	,0		
Concrete edge fai	lure											
Effective length of f	astener	I _f	[mm]	55	75	85	60	80	100	65	85	115
Outside diameter o	f fastener	d_{nom}	[mm]		10			12			14	

¹⁾ In absence of other national regulations.

 $^{^{2)}}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to Tables A5, A6 or A8

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C2 in concrete	Annex C13

Table C11: Essential characteristics under fire exposure in concrete for HUS4 (T)-H carbon steel sizes 8 and 10

Fastener size HUS4 (T)	-H(F)				8			T-8		10		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{non}
Nominal embedment de	pth	h _{nom}	[mm]	40	60	70	50	60	70	55	75	85
Adjustment					•		•	•	•	•		
Total max. thickness of adjustment layers		t _{adj}	[mm]	-	10	10	-	10	10	-	10	10
Max. number of adjustm	ents	n a	[-]	-	2	2	-	2	2	-	2	2
Steel failure for tension	n and sl	near load (F _{Rk,s,fi} =	N _{Rk,s,fi}	= V _{Rk,s,}	fi)						
I	R30	F _{Rk,s,fi}	[kN]		2,6		3,2	3,5	3,8	4,1	4	,2
Ī	R60	F _{Rk,s,fi}	[kN]		1,9		2,4	2,6	2,8	3,1	3	,1
	R90	F _{Rk,s,fi}	[kN]		1,2		1,6	1,6	1,9	2,2	2	,3
Characteristic	R120	F _{Rk,s,fi}	[kN]		0,9		1,2	1,2	1,5	1,5	1	,7
resistance	R30	M^0 Rk,s,fi	[Nm]		2,3		3,8	4,1	4,4	4,8	4	,9
	R60	M^0 Rk,s,fi	[Nm]		1,7		2,8	3,0	3,4	3,6	3	,7
	R90	M^0 Rk,s,fi	[Nm]	1,1		1,9	1,9	2,3	2,6	2,7		
	R120	M^0 Rk,s,fi	[Nm]		0,8			1,4	1,7	1,7 1,8		,9
Pull-out failure							•			•		
Characteristic	R30 R60 R90	N^0 Rk,p,fi	[kN]	1,3	2,8	3,6	1,5	2,3	3,0	2,3	3,9	4,7
	R120	$N^0_{Rk,p,fi}$	[kN]	1,0	2,2	2,8	1,2	1,8	2,4	1,9	3,1	3,7
Concrete cone failure												
Characteristic I	R30 R60 R90	N^0 Rk,c,fi	[kN]	0,8	2,6	4,0	1,8	2,6	4,0	2,0	4,7	6,5
	R120	N ⁰ Rk,c,fi	[kN]	0,7	2,1	3,2	1,4	2,1	3,2	1,6	3,7	5,2
Edge distance					•	•	•	•	•	•	•	
R30 to R120		C _{cr,fi}	[mm]					2 h _{ef}				
In case of fire attack from	n more t	than one si	de, the r	ninimu	m edge	distan	ce shal	be ≥ 3	00 mm			
Fastener spacing												
R30 to R120		S _{cr,fi}	[mm]					2 C _{cr,fi}				
Concrete pry-out failur	e											
R30 to R120		k ₈	[-]	1	,0	2,0	1,0	2	2,0	1,0	2	,0
The anchorage depth sh	all be in	creased for		ncrete l	by at le	ast 30 r	mm cor	npared	to the	given v		

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C14

Table C12: Essential characteristics under fire exposure in concrete for HUS4 (T)-H carbon steel sizes 10 to 14

