

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-22/0674 of 13 February 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Strong Undercut Anchor FSU

Mechanical fastener for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal **DEUTSCHLAND**

fischerwerke

20 pages including 3 annexes which form an integral part of this assessment

EAD 330232-02-0601 Edition 12/2024

ETA-22/0674 issued on 12 April 2024

Z001724.25

European Technical Assessment ETA-22/0674

English translation prepared by DIBt

Page 2 of 20 | 13 February 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z001724.25 8.06.01-280/24

Page 3 of 20 | 13 February 2025

Specific part

1 Technical description of the product

The fischer Strong Undercut Anchor is an anchor made of galvanised steel or of stainless steel which is placed in a cylindrical hole and anchored by displacement-controlled, self-undercutted mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading), Method A	See Annex C1 and C3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2
Displacements	See Annex C6 and C8
Stiffness	See Annex C8
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C5 and C7

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.3 Aspects of Durability

Essential characteristic	Performance		
Durability	See Annex B1		

Z001724.25 8.06.01-280/24

European Technical Assessment ETA-22/0674

English translation prepared by DIBt

Page 4 of 20 | 13 February 2025

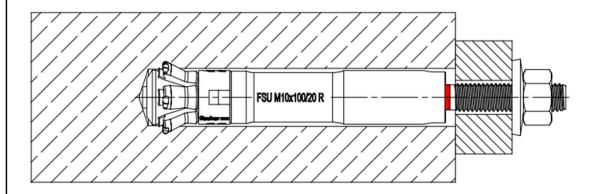
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-02-0601 the applicable European legal act is: [96/582/EC].

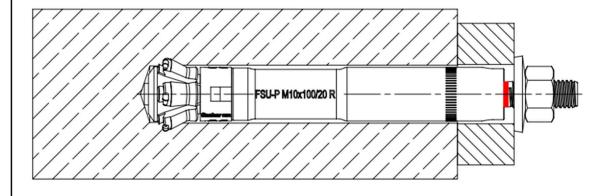
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 13 February 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Ziegler


Z001724.25 8.06.01-280/24

Pre-setting anchor FSU / FSU R

Push-through anchor FSU-P / FSU-P R

(Figures not to scale)

fischer Strong Undercut Anchor FSU

Product description
Installed condition

Annex A1

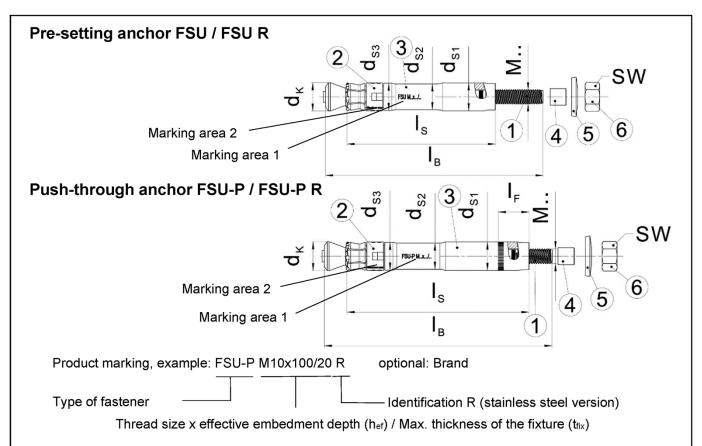


Table A2.1: Dimensions [mm]

Type of anchor	t _{fix}	dκ	d s1	d _{S2}	dsз	М	ls	lΒ	l _F	SW
FSU M10x100/20 (R)	≤ 20	19,3	19	17,5	18,5	10	100	148	-	17
FSU M12x125/30 (R)	≤ 30	21,5	21	19,3	20,5	12	125	188	-	19
FSU M12x125/50 (R)	≤ 50	21,5	21	19,3	20,5	12	125	208	-	19
FSU-P M10x100/20 (R)	≥ 10 ≤ 20	19,3	19	17,5	18,5	10	120	148	20	17
FSU-P M12x125/30 (R)	≥ 12 ≤ 30	21,5	21	19,3	20,5	12	155	188	30	19
FSU-P M12x125/50 (R)	≥ 12 ≤ 50	21,5	21	19,3	20,5	12	175	208	50	19

