

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-20/1081 of 20 October 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

HALFEN serrated anchor channels HZA

Anchor channels

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Manufacturing Plants

36 pages including 3 annexes which form an integral part of this assessment

EAD 330008-04-0601, Edition 07/2024

ETA-20/1081 issued on 4 April 2023

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z47005.24 | 8.06.01-74/24

European Technical Assessment ETA-20/1081

English translation prepared by DIBt

Page 2 of 36 | 20 October 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 36 | 20 October 2025

Specific Part

1 Technical description of the product

The HALFEN Serrated Anchor Channels HZA is a system consisting of a C-shaped serrated channel profile of steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and HALFEN serrated channel bolts.

The anchor channel is embedded surface-flush in the concrete. HALFEN serrated channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi- static tension loading	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C2
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A7 $M_{Rk,s,flex}$ see Annex C1
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C3
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A7 c_{min} ; h_{min} see Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C3
 Resistance to blowout failure - bearing area of anchor head 	A_h see Annex A6

Page 4 of 36 | 20 October 2025

Essential characteristic	Performance				
Characteristic resistance under static and quasi-static shear loading					
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C8				
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M_{Rk,s}^{\ 0}$ see Annex C8				
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V_{Rk,s,l,y}$; $s_{l,v}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C5				
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in direction of longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C6				
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C6				
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C5				
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C5				
- Resistance to concrete pry-out failure	k_8 see Annex C7				
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C7				
Characteristic resistance under combined static and quasi-static tension and shear loading					
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C8				
Characteristic resistance under fatigue tension loading					
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, assessment method A1, A2) 	No Performance assessed				
 Fatigue limit resistance to steel failure of the whole system (assessment method B) 	No Performance assessed				
 Fatigue resistance to steel failure of the whole system (linearized function, assessment method C) 	$\Delta N_{Rk,s,lo,n}$; $N_{lok,s,n}$ (n = 10 ⁴ to n = ∞) see Annex C9				
 Fatigue resistance to concrete related failure (exponential function, assessment method A1, A2) 	No Performance assessed				
 Fatigue limit resistance to concrete related failure (assessment method B) 	No Performance assessed				
- Fatigue resistance to concrete related failure (linearized function, assessment method C)	$\Delta N_{Rk,c,E,n}$; $\Delta N_{Rk,p,E,n}$ $(n=10^4 \text{ to } n=\infty)$ see Annex C10				

Page 5 of 36 | 20 October 2025

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
- Resistance to steel failure under seismic tension loading (seismic performance category C1)	$N_{Rk,s,a.eq}$; $N_{Rk,s,c.eq}$; $N_{Rk,s,l.eq}^0$ $M_{Rk,s,flex.eq}$ see Annex C11 $N_{Rk,s.eq}$ see Annex C12
Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1)	$V_{Rk,s.eq}$; $V^0_{Rk,s,l,y.eq}$; $V_{Rk,s,c,y.eq}$; $V_{Rk,s,a,y.eq}$ see Annex C12
Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1)	$V_{Rk,s,l,x.eq}$; $V_{Rk,s,a,x.eq}$; $V_{Rk,s,c,x.eq}$ see Annex C12
Characteristic resistance under static and quasi- static tension and/or shear loading	
- Displacements	$\begin{array}{c} \delta_{N0} \; ; \; \delta_{N^{\infty}} \; \text{see Annex C4} \\ \delta_{V,y,0} \; ; \; \delta_{V,y,^{\infty}} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,^{\infty}} \\ \text{see Annex C7} \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	$N_{Rk,s,fi}$; $V_{Rk,s,y,fi}$ see Annex C13 and C14			

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance			
Durability	See Annex B1			

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

The following standards are referred to in this European Technical Assessment:

EN ISO 898-1:2013 Mechanical properties of fasteners made of carbon steel and alloy

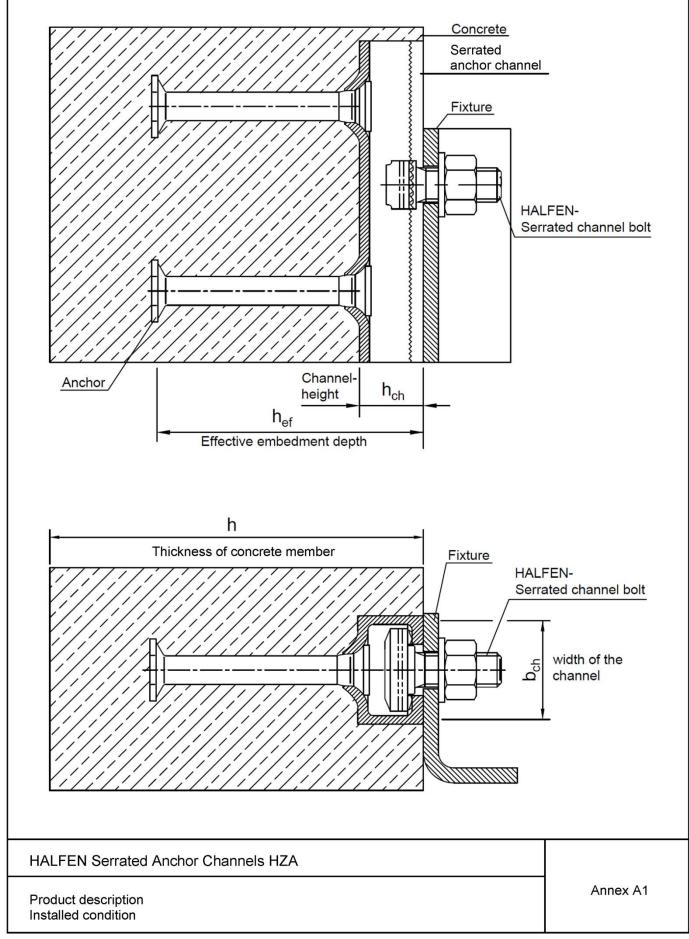
steel -

Part 1: Bolts, screws and studs with specified property classes –

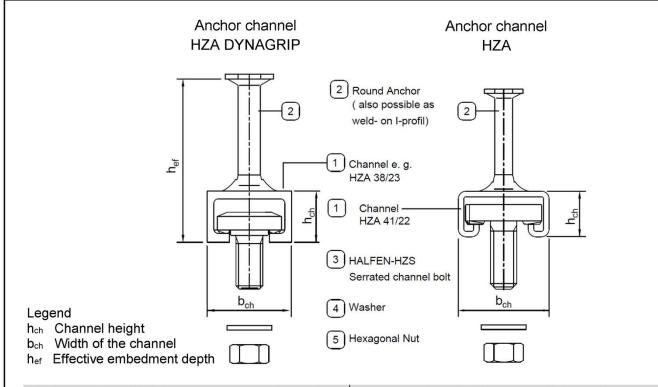
Coarse thread and fine pitch thread (ISO 898-1:2013)