Fastener size HUS4 (1	T)-H(F)				T-10			12			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment de	epth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115	
Adjustment													
Total max. thickness of adjustment layers		t adj	[mm]	_	10	10	10	10	10	10	10	10	
Max. number of adjustments		na	[-]	_	2	2	2	2	2	2	2	2	
Steel failure for tension	on and s	hear load	(F _{Rk,s,fi} =	N _{Rk,s,f}	i = V _{Rk,}	s,fi)							
R30 F _{Rk,s,fi} [kN			[kN]	6,1	6	,2	7,5	7,6	7,6	10,3	10,4	10,5	
_	R60	F _{Rk,s,fi}	[kN]	4,6	4	,7	5,5	5,7	5,8	7,7	7,9	8,0	
	R90	F _{Rk,s,fi}	[kN]	3,1	3	3,2		3,9	4,1	5,2	5,6	5,8	
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	2,4	2	,5	2,8	3,0	3,1	3,9	4,2	4,4	
resistance	R30	M^0 Rk,s,fi	[Nm]	9,1	9	,2	11,4	11,6	11,6	18,9	19,2	19,3	
	R60	M^0 Rk,s,fi	[Nm]	6,9	7	,0	8,4	8,8	8,9	14,1	14,6	14,8	
	R90	M^0 Rk,s,fi	[Nm]	4,6	4,8		5,7	6,0	6,2	9,5	10,2	10,7	
	R120	M^0 _{Rk,s,fi}	[Nm]	3,5	3,7		4,3	4,6	4,7	7,2	7,7	8,1	
Pull-out failure													
Characteristic resistance	R30 R60 R90	N^0 Rk,p,fi	[kN]	2,4	4,0	4,9	2,6	4,2	6,1	2,9	4,5	7,5	
	R120	N^0 Rk,p,fi	[kN]	1,9	3,2	3,9	2,1	3,4	4,9	2,3	3,6	6,0	
Concrete cone failure	,												
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,0	4,7	6,6	2,4	5,4	9,8	2,9	6,1	13,9	
	R120	N^0 _{Rk,c,fi}	[kN]	1,6	3,8	5,3	1,9	4,3	7,8	2,3	4,9	11,	
Edge distance													
R30 to R120		C _{cr,fi}	[mm]					2 h _{ef}					
In case of fire attack fro	om more	than one s	side, the	minimu	ım edg	e dista	nce sha	all be ≥	300 m	m			
Fastener spacing													
R30 to R120		Scr,fi	[mm]					2 C _{cr,fi}					
Concrete pry-out failu	ıre												
R30 to R120		k ₈	[-]	1,0	2	,0			2	2,0			
The anchorage depth s	hall he i	ncreased for		ncrete	by at l	east 30) mm c	ompare	ed to th	e giver	 value		

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C15

Table C13: Essential characteristics under fire exposure in concrete for HUS4-H carbon steel size 16

Fastener size HUS	4-H(F)			1	6
				h_{nom1}	h _{nom2}
Nominal embedmer	nt depth	h_{nom}	[mm]	85	130
Steel failure for ter	nsion and shear	load (F _{Rk,s,fi} =	$N_{Rk,s,fi} = V_{Rk}$	s,s,fi)	
	R30	$F_{Rk,s,fi}$	[kN]	10,6	10,7
	R60	$F_{Rk,s,fi}$	[kN]	8,1	8,2
	R90	$F_{Rk,s,fi}$	[kN]	5,7	5,9
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	4,3	4,5
resistance	R30	M^0 Rk,s,fi	[Nm]	23,7	23,9
	R60	M^0 Rk,s,fi	[Nm]	18,1	18,3
	R90	M^0 Rk,s,fi	[Nm]	12,7	13,2
	R120	M^0 Rk,s,fi	[Nm]	9,6	10,0
Pull-out failure			•		
Characteristic resistance	R30 R60 R90	$N^0_{Rk,p,fi}$	[kN]	4,6	8,7
resistance	R120	N^0 Rk,p,fi	[kN]	3,7	7,0
Concrete cone fail	ure		•		
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	6,2	19,4
70010101100	R120	N ⁰ Rk,c,fi	[kN]	4,9	15,5
Edge distance					
R30 to R120		C _{cr,fi}	[mm]	2	h _{ef}
In case of fire attack	r from more than	one side, the	minimum ed	ge distance shall be ≥	300 mm
Fastener spacing					
R30 to R120		S _{cr,fi}	[mm]	2 (Ccr,fi
Concrete pry-out f	ailure		l		
R30 to R120		k ₈	[-]	2	,0

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C16

Table C14: Essential characteristics under fire exposure in concrete for HUS4 (T)-C carbon steel size 8