Table A2.2: Materials FSU

Part	Designation	Material					
Fait	Designation	FSU, FSU-P	FSU R, FSU-P R				
1	Cone bolt	Steel, zinc plated ≥ 5 µm, EN ISO 4042:2022	Stainless steel according to EN 10088:2014				
2	Plastic sleeve	Plasi	tic				
3	Sleeve	Steel, zinc plated ≥ 5 µm, EN ISO 4042:2022 Stainless steel according to EN 10088:20					
4	Protective cap	Plasi	tic				
5	Washer	Steel, zinc plated ≥ 5 µm, EN ISO 4042:2022	Stainless steel according to EN 10088:2014				
6	Hexagon nut	Steel, zinc plated ≥ 5 µm, EN ISO 4042:2022 Stainless steel A4-80					

(Figures not to scale)

fischer Strong Undercut Anchor FSU	
Product description Product marking, dimensions and materials	Annex A2

Stop drill bit FSU-SD

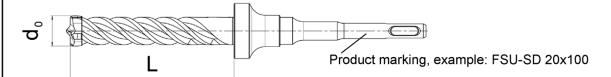


Table A3.1: Required stop drill bits for FSU

Type of anchor	Type of stop drill bit	d₀ [mm]	L [mm]	
FSU M10x100/20 (R)	FSU-SD 20x100	20	107	
FSU M12x125/30 (R)	FSU-SD 22x125	22	132	
FSU M12x125/50 (R)	F30-3D 22x125	22	132	
FSU-P M10x100/20 (R)	FSU-SD 20x120	20	127	
FSU-P M12x125/30 (R)	FSU-SD 22x155	22	162	
FSU-P M12x125/50 (R)	FSU-SD 22x175	22	182	

Machine setting tool FSU-ST

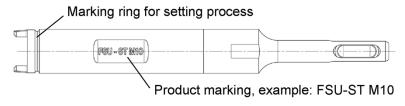


Table A3.2: Required setting tools for FSU

Type of anchor	Type of setting tool
FSU M10x100/20 (R)	FSU-ST M10
FSU M12x125/30 (R)	FSU-ST M12
FSU M12x125/50 (R)	F30-31 W12
FSU-P M10x100/20 (R)	FSU-ST M10
FSU-P M12x125/30 (R)	FSU-ST M12
FSU-P M12x125/50 (R)	F30-31 W12

Table A3.3: Recommendations for hammer drills used with FSU-ST

Technical feature		Recommendation
Drill chuck	[-]	SDS plus
Hammer drilling RPM	[rpm]	600 - 1800
Hammer impact energy	[J]	2,5 - 6

(Figures not to scale)

fischer Strong Undercut Anchor FSU	
Product description Setting tools	Annex A3

Specifications of inter Fastenings subject to:	ided use witl	n working life	50 and 100) years		
		FSU, FSU R		FS	SU-P, FSU-P	R
Size	M10x100 /20	M12x125 /30	M12x125 /50	M10x100 /20	M12x125 /30	M12x125 /50
Static and quasi-static loads						
Cracked and uncracked concrete						
Seismic performance C1		√				
category C2						
Fire exposure						

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

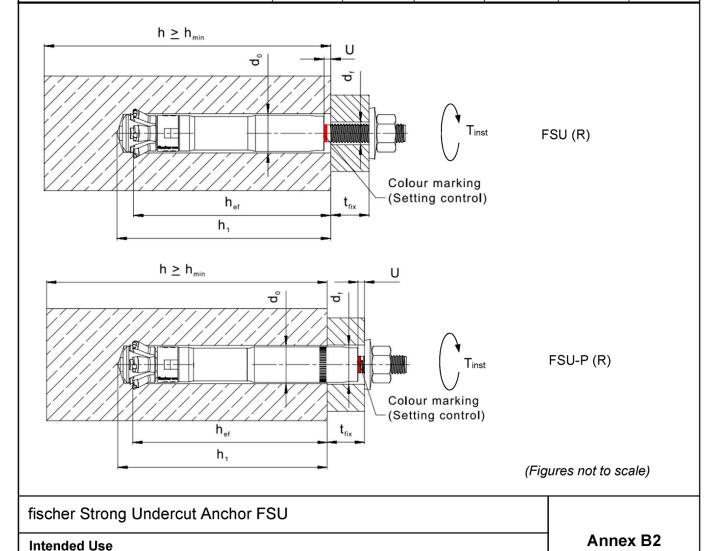
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FSU, FSU-P, FSU R, FSU-P R)
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III: FSU R, FSU-P R

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018.
- · For requirements to resistance to fire local spalling of the concrete cover must be avoided.
- The stiffness characteristics k_A-k_D (Annex C8) are intended to be used in finite element calculations, such as linear- and non-linear spring models, for the design of the fastener as a function of fastener displacements and the anchor plate stiffness.