Page 6 of 36 | 20 October 2025

EN ISO 3506-1:2020	Fasteners - Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, screws and studs with specified grades and property classes (ISO 3506-1:2020)
EN ISO 898-2:2022	Fasteners - Mechanical properties of fasteners made of carbon steel and alloy steel – Part 2: Nuts with specified property classes (ISO 898-2:2022)
EN ISO 3506-2:2020	Fasteners - Mechanical properties of corrosion-resistant stainless steel fasteners - Part 2: Nuts with specified grades and property classes (ISO 3506-2:2020)
EN ISO 1461:2022	Hot dip galvanized coatings on fabricated iron and steel articles - Specifications and test methods (ISO 1461:2022)
EN ISO 4042:2022	Fasteners - Electroplated coating systems (ISO 4042:2022)
EN ISO 10684:2004 + AC:2009	Fasteners - Hot dip galvanized coatings (ISO 10684:2004 + Cor. 1:2008)
EN ISO 7089:2000	Plain washers – Normal series, Product grade A (ISO 7089:2000)
EN ISO 7093-1:2000	Plain washers - Large series - Part 1: Product grade A (ISO 7093-1:2000)
EN ISO 4032:2023	Fasteners – Hexagon regular nuts (style 1) (ISO 4032:2023)
EN 10346:2015	Continuously hot-dip coated steel flat products for cold forming - Technical delivery conditions
EN 206:2013 + A2:2021	Concrete - Specification, performance, production and conformity
EN 1993-1-4:2006 + A1:2015 + A2:2020	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels
EN 1992-4:2018	Eurocode 2 - Design of concrete structures - Part 4: Design of fastenings for use in concrete
EOTA TR047:2021-05	Design of anchor channels in addition to EN 1992-4
EOTA TR050:2023-10	Calculation method for the performance of Anchor channels under Fatigue Cyclic Loading
EN 1992-1-1:2023	Eurocode 2: Design of concrete structures - Part 1-1: General rules - Rules for buildings, bridges and civil engineering structures


Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:

Tempel

Marking of the HALFEN serrated anchor channel e.g.: HZA 38/23 A4

a) Stamped on inner side of channel back

b) Printed on channel web

H or HALFEN Identifying mark of producer ZA Type of anchor channel

38/23 Size A4 Material

If hef > hef,min Embedment depth in [mm]

Material of serrated channel:

Carbon steel

No marking for hot-dip galvanized SV pre-galvanized

Stainless steel corrosion resistance class

A2 CRC II
A4 CRC III
D4 CRC III
D6 CRC IV
HCR/A8 CRC V

Marking of the HALFEN serrated channel bolts e.g.: HALFEN 8.8

H or HALFEN Identifying mark of producer

8.8 Strength grade

Material of serrated channel bolts:

Carbon steel
No marking

Stainless steel corrosion resistance class

A2 CRC II
A4 CRC III
D4 CRC III
FA/D6 CRC IV
HCR/A8 CRC V

Strength grade of the serrated channel bolts:

Carbon steel

8.8 Strength grade 8.8

Stainless steel

50, 70 Strength grade 50, 70

HALFEN Serrated Anchor Channels HZA

Product description Product and marking

Annex A2

Table A1: Materials and intended use

		Inte	nded use				
	_	1	2				
10.	atio	Dry internal conditions	Internal conditions with usual humidity				
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity. For examples, see use conditions in Annex B1				
		Ma	terials ⁵⁾				
①	Channel profile	Carbon steel hot-dip galv. ≥ 55 μm acc. to (E) pre-galv. ≥ 15 μm, steel acc. to (K)	Carbon steel hot-dip galv. ≥ 55 µm acc. to (E) Stainless steel ²⁾ CRC II				
2	Anchor	Carbon steel hot-dip galv. ≥ 55 µm acc. to (E)	Carbon steel hot-dip galv. ≥ 55 µm acc. to (E) Stainless steel ²⁾ CRC II				
3	HALFEN serrated channel bolts	Carbon steel strength grade 8.8 (A) hot-dip galv. ≥ 50 µm acc. to (G) 1)	Carbon steel strength grade 8.8 (A) hot-dip galv. ≥ 50 µm acc. to (G) ¹) Stainless steel ²) strength grade 50,70 (B) CRC II				
4	Washer ³⁾ (H) and (I) production class A, 200 HV	Carbon steel electroplated ≥ 5 µm acc. to (F)	Carbon steel hot-dip galv. ≥ 50 µm acc. to (G) 1) Stainless steel 2) CRC II				
(5)	Hexagonal nuts (J)	Carbon steel strength grade 8 (C) electroplated ≥ 5 µm acc. to (F)	Carbon steel strength grade 8 (C) hot-dip galv. ≥ 50 µm acc. to (G) ¹) Stainless steel ²) strength grade 70, 80 (D) CRC II				

For footnotes see Annex A4

HALFEN Serrated Anchor Channels HZA	
Product description Materials and intended use	Annex A3

Table A1 (continued): Materials and intended use

			Intended use					
	<u>o</u>	3	5					
Item no.		according EN 1993-1-4, Tab. A.2						
_	Sp	For CRC III	For CRC IV	For CRC V				
			Materials ⁶⁾					
1	Channel profile	Stainless steel CRC III	Stainless steel CRC IV	Stainless steel CRC V				
2	Anchor	Stainless steel CRC III Carbon steel 4)	Stainless steel CRC IV	Stainless steel CRC V				
3	HALFEN serrated channel bolts	Stainless steel strength grade 50,70 (B) CRC III	Stainless steel strength grade 50,70 (B) CRC IV	Stainless steel strength grade 50,70 (B) CRC V				
4	Washer 3) (H) and (I) production class A, 200 HV		Stainless steel CRC IV	Stainless steel CRC V				
(5)	Hexagonal nuts	Stainless steel strength grade 70, 80 (D) CRC III	Stainless steel strength grade 70, 80 (D) CRC IV	Stainless steel strength grade 70, 80 (D) CRC V				

A - EN ISO 898-1 D - EN ISO 3506-2 G - EN ISO 10684 J - EN ISO 4032 B - EN ISO 3506-1 E - EN ISO 1461 H - EN ISO 7089 K - EN 10346

C - EN ISO 898-2 F - EN ISO 4042 I - EN ISO 7093-1

HALFEN Serrated Anchor Channels HZA

Product description
Materials and intended use

Annex A4

¹⁾ or electroplated with special coating ≥ 12 μm

²⁾ stainless steel anchors only in combination with stainless steel channel profiles, channel bolts, washers and nuts

³⁾ not included in scope of delivery

⁴⁾ only for weld-on anchors with sufficient concrete cover acc. to EN 1992-1-1

⁵⁾ expected working life at least 50 years

⁶⁾ expected working life at least 100 years

Fig. 1

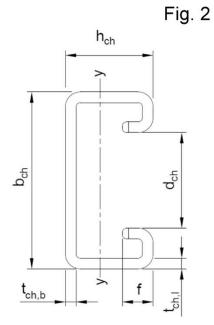


Table A2: Profile dimensions (steel and stainless steel)