Fastener size HUS4	(T)-C				. 8			T-8		
				h_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment	depth	h _{nom}	[mm]	40	60	70	50	60	70	
Adjustment									•	
Total max. thickness of adjustment layers	of	\mathbf{t}_{adj}	[mm]	-	10	10	-	10	10	
Max. number of adjust	tments	na	[-]	-	2	2	-	2	2	
Steel failure for tensi	ion and sh	ear load (F _{Rk,s,fi} =	$N_{Rk,s,fi} = V$	/ _{Rk,s,fi})					
	R30	$F_{Rk,s,fi}$	[kN]		0,5			0,5		
	R60	F _{Rk,s,fi}	[kN]		0,4			0,4		
	R90	$F_{Rk,s,fi}$	[kN]		0,3			0,3		
Characteristic	R120	F _{Rk,s,fi}	[kN]		0,2			0,2		
resistance	R30	M^0 _{Rk,s,fi}	[Nm]		0,4			0,6		
	R60	M^0 Rk,s,fi	[Nm]		0,3		0,5			
	R90	M^0 Rk,s,fi	[Nm]		0,2		0,4			
	R120	M^0 _{Rk,s,fi}	[Nm]		0,2		0,3			
Pull-out failure			•							
Characteristic resistance	R30 R60 R90	N^0 Rk,p,fi	[kN]	1,3	2,8	3,6	1,5	2,3	3,0	
	R120	N^0 Rk,p,fi	[kN]	1,0	2,2	2,8	1,2	1,8	2,4	
Concrete cone failur	e									
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	0,8	2,6	4,0	1,8	2,6	4,0	
	R120	N^0 Rk,c,fi	[kN]	0,7	2,1	3,2	1,5	2,1	3,2	
Edge distance										
R30 to R120		C _{cr,fi}	[mm]			2	h _{ef}			
In case of fire attack fr	rom more t	han one si	de, the r	ninimum e	edge distar	nce shall b	e ≥ 300 m	m		
Fastener spacing										
R30 to R120		S _{cr,fi}	[mm]			2 (Ccr,fi			
Concrete pry-out fail	lure									
R30 to R120		k ₈	[-]	1,0	2	,0	1,0	2	,0	
The anchorage depth	shall be in	creased fo		ncrete by a	at least 30	mm comp	ared to the	e given val	ue	

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C17

Table C15: Essential characteristics under fire exposure in concrete for HUS4 (T)-C carbon steel size 10

Fastener size HUS4	(T)-C				10			T-10		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment	depth	h _{nom}	[mm]	55	75	85	55	75	85	
Adjustment										
Total max. thickness adjustment layers	of	t _{adj}	[mm]	-	10	10	-	10	10	
Max. number of adjus	na	[-]	-	2	2	-	2	2		
Steel failure for tens	ion and sh	ear load (F _{Rk,s,fi} =	$N_{Rk,s,fi} = V$	/ _{Rk,s,fi})					
	R30	F _{Rk,s,fi}	[kN]		1,0			1,2		
	R60	F _{Rk,s,fi}	[kN]		0,9			1,0		
	R90	F _{Rk,s,fi}	[kN]		0,7			0,8		
Characteristic	R120	F _{Rk,s,fi}	[kN]		0,6			0,6		
resistance	R30	M^0 Rk,s,fi	[Nm]		1,2			1,7		
	R60	M^0 Rk,s,fi	[Nm]		1,0			1,5		
	R90	M^0 Rk,s,fi	[Nm]		0,8		1,1			
	R120	M^0 _{Rk,s,fi}	[Nm]		0,6		0,9			
Pull-out failure										
Characteristic resistance	R30 R60 R90	N^0 Rk,p,fi	[kN]	2,3	3,9	4,7	2,4	4,0	5,0	
	R120	$N^0_{Rk,p,fi}$	[kN]	1,9	3,1	3,7	1,9	3,2	4,0	
Concrete cone failu	re									
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,0	4,7	6,5	2,0	4,7	6,6	
Toolotanoo	R120	N^0 Rk,c,fi	[kN]	1,6	3,7	5,2	1,6	3,8	5,3	
Edge distance										
R30 to R120		C _{cr,fi}	[mm]			2	h _{ef}			
In case of fire attack f	rom more t	han one si	de, the r	ninimum e	dge distar	nce shall b	e ≥ 300 m	m		
Fastener spacing										
R30 to R120		S _{cr,fi}	[mm]			2 (C _{cr,fi}			
Concrete pry-out fai	lure			·						
R30 to R120		k ₈	[-]	1,0	2	,0	1,0	2	,0	
The anchorage depth	shall be in	creased fo			at least 30	mm comp	ared to the	1		

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C18

Table C16: Essential characteristics under fire exposure in concrete for HUS4-A carbon steel