fischer Strong Undercut Anchor FSU	
Intended Use Specifications	Annex B1



Installation parameters

Installation parameters

Table B2.1: Installation parameters

Size				FSU, FSU R	1	FSU-P, FSU-P R		
			M10x100 /20	M12x125 /30	M12x125 /50	M10x100 /20	M12x125 /30	M12x125 /50
Nominal drill hole diameter	d ₀		20	22	22	20	22	22
Cutting diameter of drill bits	$d_{\text{cut}} \leq$		20,5	22,5	22,5	20,5	22,5	22,5
Depth of drill hole to deepest point	h₁≥		107	132	132	127-t _{fix}	162-t _{fix}	182-t _{fix}
Effective embedment depth	h _{ef} ≥	[mm]	100	125	125	100	125	125
Diameter of clearance hole in the fixture	$d_{f} \leq$		12	14	14	21	23	23
Thickness of the fixture	t fix	•	≤ 20	≤ 30	≤ 50	≥ 10 ≤ 20	≥ 12 ≤ 30	≥ 12 ≤ 50
Gap after setting	U	-	2 - 5	3 - 6	3 - 6	2 - 5	3 - 6	3 - 6
Required setting torque	T _{inst}	[Nm]	40	80	80	40	80	80

Installation instructions

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.
- Fastener installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools (machine setting tool FSU-ST, stop drill bit FSU-SD).
- Drill hole created perpendicular (tolerance +/- 5°) to concrete surface.
- Cleaning the hole of drilling dust.
- Fastener installation ensuring complete expansion of the sleeve with checking that the coloured ring marking on the bolt is visible above the top edge of the anchor sleeve, therefore it is required using the setting tool FSU-ST, that is the appropriate depth ring marking of the setting tool at least flush with the concrete surface (pre-setting) respecting with the fixture surface (Push-through-setting).
- Fastener installation ensuring complete shear load capacity, after setting the gap between the top edge of the sleeve and the concrete surface (pre-setting) or with surface of the fixture (Push-through-setting) has to be in the specified range according to Annex B2, Table B2.1.
- Positioning of the drill holes and the undercut without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance, if the aborted drill hole is filled with high strength mortar and, if under shear or oblique tension load, it is not in the direction of load application.

•	Application of the	torque moment	given in <i>l</i>	Annex B2,	Table B2.1	using a	calibrated	torque wrend	۲h
---	--------------------	---------------	-------------------	-----------	------------	---------	------------	--------------	----

fischer Strong Undercut Anchor FSU	
Intended Use Installation instructions	Annex B3
6730.25	8.06.01-280/24

Installation instructions for pre-setting anchor FSU, FSU R 1) 2) 1) Drill the hole with the designated stop drill bit FSU-SD (see Table A3.1). Clean the hole. 3) Place the anchor in the hole by hand. Do not use any hammering tools. Use the designated setting tool FSU-ST (see Table A3.2) and follow the recommendations for the hammer drill (see Table A3.3). 5) 6) Place the setting tool in the grooves provided on the anchor. Carry out the setting process with the rotary-impact mode of the hammer drill. The setting process is completed when the marking ring of the setting tool is flush with the concrete surface. After removing the setting tool, the red coloured ring marking on the bolt must be visible above the top edge of the anchor sleeve. The gap U between the top edge of the sleeve and the concrete surface must be in the specified range according to Table B2.1. 7) Place the fixture. 7) 8) Remove the protective cap. Place the spring Tinst washer and the hexagon nut on the bolt. Take care of the right orientation of the spring washer, in the way, that the outer diameter of the washer in uncompressed condition is in touch with the fixture, only. Apply the installation torque. 9) 9) Correctly installed fastener. fischer Strong Undercut Anchor FSU **Annex B4** Intended Use Installation instructions

Installation instructions for push-though anchor FSU-P, FSU-P R 1) 2) 1) Drill the hole with the designated stop drill bit FSU-SD (see table A3.1) in compliance with the specified range of fixture thicknesses (see Table B2.1). 2) Clean the hole. 3) 4) 3) Place the anchor in the hole by hand. Do not use any hammering tools. Use the designated setting tool FSU-ST (see Table A3.2) and follow the recommendations for the hammer drill (see Table A3.3). 5) Place the setting tool in the grooves provided on 6) the anchor. Carry out the setting process with the rotary-impact mode of the hammer drill. The setting process is completed when the marking ring of the setting tool is flush with the fixture surface. After removing the setting tool, the red coloured ring marking on the bolt must be visible above the top edge of the anchor sleeve. The gap U between the top edge of the sleeve and the fixture surface must be in the specified range according to Table B2.1. 7) 7) Remove the protective cap. Place the spring Tinst washer and the hexagon nut on the bolt. Take care of the right orientation of the spring washer, in the way, that the outer diameter of the washer in uncompressed condition is in touch with the fixture, only. Apply the installation torque. 8) 8) Correctly installed fastener. fischer Strong Undercut Anchor FSU Annex B5 Intended Use Installation instructions