		Dimensions							
Anchor channel HZA	Material		b _{ch}	h _{ch}	t _{ch,b}	t _{ch,I}	d _{ch}	f	ly
					[m	m]			[mm ⁴]
29/20	Carbon steel		29,0	20,0	2,5	2,5	14,0	5,0	10.200
38/23	Carbon steel & stainless steel		38,0	23,0	3,5	3,0	18,0	5,5	21.100
41/27	Carbon steel	Fig. 1	40,0	27,0	4,2	4,0	18,0	7,0	39.000
53/34	Carbon steel & stainless steel		52,5	34,0	4,0	4,0	22,5	7,5	92.600
64/44	Carbon steel & stainless steel		64,0	44,0	4,5	5,0	26,0	10,0	240.300
41/22	Carbon steel & stainless steel	Fig. 2	41,3	20,7	2,5	2,5	22,3	7,2	12.600

HALFEN Serrated Anchor Channels HZA	
Product description Profile dimensions	Annex A5

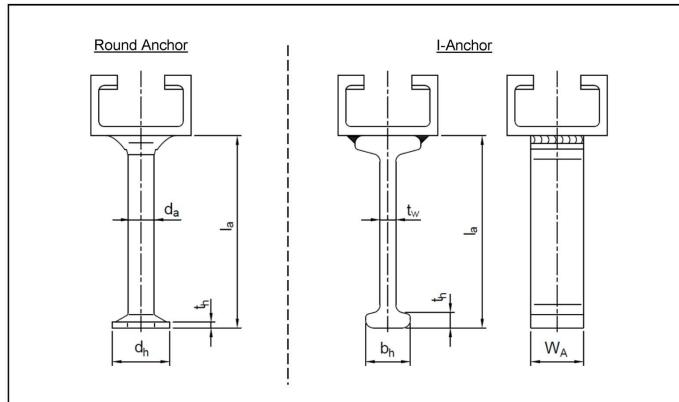


Table A3: Dimensions of anchors (Round Anchor and I-Anchor)

Anchor	Round Anchor				I-Anchor						
channel	min la	da	dh	t h	Ah	min la	tw	bh	th	W A	Ah
HZA		[m	m]		[mm ²]			[mm]			[mm ²]
29/20	64,0	8	16	1,9	151	69	5	18	3,5	12-20	156
38/23	73,0	10	20	2,2	236	128	6	17	5	20-30	220
41/27	124,0	12	25	2,7	378	128	6	17	5	25-35	275
53/34	123,7	12	25	2,7	378	128	6	17	5	30-40	330
64/44	_1)	_1)	_1)	_1)	_1)	140	7,1	20	6	41-50	529
41/22	63,3	8	16	1,9	151	69	5	18	3,5	12-20	156

¹⁾ Product not available

HALFEN Serrated Anchor Channels HZA	
Product description Dimensions of anchors	Annex A6

Figure 1
Round Anchor

Figure 2
I-Anchor

Anchor
Profile

≥ min |

≥ min |

Table A4: Anchor positioning

	Anchor spacing s			pacing	Min. Channel length				
Anchor channel HZA	S _{min} S _{max}		Round I-Anchor Anchor Fig. 1 Fig. 2		Round Anchor Fig. 1	I-Anchor Fig. 2			
	[mm]								
29/20	50	200	28 ²⁾	28 ²⁾ 28 ²⁾		106			
38/23	80	250	28 ²⁾	28 ²⁾	136	136			
41/27	80	250	35	35	150	150			
53/34	80	250	35	35	150	150			
64/44	80	300 ³⁾	_1)	35	_1)	150			
41/22	50	250	25 ²⁾	25 ²⁾	100	100			

¹⁾ Product not available

HALFEN Serrated Anchor Channels HZA

Product description
Anchor positioning, channel length

Annex A7

8.06.01-74/24

Z211104.25

 $^{^{2)}}$ The end spacing may be increased up to 35 mm

 $^{^{3)}}$ In case of fatigue cyclic tension load: $s_{max} = 250 \text{ mm}$

HALFEN serrated channel bolts

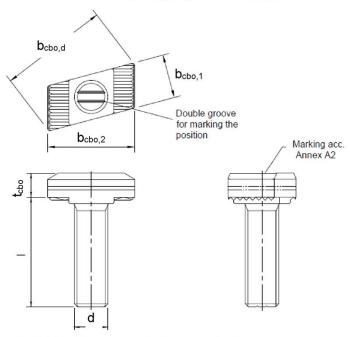


Table A5: Dimensions of HALFEN serrated channel bolts

Anchor channel HZA	Channel bolt HZS	Material	Thread diameter	Width b _{cbo,1}	Diagonal b _{cbo,d}	Length b _{cbo,2}	Thickness t _{cbo}
ПZА	П23		diameter		[1	mm]	
29/20	HZS 29/20	8.8	M12	13,4	27,1	20,9	6,5
38/23	HZS 38/23	8.8 A4-70	M12	17,0	37,0	28,8	8,0
and 41/27	HZS 38/23	8.8 A4-70	M16	17,0	37,0	28,8	8,0
F2/24	LIZC 52/24	8.8 A4-70	M16	21,0	51,6	41,6	11,5
53/34	HZS 53/34	8.8 A4-70	M20	21,0	51,6	41,6	13,0
64/44	HZS 64/44	8.8 A4-70	M20	24,7	63,1	51,0	14,0
04/44		8.8 A4-70	M24	24,7	63,1	51,0	16,0
		8.8	M10	20,5	42,5	34,7	5,5
		8.8	M12	20,5	42,5	34,7	5,5
41/22	HZS 41/22	A4-50	M12	20,5	42,5	34,7	7,5
		8.8 A4-50	M16	20,5	42,5	34,7	7,5

LALEEN	Serrated	Anchor	Channe	Ja UZA
DALFEN	Senaieo	Anchor	Channe	IS D/A

Product description HALFEN serrated channel bolts, dimensions

Annex A8

Table A6: Strength grade

	Steel 1)	Stainless steel 1)		
Strength grade	8.8	50	70	
f _{uk} [N/mm²]	800	500	700	
f _{yk} [N/mm²]	640	210	450	
Finish	Hot-dip galvanized	_		

¹⁾ Materials according Annex A2 and Annex A3-A4, Tab. A1

HALFEN Serrated Anchor Channels HZA

Product description
HALFEN serrated channel bolts, strength grade

Annex A9

Specifications for intended use

Working Life:

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least

- 50 years
 (anchor channels and serrated channel bolts according to Annex A3-A4, Table A1, column 1-5)
- 100 years

 (anchor channels and serrated channel bolts according to Annex A4, Table A1, column 3-5)

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel
- Fatigue cyclic tension

 (anchor channel and serrated channel bolt according to Annex C9, Table C11)
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1) (anchor channel and serrated channel bolt according to Annex C11)
- Fire exposure for concrete class C20/25 to C50/60
 (anchor channels and serrated channel bolts according to Annex C13)

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres according to EN 206.
- Strength classes C12/15 to C90/105 according to EN 206.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (anchor channels and serrated channel bolts acc. to Annex A3-A4, Table A1, column 1 5)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and serrated channel bolts acc. to Annex A3-A4, Table A1, column 2 5)
- According to EN 1993-1-4 relating to corrosion resistance class CRC III

 (anchor channels and serrated channel bolts acc. to Annex A4, Table A1, column 3 5)
- According to EN 1993-1-4 relating to corrosion resistance class CRC IV

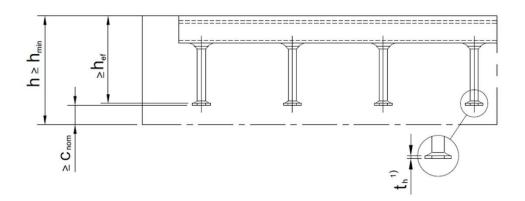
 (anchor channels and serrated channel bolts acc. to Annex A4, Table A1, column 4 5)
- According to EN 1993-1-4 relating to corrosion resistance class CRC V

 (anchor channels and serrated channel bolts acc. to Annex A4, Table A1, column 5)

HALFEN Serrated Anchor Channels HZA	
Intended use Specifications	Annex B1

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the serrated anchor channel and serrated channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as seismic loading (seismic performance category C1) and fire exposure the anchor channels are designed in accordance with EN 1992-4 and EOTA TR 047.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050.
- The characteristic resistances are calculated with the minimum effective embedment depth.


Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A7, Table A4 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B6 and B7.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the anchor channels will occur during the time of laying the reinforcement and of
 placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3-A4 and provided separately by the user.
- Orientating the channel bolt (double groove according to Annex B7) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

HALFEN Serrated Anchor Channels HZA	
Intended use Specifications	Annex B2

Side view

Plan view

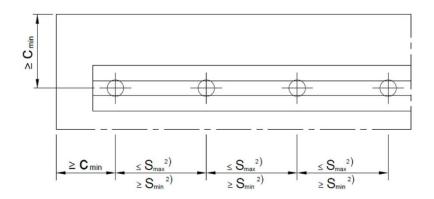


Table B1: Min. effective embedment depth, edge distance and thickness of concrete member

Serrated anchor channel HZA			29/20	38/23	41/27	53/34	64/44	41/22
Minimum effective embedment depth		h _{ef,min}	82	94	148	155	178	82
Minimum edge distance	[mm]	C _{min}	50	75	75	100	125	50
Minimum thickness of		h	h _{ef} + t _h ¹⁾ + c _{nom} ³⁾					
concrete member		h _{min}	125	125	170	200	200	125

 $^{^{1)}}$ t_h = Anchor head thickness

HALFEN Serrated Anchor Channels HZA	1
-------------------------------------	---

Intended use Installation parameters of anchor channels

Annex B3

²⁾ s_{min}, s_{max} acc. to Annex A7, Tab. A4

³⁾ c_{nom} acc. to EN 1992-1-1

Table B2: Minimum spacing and installation torque of HALFEN serrated channel bolts

			Installation torque T _{inst} ⁴⁾							
Anchor	HALFEN serrated channel bolts	Min. spacing of the serrated channel bolts	G	eneral ²⁾ T _{inst,g}		Steel-to	-steel con T _{inst,s}	tact 3)		
HZA	d	S _{min,cbo}	Steel 8.8 ¹⁾	Stainle	ss steel	Steel 8.8 ¹⁾	Stainle	ss steel		
			Oleci o.o	50 ¹⁾	70 ¹⁾	Oleer 0.0	50 ¹⁾	70 ¹⁾		
	[n	nm]			[]	lm]				
29/20	12	60	35	_5)	_5)	75	_5)	_5)		
38/23	12	60	55	_5)	50	75	_5)	50		
38/23	16	80	75	5)	75	185	5)	130		
41/27	12	60	75	_ 5)	5)	75	5)	5)		
41/2/	16	80	125	_ 5)	_5)	185	_ 5)	_ 5)		
53/34	16	80	135	_5)	130	185	_ 5)	130		
55/54	20	100	165	_5)	165	360	_5)	250		
64/44	20	100	315	_5)	250	360	_5)	250		
04/44	24	120	375	_5)	335	625	_ 5)	435		
	10	50	25	_5)	_5)	30	_5)	_5)		
41/22	12	60	30	20	_5)	50	20	_5)		
	16	80	40	50	_5)	140	50	_5)		

¹⁾ Materials according to Annex A2 and Annex A3-A4, Tab. A1

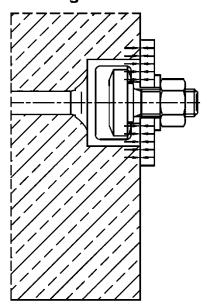
HALFEN Serrated Anchor Channels HZA	
Intended use Installation parameters of HALFEN serrated channel bolt	Annex B4

²⁾ Acc. to Annex B5, Fig. 1

³⁾ Acc. to Annex B5, Fig. 2

⁴⁾ Tinst must not be exceeded

⁵⁾ Product not available



General

The fixture is in contact with the channel profile and the concrete surface.

The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 1

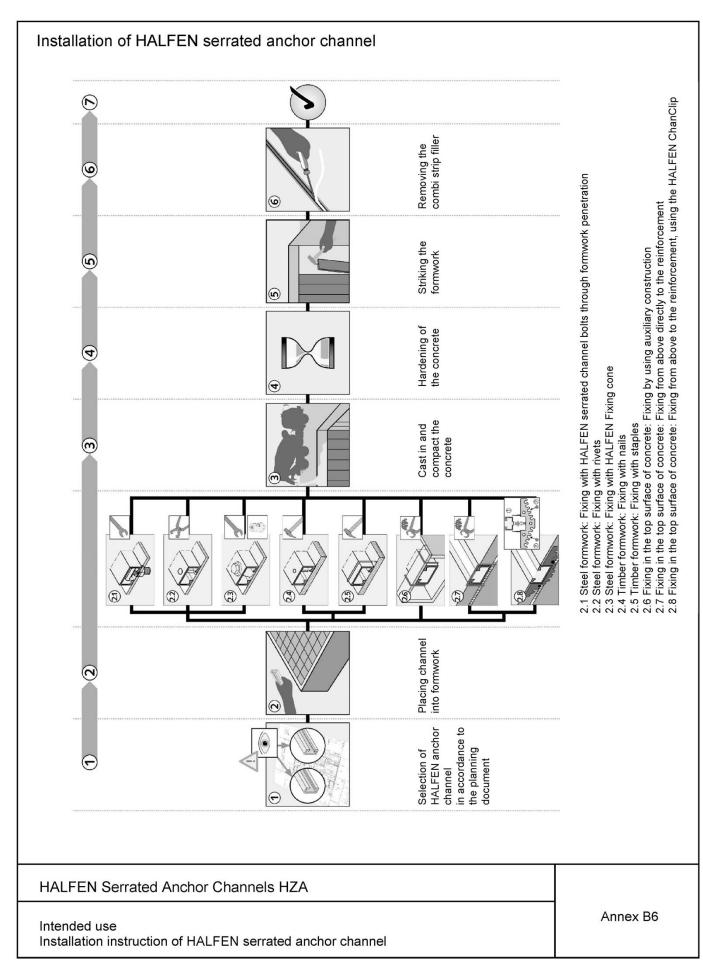


Steel-to-steel contact

The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel parts (e.g. washer).