Fastener size HUS4-	A(F)				10			14		
				\mathbf{h}_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} :	
Nominal embedment of	h _{nom}	[mm]	55	75	85	65	85	115		
Adjustment						•			•	
Total max. thickness of layers	of adjustment	t _{adj}	[mm]	-	10	10	10	10	10	
Max. number of adjust	tments	n a	[-]	-	2	2	2	2	2	
Steel failure for tensi	ion and shear lo	oad (F _{Rk,s,fi} =	: N _{Rk,s,fi} =	V _{Rk,s,fi})						
	R30	$F_{Rk,s,fi}$	[kN]		4,2			8,4		
	R60	F _{Rk,s,fi}	[kN]		3,3			6,8		
	R90	$F_{Rk,s,fi}$	[kN]		2,5			5,1		
Characteristic	R120	F _{Rk,s,fi}	[kN]		2,1			4,3		
resistance	R30	M^0 _{Rk,s,fi}	[Nm]		4,8			15,4		
	R60	M^0 Rk,s,fi	[Nm]		3,8			12,4		
	R90	M^0 _{Rk,s,fi}	[Nm]		2,9		9,3			
	R120	M^0 Rk,s,fi	[Nm]		2,4		7,8			
Pull-out failure										
Characteristic resistance	R30 R60 R90	N^0 Rk,p,fi	[kN]	2,3	3,9	4,7	2,9	4,5	7,5	
	R120	$N^0_{Rk,p,fi}$	[kN]	1,9	3,1	3,7	2,3	3,6	6,0	
Concrete cone failur	е									
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,0	4,7	6,5	2,9	6,1	13,9	
Toolotarioo	R120	N^0 Rk,c,fi	[kN]	1,6	3,7	5,2	2,3	4,9	11,1	
Edge distance										
R30 to R120		C _{cr,fi}	[mm]			2	h _{ef}			
In case of fire attack fr	om more than o	ne side, the	minimun	n edge di	stance sl	hall be ≥ :	300 mm			
Fastener spacing										
R30 to R120		S _{cr,fi}	[mm]			2 (cr,fi			
Concrete pry-out fail	ure									
R30 to R120		k ₈	[-]	1,0			2,0			
The anchorage depth	shall be increase	ed for wet co	ncrete b	y at leas	t 30 mm	compared	d to the g	iven valu	e	

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C19

Table C17: Essential characteristics under fire exposure in concrete for HUS4 stainless steel

Fastener size HUS4			(6	8				10				14		
Туре			HR	CR	н	R	c	R	н	R	c	R	н	R	
		hno	h _{nom1}		h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}		
Nominal embe	dment	h _{nom}	[mm]	5	5	60	80	60	80	70	90	70	90	70	110
Steel failure fo	or tensi	ion and s	hear lo	ad (F⊧	Rk,s,fi =	N _{Rk,s,ff}	i = V _{Rk}	,s,fi)							
R30 F _{Rk,s,fi} [kN]		4,9	0,2	9	,3	0,	,8	18	3,5	1	,4	41	,7		
	R60	$F_{Rk,s,fi}$	[kN]	3,3	0,2	6	,3	0,6		12,0		1	,1	26	5,9
	R90	$F_{Rk,s,fi}$	[kN]	1,8	0,2	3	,2	0,5		5,4		0	,9	12	2,2
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	1,0	0,1	1,7		0,4		2,4		0	,8	5,4	
resistance	R30	M^0 Rk,s,fi	[Nm]	4,0	0,2	8,2		0,8		19,4		1,5		65,6	
_	R60	M^0 Rk,s,fi	[Nm]	2,7	0,2	5,5		0,7		12,6		1,2		42,4	
	R90	M^0 Rk,s,fi	[Nm]	1,4	0,1	2,8		0,5		5,7		0,9		19,2	
	R120	M^0 Rk,s,fi	[Nm]	0,8	0,1	1	1,5		0,4		2,5		,8	8,5	
Concrete pull	-out fai	lure													
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1	,3	1,5	3,0	1,5	3,0	2,3	4,0	2,3	4,0	3,0	6,3
resistance	R120	$N_{Rk,p,fi}$	[kN]	1	,0	1,2	2,4	1,2	2,4	1,8	3,2	1,8	3,2	2,4	5,0
Edge distance															
R30 to R120		C cr,fi	[mm]	2 h _{ef}											
Anchor spacin	g														
R30 to R120 s _{cr,fi} [mm]							2 (Ccr,fi							
Concrete pry-	out fail	ure													
R30 to R120		k 8	[-]	1	1,5										