The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 2



HALFEN Serrated Anchor Channels HZA

Intended use Position of the fixture

Annex B5

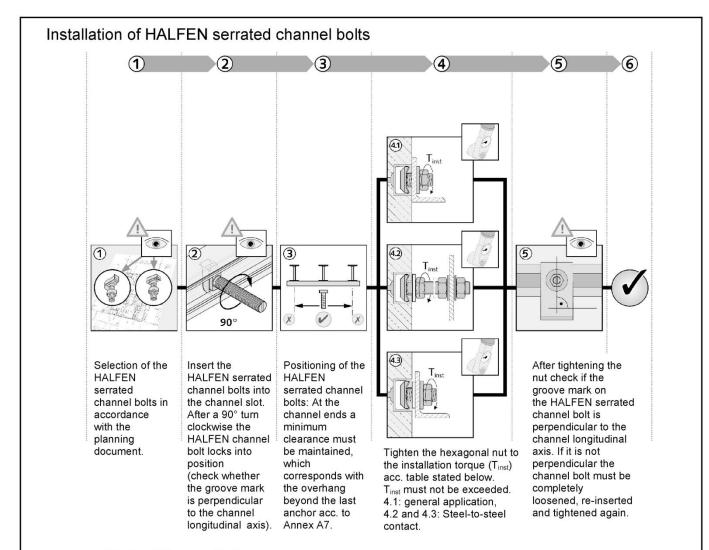


Table B3: Installation torque

Pos. of	Materia	Material Anchor					T _{inst} [Nm] ¹⁾									
fixture acc. Annex B5	strength grade		strength grade		strength grade		strength grade		channel HZA	M10	М	12	N	116	M20	M24
	Steel 8.8 and		29/20	_3)	3	5	,	_3)	_3)	_3)						
			38/23	_3)	55	(50)	75	(75)	_3)	_3)						
General			41/27	_3)	7	5	1	25	_3)	_3)						
General	(Stainle	SS	53/34	_3)	22	.3)	135	(130)	165 (165)	_3)						
	50/70)	64/44	_3)	_	_3)		_3)	315 (250)	375 (335)						
		,	41/22	25	30	30 (20)		30 (20)		(50)	_3)	_3)				
Steel-to-	Steel 8.8		AII	30	75	50 ²⁾	185	140 ²⁾	360	625						
steel	Stainless	Stainless 50		ess 50 All profiles -3)		_3)	20		50		_3)	_3)				
contact		profites		5	60	1	30	250	435							

¹⁾ Tinst must not be exceeded

HALFEN Serrated Anchor Channels HZA

Intended use Installation instruction of HALFEN serrated channel bolts Annex B7

²⁾ Only for HZS 41/22 M12 8.8 and for HZS 41/22 M16 8.8

³⁾ Product not available

Table C1: Characteristic resistances under tension load – steel failure anchor channel

Serrated anchor ch	annel		Steel	29/20	38/23	41/27	53/34	64/44	41/22		
Steel failure: Ancho	r										
Characteristic	N	FI-NIT	carbon	20,1	31,4	54,0	56,5	100,0	20,1		
resistance	$N_{Rk,s,a}$	[kN]	stainless	_2)	35,3	_2)	56,5	100,0	22,6		
Double Life stee		1)	carbon	1,78	1,78	1,80	4.67	4.00	1,78		
Partial factor	artial factor yms 1)		stainless	_2)	1,80	_2)	1,67	1,80	1,80		
Steel failure: Conne	nchor		20								
Characteristic	N.	[kN]	carbon	22,9	36,0	53,6	59,6	106,1	18,1		
resistance	$N_{Rk,s,c}$		stainless	_2)	40,0	_2)	55,0	94,4	26,1		
Partial factor	¥Ms,¢	a 1)		1,8							
Steel failure: Local	flexure o	of the c	hannel lips								
Spacing of channel bolts for N _{Rk,s,l}	S _{I,N}	[mm]	58	76	80	105	128	83		
Characteristic	NI0	[LNI]	carbon	22,9	39,3	53,6	82,5	119,5	20,1		
resistance	N ⁰ Rk,s,I	[kN]	stainless	_2)	40,0	_2)	70,0	94,4	26,1		
Partial factor	γMs	, _l 1)				1,8					

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Serrated Anchor channel			Steel	29/20	38/23	41/27	53/34	64/44	41/22		
Steel failure: Flexure of channel											
Characteristic flexural resistance	D.A.	[NIma]	carbon	873	1497	2289	3452	6935	733		
of channel	M _{Rk,s,flex}	[Nm]	stainless	_2)	1670	_2)	3608	7922	749		
Partial factor	V Ms,fle	1)	1,15								

¹⁾ In absence of other national regulations

İ	HALFEN Serrated Anchor Channels HZA	
	Performances Characteristic resistances under tension load – steel failure	Annex C1

²⁾ No performance assessed

²⁾ No performance assessed

Table C3: Characteristic resistances under tension load – steel failure of HALFEN serrated channel bolt

HALFEN serrated channel bolt thread diameter						M12	M16	M20	M24	
Steel failure: Channel bolt										
Characteristic resistance			Carbon steel	8.8	46,4	67,4 (48,5) ¹⁾	125,6 (96,3) ²⁾	196,0	282,4	
	N _{Rk,s} [k	[kN]	Stainless steel	50 ³⁾	_5)	40,3	64,0	_5)	5)	
				70 ³⁾	_5)	59,0	109,9	171,5	247,1	
Partial factor	20052	4)	Carbon steel	8.8			1,50			
	γMs	s ⁴⁾	Stainless	50 ³⁾			2,86			
			steel	70 ³⁾			1,87			

¹⁾ For HZS 41/22 M12 8.8

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under tension load – steel failure of serrated channel bolts	Annex C2

²⁾ For HZS 41/22 M16 8.8

³⁾ Materials according Annex A2, A3 and A4

⁴⁾ In absence of other national regulations

⁵⁾ No performance assessed

Table C4: Characteristic resistances under tension load – concrete failure

Serrated anchor char	nnel			29/20	38/23	41/27	53/34	64/44	41/22			
Concrete failure: Pull	-out							•				
Characteristic resistance in cracked	Round anchors	$N_{Rk,p}$	[kN]	13,6	21,2	34,0	34,0	_2)	13,6			
concrete C12/15	I-anchors			14,0	19,8	24,8	29,7	47,6	14,0			
Characteristic resistance in	Round anchors	Nous	[kN]	19,0	29,7	47,6	47,6	_2)	19,0			
uncracked concrete C12/15	I-anchors	$N_{Rk,p}$	[KIV]	19,7	27,7	34,7	41,6	66,6	19,7			
	C20/25					1,	67					
	C25/30			2,08								
	C30/37		[-]	2,50								
Increasing factor for	C35/45			2,92								
N _{Rk,p}	C40/50	Ψ_{c}				3,	33					
$= N_{Rk,p} (C12/15) \cdot \Psi_c$	C45/55			3,75								
	C50/60			4,17								
	C55/67			4,58								
	≥C60/75				5,00							
Partial factor		$\gamma_{Mp} = \gamma$	(Mc ¹⁾	1,5								
Concrete failure: Con	crete cone											
Product factor k ₁		k cr,	N	7,9	8,1	8,6	8,7	8,9	7,9			
FIOUUCI IACIOI K1		k ucr	,N	11,3	11,5	12,3	12,4	12,7	11,3			
Partial factor	ү Мс	1)			1	,5						
Concrete failure: Spli												
Characteristic edge spacing		C _{cr,sp}	[mama]	246	281	445	465	534	246			
Characteristic spacing		S _{cr,sp}	[mm]	492	562	890	930	1068	492			
Partial factor		X Msp	1)			1	,5					

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under tension load – concrete failure	Annex C3

²⁾ No performance assessed

Table C5: Displacements under tension load

Serrated anchor channel			Steel	29/20	38/23	41/27	53/34	64/44	41/22
Tonoion load	N	[kN]	carbon	6,8	9,1	14,4	22,2	38,5	5,1
Tension load	N		stainless	_1)	10,9	_1)	21,8	37,4	8,5
Object to the second second	δ _{N0}	[mm]	carbon	0,5	0,8	0,9	0,7	0,8	0,6
Short-term displacement			stainless	_1)	0,9	_1)	0,7	0,7	1,0
	2	[mm]	carbon	0,9	1,7	1,8	1,4	1,7	1,3
Long-term displacement	δ _{N∞}		stainless	_1)	1,8	_1)	1,5	1,4	1,9

¹⁾ No performance assessed

HALFEN Serrated Anchor Channels HZA

Performances
Characteristic resistances under tension load – displacements

Table C6: Characteristic resistances under shear load – steel failure anchor channel

Serrated anchor cha	nnel		Steel	29/20	38/23	41/27	53/34	64/44	41/22	
Steel failure: Ancho	r									
			carbon	20,1	43,9	53,6	101,1	156,3	29,7	
Characteristic	$V_{Rk,s,a,y}$	[kN]	stainless	_2)	39,0	_2)	95,5	94,4	22,6	
resistance		FI 5.12	carbon	12,0	18,8	32,4	33,9	62,8	12,0	
	$V_{Rk,s,a,x}$	[kN]	stainless	_2)	18,8	_2)	33,9	62,8	13,5	
Dani'al fautas		1)	carbon	1,48	1,48	1,50	1,39	1,50	1,48	
Partial factor γ _{Ms,a} 1)			stainless	_2)	1,48	_2)	1,39	1,50	1,50	
Steel failure: Connection channel/anchor										
	V _{Rk,s,c,y}	[kN]	carbon	20,1	43,9	53,6	101,1	156,3	29,7	
Characteristic			stainless	_2)	39,0	_2)	95,5	94,4	22,6	
resistance	\/	[kN]	carbon	13,7	21,6	32,2	35,8	63,7	10,9	
	$V_{Rk,s,c,x}$		stainless	_2)	24,0	_2)	33,0	56,6	15,7	
Partial factor	∛ Ms,ca	1)			,	1,8				
Steel failure: Local f	lexure of cl	nannel	lips							
Spacing of channel bolts for V _{Rk,s,l}	S _{I,V}		[mm]	58	76	80	105	128	83	
Characteristic resistance	\ \(\tau_0 \)	FL-N13	carbon	20,1	43,9	53,6	101,1	156,3	29,7	
	V^0 Rk,s,l,y	[kN]	stainless	_2)	39,0	_2)	95,5	94,4	22,6	
Partial factor	∦ Ms,I	1)		1,8						

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA

Performances
Characteristic resistances under shear load – steel failure

Annex C5

 $^{^{2)}\,\}mathrm{No}$ performance assessed

Table C6 (continued): Characteristic resistances under shear load – steel failure

Serrated anchor cha	Serrated anchor channel			29/20	38/23	41/27	53/34	64/44	41/22			
Steel failure: Connection between channel lips and channel bolt in longitudinal channel axis												
		M10	carbon	_1)	_1)	_1)	_1)	_1)	13,6			
		Mao	carbon	12,6	23,6	23,6	_1)	_1)	14,4			
		M12	stainless	_1)	20,1	_1)	_1)	_1)	12,1			
	V _{Rk,s,l,x} [kN]	M16	carbon	_1)	23,6	32,0	39,5	_1)	14,4			
Characteristic resistance			stainless	_1)	24,9	_1)	51,7	_1)	12,1			
recipiance		M20	carbon	_1)	_1)	_1)	39,5	85,8	_1)			
			stainless	_1)	_1)	_1)	51,7	68,8	_1)			
		Mod	carbon	_1)	_1)	_1)	_1)	85,8	_1)			
		M24	stainless	_1)	_1)	_1)	_1)	68,8	_1)			
		carbon	1,0	1,2	1,2	1,2	1,2	1,2				
Installation factor γ_{in}			stainless	_1)	1,0 ²⁾ 1,2	_1)	1,4	1,0	1,2			

¹⁾ No performance assessed

HALFEN Serrated Anchor Channels HZA

Performances
Characteristic resistances under shear load – steel failure

Annex C6

²⁾ Valid for HZS 38/23 M12 A4-70

Table C7: Characteristic resistances under shear load – concrete failure

Serrated anchor cha	nnel	29/20	38/23	41/27	53/34	64/44	41/22		
Concrete failure: Pry-out									
Product factor		k ₈ 1)	2,0	2,0	2,0	2,0	2,0	2,0	
Partial factor		γ Mc ²⁾			1	,5		•	
Concrete failure: Co	ncrete edge								
Draduat factor k	cracked concrete	k _{cr,V}	6,1	7,5	7,5	7,5	7,5	6,5	
Product factor k ₁₂	uncracked concrete	k _{ucr,V}	8,5	10,5	10,5	10,5	10,5	9,1	
Partial factor		y Mc ²⁾			1	,5			

¹⁾ Without supplementary reinforcement. In case of supplementary reinforcement, the factor k₈ should be multiplied with 0.75.

Table C8: Displacements under shear load

Serrated anchor channe	Serrated anchor channel		Steel	29/20	38/23	41/27	53/34	64/44	41/22
Shear load		[LNI]	carbon	8,0	17,4	21,3	40,1	62,0	11,8
in y-direction 1)	Vy	[kN]	stainless	_3)	15,5	_3)	37,9	37,5	9,0
Short-term displacement		[mm]	carbon	0,9	1,2	0,9	1,3	2,1	1,1
in y-direction	δ _{V,y,0}	[mm]	stainless	_3)	1,1	_3)	2,1	2,1	0,9
Long-term displacement	Σ	[mm]	carbon	1,4	1,8	1,4	2,0	3,2	1,7
in y-direction	δν,,,∞	[]	stainless	_3)	1,7	_3)	3,2	3,2	1,4
Shear load	Vx	[LNI]	carbon	5,0	7,8	10,5	13,0	28,3	4,7
in x-direction 2)	Vx	[kN]	stainless	_3)	8,2	_3)	14,6	27,3	4,0
Short-term displacement	S	[mm]	carbon	0,4	0,2	0,2	0,3	0,9	0,1
in x-direction	δ _{V,x,0}	[mm]	stainless	_3)	0,6	_3)	0,5	0,9	0,2
Long-term displacement	5.	[mm]	carbon	0,6	0,3	0,3	0,5	1,4	0,2
in x-direction	δ∨,χ,∞	[mm] 	stainless	_3)	0,9	_3)	0,8	1,4	0,3

¹⁾ y-direction (perpendicular to longitudinal axis of channel)

³⁾ No performance assessed

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under shear load – concrete failure, displacements	Annex C7