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C20

Table C18: Displacements under tension loads for HUS4 carbon steel

Fastener size HUS4					8			8		10		
Туре					H(F), C			H(F), T	-C	H(F), C, A(F)		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embe	edment depth	h_{nom}	[mm]	40	60	70	50	60	70	55	75	85
Cracked	Tension Load	N	[kN]	2,6	5,4	6,9	4,3	5,7	7,6	3,8	7,5	8,6
concrete C20/25 to	Displacement	δ_{N0}	[mm]	0,1	0,3	0,4	0,3	0,4	0,3	0,2	0,4	0,4
C50/60	Displacement	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,6	0,7	0,7	0,9
Uncracked	Tension Load	N	[kN]	3,7	7,1	9,1	6,6	8,9	11,8	5,2	10,5	12,2
concrete C20/25 to C50/60	Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,1	0,2	0,1	0,1	0,3	0,3
	Displacement	δ _{N∞}	[mm]	0,3	0,4	0,4	0,3	0,3	0,3	0,7	0,7	0,9

Fastener size	e HUS4				10			12		14		
Туре				T-H(F), T-C				Н		H(F), A(F)		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth h _{nom} [mm]		55	75	85	60	80	100	65	85	115		
Cracked	Tension Load	N	[kN]	5,7	9,5	13,2	5,1	8,2	11,7	5,7	8,6	14,4
concrete C20/25 to	Disalessant	δ_{N0}	[mm]	0,4	0,4	0,4	0,3	0,4	0,6	0,3	0,4	0,7
C50/60	Displacement	δ _{N∞}	[mm]	0,4	0,4	0,5	0,9	0,9	1,2	1,3	1,3	1,5
Uncracked	Tension Load	N	[kN]	8,7	14,8	20,5	6,8	10,8	15,5	7,5	11,7	19,1
concrete C20/25 to C50/60	Dianlacement	δ_{N0}	[mm]	0,1	0,1	0,1	0,2	0,3	0,4	0,2	0,3	0,5
	Displacement	δ _{N∞}	[mm]	0,2	0,2	0,2	0,9	0,9	1,2	1,3	1,3	1,5

Fastener size	e HUS4			•	16
Туре				н	(F)
				h _{nom1}	h _{nom2}
Nominal emb	edment depth	h _{nom}	[mm]	85	130
Cracked	Tension Load	N	[kN]	8,7	16,7
concrete C20/25 to	Displacement	δ _{N0}	[mm]	0,1	0,4
C50/60	Displacement	δ _{N∞}	[mm]	1,3	1,4
Uncracked	Tension Load	N	[kN]	11,5	22,9
concrete C20/25 to	Dianlessment	δ_{N0}	[mm]	0,4	0,3
C50/60	Displacement	δ _{N∞}	[mm]	1,3	1,4

Hilti screw anchor HUS4	
Performances Displacement values in case of static and quasi-static loading	Annex C21

Table C19: Displacements under tension loads for HUS4 stainless steel

Fastener size	HUS			6		В		1	0		1	4
Туре				HR, CR	HR, CR		HR, CR		н		HR	
				h _{nom1}	h _{nom1}	h _{nom2}						
Nominal anch	orage depth	h _{nom}	[mm]	55	60	80	70	90	70	85	70	110
0	Tension load	N	[kN]	1,7	2,4	4,8	3,6	6,3	3,0	4,1	4,8	9,9
Cracked concrete		δηο	[mm]	0,4	0,5	0,7	0,3	0,6	0,2	0,3	0,9	1,4
C20/25 to C50/60	Displacement	$\delta_{N\infty}$	[mm]	0,5	0,7	1,1	0,6	1,1	0,3	0,7	1,1	1,4
C30/60	-	δ N,seis	[mm]	1)	1)	1,2	1)	1,2	1)	1,2	1)	0,4
Uncracked	Tension load	N	[kN]	3,1	4,8	6,3	6,3	9,9	4,8	6,8	7,5	16,0
concrete C20/25 to C50/60	Dianlessment	δνο	[mm]	0,8	0,7	1,6	0,3	1,3	0,2	0,3	0,7	1,0
	Displacement –	$\delta_{N\infty}$	[mm]	0,8	0,7	1,6	0,3	1,3	0,3	0,7	0,7	1,0

¹⁾ No performance assessed.