²⁾ In absence of other national regulations

²⁾ x-direction (in the direction of longitudinal channel axis)

Table C9: Characteristic resistances under shear load – steel failure of HALFEN serrated channel bolt

HALFEN serrated o	M10	M12	M16	M20	M24				
Steel failure: Chani	nel bolt			,					
		[kN]	steel	8.8	23,2	33,7	62,8	98,0	141,2
Characteristic resistance	V _{Rk,s}		Stainless steel	50 ¹⁾	_3)	25,3	47,1	_3)	_3)
recionarios				70 ¹⁾	_3)	35,4	65,9	102,9	148,3
			steel	8.8	60	105	267	519	898
Characteristic flexural resistance	M ⁰ Rk,s	[Nm]	Stainless	50 ¹⁾	_3)	66	167	_3)	_3)
nextra resistance			steel	70 ¹⁾	_3)	92	233	454	786
		•	steel	8.8		•	1,25		•
Partial factor	γN	ls ²⁾	Stainless	50 ¹⁾	2,38				
			steel	70 ¹⁾			1,56		

¹⁾ Materials according Annex A2 and A3-A4

Table C10: Characteristic resistance under combined tension and shear load

Serrated anchor channel	29/20	38/23	41/27	53/34	64/44	41/22	
Steel failure: Local flexure of channel lips and failure by flexure of channel							
Product factor	Values according to EN 1992-4, Section 7.4.3.1						
Steel failure: Anchor and connection between anchor and channel							
Product factor	k 14	Values according to EN 1992-4, Section 7.4.3.1					

HALFEN Serrated Anchor Channels HZA

Performances
Char. resist. of HALFEN serr. channel bolt under shear, comb. tension and shear

²⁾ In absence of other national regulations

³⁾ No performance assessed

For Design Method I or II for assessment method C according to EOTA TR 050

Table C11: Combinations of anchor channels and channel bolts under fatigue tension load

Anchor cl	hannel		Channe	l bolts	
HZA	Anchor type	Channel bolt	Thread diameter [mm]	Grade	Material
38/23	round anchor	HZS 38/23	M16	8.8	1 - 1
41/27	Tourid arichor	NZS 30/23	IVITO	0.0	steel electro-
53/34	round anchor + I-anchor	HZS 53/34	M20	8.8 / A4-70	plated, hot- dip galv.;
64/44	I-anchor	HZS 64/44	M24	8.8	stainless steel

Table C12: Characteristic fatigue resistances $\Delta N_{Rk,s,lo,n}$ with lower load $N_{lok,s,n}$ – Steel failure

Anchor channel	HZA	38/2	3	41/2	7	53/	/34	64/4	4	
	Load cycles	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n} [kN]	$\Delta N_{\text{Rk,s,lo,n}}$ [kN]	N _{lok,s,n} [kN]	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n} [kN]	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n} [kN]	
	n	carbo	on	carbo	on	carbon /	stainless	carbo	carbon	
	≤ 10 ⁴	16,0	0,0	16,0	0,0	30,0 / 30,0	0,0 / 0,0	55,0	0,0	
	2· 10 ⁴	16,0	0,0	16,0	0,0	29,0 / 27,4	0,0 / 0,0	45,2	0,0	
	5· 10 ⁴	13,3	2,5	13,3	2,5	22,5 / 19,7	3,0 / 6,5	34,6	9,4	
	1· 10 ⁵	10,9	4,9	10,9	4,9	18,5 / 15,3	6,7 / 10,8	28,3	16,9	
	2· 10 ⁵	8,9	6,9	8,9	6,9	15,2 / 11,9	9,7 / 14,2	23,1	23,0	
lder	5· 10 ⁵	6,9	9,0	6,9	9,0	11,8 / 8,6	12,9 / 17,5	17,7	29,4	
s nr	1· 10 ⁶	5,6	10,2	5,6	10,2	9,7 / 6,7	14,9 / 19,4	14,5	33,2	
ance	2· 10 ⁶	4,6	11,2	4,6	11,2	8,0 / 5,2	16,5 / 20,9	11,8	36,4	
ssist	5· 10 ⁶	3,5	12,3	3,5	12,3	6,2 / 3,7	18,1 / 22,3	9,1	39,6	
tic re ion I	7· 10 ⁶	3,5	12,3	3,5	12,3	6,2 / 3,3	18,1 / 22,8	8,2	40,6	
teris	1· 10 ⁷	3,5	12,3	3,5	12,3	6,2 / 3,3	18,1 / 22,8	7,4	41,6	
Characteristic resistances under fatigue tension load	5· 10 ⁷	3,5	12,3	3,5	12,3	6,2 / 3,3	18,1 / 22,8	4,6	44,9	
Ch.	≥ 10 ⁸	3,5	12,3	3,5	12,3	6,2 / 3,3	18,1 / 22,8	3,8	45,9	

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under fatigue tension load according assessment method C – Steel failure	Annex C9

Table C13: Characteristic resistances under fatigue tension load after n load cycles with static preload N_{Elok} – Concrete failure

Pull-out and concrete cone failure:

Reduction factor for pull-out and concrete cone failure

	Load				η _{k,c,f}	$_{at} = \eta_{k,p,}$	fat [-]			
	cycles n					S _{lak} =				
	"	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
	≤ 10 ⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120
	2· 10 ⁴	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114
Reduction factor for	5· 10 ⁴	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106
	1· 10 ⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100
$\Delta N_{Rk,c,E,n} = \eta_{k,c,fat} \cdot N_{Rk,c}^{1)}$	2· 10 ⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094
$\Delta N_{Rk,p,E,n} = \eta_{k,p,fat} N_{Rk,p}^{2)}$	5· 10⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087
$S_{lok} = 2,25 \cdot N_{Elok}/N_{Rk,c(p)} \le 0,8^{3}$	1· 10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081
Olok - 2,25 Nelok NRK,c(p) = 0,0	2· 10 ⁶	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075
	5· 10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067
	1· 10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061
	2· 10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055
	5· 10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047
	1· 10 ⁸	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041

¹⁾ N_{Rk,c} static resistance according to Annex C3 and EN 1992-4

In absence of other national regulations the following partial factors $\gamma_{M,fat}$ are recommended for design method I and II according to EOTA TR 050 for assessment method C.

$$\gamma_{Ms,fat} = 1,35$$
 (steel)
 $\gamma_{Mc,fat} = \gamma_{Mp,fat} = 1,5$ (concrete)

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under fatigue tension load according to assessment method C – Concrete failure	Annex C10

²⁾ N_{Rk,p} static resistance according to Annex C3

³⁾ NElok characteristic value of the static pre-load decisive for concrete cone or pull-out failure

For seismic performance category C1

Table C14: Combinations of anchor channels and channel bolts under seismic load

Anchor cha	annel	Channel bolt			
Profile	Material	Туре	Thread Ø	Strength grade	Material
38/23	hot-dip	HZS 38/23	12	8.8	Steel hot-dip
36/23	galvanized	NZS 30/23	16	0.0	galvanized
41/27	hot-dip	HZS 38/23	12	8.8	Steel hot-dip
41/27	galvanized	HZS 30/23	16	0.0	galvanized
E2/24	hot-dip	U7C 52/24	16	8.8	Steel electro-plated,
53/34	galvanized	HZS 53/34	20	0.0	hot-dip galvanized
41/22	hot-dip	HZS 41/22	12	8.8	Steel electro-plated,
41/22	galvanized	ΠZ3 4 1/22	16	0.0	hot-dip galvanized

Table C15: Characteristic resistances under seismic tension load – steel failure

Anchor channel				38/23	41/27	53/34	41/22
Steel failure: Anchor							
Characteristic resistance	$N_{Rk,s,a,eq}$	[kN]	carbon	31,4	54,0	56,5	20,1
Partial factor	γ	Ms,a 1)		1,78	1,80	1,67	1,78
Steel failure: Connection channe	el/anchor						
Characteristic resistance	$N_{Rk,s,c,eq}$	[kN]	carbon	36,0	53,6	59,6	18,1
Partial factor	γ	Ms,ca ¹⁾		1,8			
Steel failure: Local flexure of the		Color 700			20		
Spacing of channel bolts for N ⁰ _{Rk,s,l,eq}	SI,N	[mm]	carbon	76	80	105	83
Characteristic resistance	N ⁰ Rk,s,l,eq	[kN]	carbon	39,3	53,6	82,5	20,1
Partial factor	\ \ \ \ \ \	(Ms,I 1)		1,8			

¹⁾ In absence of other national regulations

Table C16: Characteristic flexural resistances under seismic tension load

Anchor channel			steel	38/23	41/27	53/34	41/22
Steel failure: Flexure of channel							
Characteristic resistance	$M_{Rk,s,flex,eq}$	[Nm]	carbon	1497	2289	3452	733
Partial factor	Ms,flex 1)		1,1	15		

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA	
Performances Char. resistances under seismic tension load (seismic performance category C1)	Annex C11

Table C17: Characteristic resistances under seismic tension load – steel failure of HALFEN serrated channel bolt HZS

HALFEN serrated channel bolt	M12	M16	M20		
Steel failure					
Characteristic resistance	N _{Rk,s,eq}	[kN]	67,4 (48,5) ²⁾	125,6 (96,3) ³⁾	196,0
Partial factor	¥Ms ¹)		1,5	

¹⁾ In absence of other national regulations

Table C18: Characteristic resistances under seismic shear load – steel failure

Anchor channel	steel	38/23	41/27	53/34	41/22			
Accord to many observe one many	0.001	00/20	11/21	00/0-1	11/22			
Steel failure: Anchor						•		
Characteristic resistance	$V_{Rk,s,a,y,eq}$	[kN]	carbon	43,9	53,6	101,1	29,7	
Characteristic resistance	$V_{Rk,s,a,x,eq}$	[kN]	carbon	18,8	32,4	33,9	12,0	
Partial factor	}	(Ms,a 1)		1,48	1,50	1,39	1,48	
Steel failure: Connection chan								
Characteristic resistance	V _{Rk,s,c,y,eq}	[kN]	carbon	43,9	53,6	101,1	29,7	
Characteristic resistance	$V_{Rk,s,c,x,eq}$	[kN]	carbon	21,6	32,2	35,8	10,9	
Partial factor		Ms,ca 1)		1,8				
Steel failure: Local flexure of c	hannel lips	under	shear lo	ad perpend	dicular to th	e longitudir	nal axis of	
the channel							50	
Spacing of channel bolts for		[100.00]	aarban	76	80	105	83	
$V_{Rk,s,l,eq}$	S _{I,V}	[mm]	carbon	76	80	105	03	
Characteristic resistance	V^0 Rk,s,l,y,eq	[kN]	carbon	43,9	53,6	101,1	29,7	
Partial factor	γ	Ms,I,x 1)		1,8				
Steel failure: Connection between	een channe	l lips a	ınd chan	nel bolt un	der shear in	the direction	on of the	
longitudinal channel axis								
Characteristic resistance	$V_{Rk,s,l,x,eq}$	[kN]	carbon	23,6	23,6	39,5	14,4	
Installation factor		Y inst		1,2				

¹⁾ In absence of other national regulations

Table C19: Characteristic resistance under seismic shear load – steel failure of HALFEN serrated channel bolt HZS

HALFEN serrated channel bolt	M12	M16	M20					
Steel failure								
Characterist. resistance	V _{Rk,s,eq}	[kN]	33,7	62,8	98,0			
Partial factor	γMs	1)		1,25				

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA	
Performances Char. resistances under seismic tension/shear load (seismic performance category C1)	Annex C12

²⁾ For HZS 41/22 M12 8.8

³⁾ For HZS 41/22 M16 8.8

Table C20: Characteristic resistances under tension and shear load under fire exposure – steel failure

steer failure										
Serrated and	hor c	hanne	1		29/20	38/23	41/27	53/34	64/44	41/22
Steel failure: Anchor, Connection channel / anchor, Local flexure of channel lips, channel bolts										annel
	3	M12			2,7	3,5	3,5	_1)	_1)	2,4
	2000	M16			_1)	4,5	4,5	4,5	_1)	2,3
	R30	M20			_1)	_1)	_1)	10,3	10,3	_1)
		M24			_1)	_1)	_1)	_1)	17,0	_1)
		M12	$N_{Rk,s,fi}$ = [kN] $V_{Rk,s,y,fi}$	2,1	2,7	2,7	_1)	_1)	1,7	
	R60 -	M16			_1)	3,3	3,3	3,3	_1)	1,8
		M20		_1)	_1)	_1)	7,8	7,8	_1)	
Characteristic		M24		TI.NIT	_1)	_1)	_1)	_1)	14,8	_1)
resistances	R90 M20	M12		1,5	1,9	1,9	_1)	_1)	1,1	
		M16			_1)	2,1	2,1	2,1	_1)	1,2
		M20			_1)	_1)	_1)	5,3	5,3	_1)
		M24		_1)	_1)	_1)	_1)	9,9	_1)	
		M12		1,3	1,5	1,5	_1)	_1)	0,7	
	R120 -	M16			_1)	1,5	1,5	1,5	_1)	1,0
		M20			_1)	_1)	_1)	4,0	4,0	_1)
		M24		a 3	_1)	_1)	_1)	_1)	7,4	_1)
Partial factor			1,0							

¹⁾ No performance assessed

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under fire exposure – steel failure	Annex C13

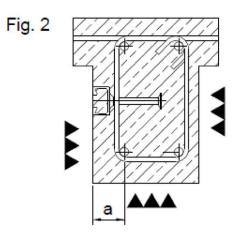


Table C21: Characteristic resistances under tension and shear load under fire exposure – min. axis distance of reinforcement

Serrated anchor channel				29/20	38/23	41/27	53/34	64/44	41/22
Min. axis dist	ance of re	einforce	ment 1)	of ()				10.	
	R30	а		25	30	35	40	50	25
Min. axis	R60	а	[mama]	25	30	35	40	50	25
distance	R90	а	[mm]	35	35	35	40	50	35
	R120	а		50	50	50	50	50	50

¹⁾ The reinforced concrete has to be designed acc. to EN 1992. The fire resistance class of the concrete member is not part of this ETA.

Fig. 1

Performances
Characteristic resistances under fire exposure – minimum axis distance

Annex C14