Hilti screw anchor HUS4	
Performances Displacement values in case of static and quasi-static loading	Annex C22

Table C20: Displacements under shear loads for HUS4 carbon steel

Fastener siz	e HUS4				8		8			10		
Туре					H(F), C		T-H(F), T-C			H(F), C, A(F)		
					h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal emb	Nominal embedment depth h _{nom} [mm]		40	60	70	40	60	70	55	75	85	
Concrete	Shear Load	V	[kN]	10,7	10,7	12,5	8,1	8,1	8,1	16,5	16,5	18,3
C20/25 to	Displacement	δ_{V0}	[mm]	1,3	1,1	0,9	2,5	3,4	2,9	1,4	1,3	1,0
C50/60	Displacement -	δ∨∞	[mm]	2,0	1,7	1,4	3,7	5,1	4,4	2,1	2,0	1,5

Fastener siz	e HUS4				10		12			14		
Туре	Туре			T-	H(F), T	-C		H(F)		H(F), A(F)		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth h _{nom} [mm]		55	75	85	60	80	100	65	85	115		
Concrete	Shear Load	V	[kN]		13,3		22,2	22,2	25,7	31,4	35,4	35,4
C20/25 to C50/60	Displacement	δ_{V0}	[mm]	3,8	3,7	3,2	1,6	1,6	0,9	5,3	5,3	4,0
	Displacement	δ∨∞	[mm]	5,7	5,5	4,9	2,3	2,4	1,4	7,9	7,9	6,0

Fastener siz	ze HUS4			1	6
Туре				H	(F)
				h _{nom1}	h _{nom2}
Nominal emb	Nominal embedment depth		[mm]	85	130
Concrete	Shear Load	V	[kN]	37,2	41,8
C20/25 to	C20/25 to		[mm]	2,3	1,8
C50/60	Displacement	δ∨∞	[mm]	3,5	2,7

Table C21: Displacements under shear loads for HUS4 stainless steel

Fastener s	ize HUS4			6	8	В	1	0	1	4
Туре				HR, CR	HR, CR HR, CR			CR	HR	
				h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal anchorage depth h _{nom} [mm]		[mm]	55	60	80	70	90	70	110	
	Shear load	V	[kN]	7,8	11,0	12,4	13,6	15,7	12,9	27,3
Concrete		$\delta_{ m V0}$	[mm]	0,4	2,0	2,3	1,1	1,7	3,5	3,9
C20/25 to C50/60	Displacement	δν∞	[mm]	0,5	2,4	2,9	1,5	2,4	3,9	4,3
		$\delta_{ extsf{V,C1}}$	[mm]	1)	1)	4,8	1)	5,3	1)	7,6

¹⁾ No performance assessed.

Hilti screw anchor HUS4	
Performances Displacement values in case of static and quasi-static loading	Annex C23

Table C22: Displacements under tension and shear loads for seismic category 2 for HUS 4 carbon steel

Fastener size HUS4			1	3		8			10	
Туре			H(F), C	Т-	H(F), T	-c	H(F), C, A(F)		
			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h_{nom}	[mm]	60	70	50 60		70	55	75	85
Tension load										
Displacement DLS	[mm]	0,		0,35		0,80				
Displacement ULS	δ _{N,C2 (ULS)}	[mm]	1,36 0,65						3,66	
Shear load with Hilti filling se	et (HUS4-H ar	nd HUS4-	A)							
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	3,57	1,85	3,37		37 1,81		32	1,72
Displacement ULS	$\delta_{\text{V,C2 (ULS)}}$	[mm]	5,56	5,44	5,38		4,60	7,	7,72	
Shear load without Hilti filling	g set									
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	3,57	4,64	3,	37	3,93	4,32		5,02
Displacement ULS	[mm]	5,56	7,96	5,	38	5,55	7,	72	8,97	
Fastener size HUS4			1	12			14			
Type			T-H(F		H(F)		H(F), A(F)			

Fastener size HUS4				10			12		14		
Туре			T-	H(F), T	-C		H(F)		H(F), A(F)		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h_{nom}	[mm]	55	75	85	60	80	100	65	85	115
Tension load											
Displacement DLS	δ _{N,C2 (DLS)}	[mm]	0,57			0,77			1,06		
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]		2,08		2,78					
Shear load with Hilti filling se	et (HUS4-H ar	nd HUS4-	-A)								
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	4,	07	1,80	4,	05	1,73	4,	00	2,52
Displacement ULS	δ V,C2 (ULS)	[mm]	7,	50	4,03	7,	07	5,62	6,	09	6,79
Shear load without Hilti filling											
Displacement DLS	δv,c2 (DLS)	[mm]	4,	07	4,15	4,	05	4,90	4,	00	4,93
Displacement ULS	δ _{V,C2} (ULS)	[mm]	7,	50	6,15	7,	07	7,00	6,	09	9,14

Hilti screw anchor HUS4	
Performances Displacement values in case of seismic C2 loading	Annex C24