Table C1.1: Characteristic **tension resistance** under static and quasi-static action for working life 50 and 100 years

Size					FSU, FSU-P, FSU R, FSU-P R		
Size					M10x100	M12x125	
Steel failure				-			
Characteristic	recistance		SU, FSU	[kN]	44,2	65,9	
Characteristic	i esistarice	N _{Rk,s} F	SU R, FSU-P R	[KIN]	45,7	67,4	
Partial factor fo		re	γMs	[-]	1,	5	
Pullout failure)						
	cracked co	ncrete	$N_{Rk,p,cr}$ = $N_{Rk,p,cr,100}$		30,0	40,0	
Characteristic resistance in C20/25	uncracked		$N_{Rk,p,ucr} = N_{Rk,p,ucr,100}$ FSU, FSU-P	[kN]	44,2	65,9	
020/20	concrete		N _{Rk,p,ucr} = N _{Rk,p,ucr,100} FSU R, FSU-P I	₹	45,7	69,4	
Increasing factor for N _{RK,p;} N _{RK,p,100}			C25/30	1,1	2		
			C30/37	1,2	22		
$N_{Rk,p} = \psi_c * N_{Rk}$		\/2E\	ψ _c = Ψ _{c,cr} = Ψ _{c,ucr}	C35/45	1,3	32	
$N_{Rk,p,100} = \psi_c * I$	N Rk,p,100 (∪∠ ()/25)	φε,cr = φε,ucr [-]	C40/50	1,4		
				C45/55	1,50		
				C50/60	1,5		
Installation ser	-		γ̃inst	[-]	1,	0	
Concrete con	-				100	405	
Effective embe			h _{ef}	[mm]	100	125	
Factor for crac			k _{cr,N}	- [-] -	8,9		
Factor for uncr	acked conc	rete	k _{ucr,N}	.,	12,7		
Characteristic	spacing		S _{cr,N}	_	3 x	h _{ef}	
Characteristic edge distance		C _{cr,N}	[1,5 x h _{ef}			
Characteristic	spacing		S cr,sp	- [mm]	3 x h _{ef}		
Characteristic	edge distan	ce	C cr,sp	-	1,5 x h _{ef}		
Characteristic	resistance to	o splittin	ig N ⁰ _{Rk,sp}	[kN]	min {N ⁰ _{Rk,}	c; N _{Rk,p} } ¹⁾	

 $^{^{1)}\} N^0_{Rk,c}$ according to EN 1992-4:2018

fischer Strong Undercut Anchor FSU	
Performances Characteristic tension resistance under static and quasi-static action for working life 50 and 100 years	Annex C1

Table C2.1: Characteristic **shear resistance** under static and quasi-static action for working life 50 and 100 years **FSU**, **FSU** R

8:		FSU, FS	U R				
Size			M10x100	M12x125			
Steel failure without lever arm							
Characteristic resistance —	$V^0_{Rk,s}$ FSU	- [FVI]	26,8	38,2			
Characteristic resistance –	$V^0_{Rk,s}$ FSU R	- [kN]	32,9	49,9			
Partial factor for steel failure	γMs	- [-]	1,25				
Factor for ductility	ctility k ₇		1,0				
Steel failure with lever arm							
Characteristic bending resista	nce M ⁰ _{Rk,s}	[Nm]	59,8	104,8			
Partial factor for steel failure	γMs	[-]	1,25				
Concrete pryout failure							
Factor for pryout failure	k 8	[-]	2,4				
Concrete edge failure							
Effective length in	lf		100	125			
concrete		_ [mm]					
Effective diameter of fastener	d_{nom}		19	21			

Table C2.2: Characteristic **shear resistance** under static and quasi-static action for working life 50 and 100 years **FSU-P**, **FSU-P** R

Size			FSU-P, FSU-P R						
Size				M10x100 M1			2x125		
Steel failure without leve	Steel failure without lever arm								
	for t _{fix}		[mm]	10 ≤ t _{fix} < 15	$15 \le t_{\text{fix}} \le 20$	$12 \le t_{\text{fix}} < 20$	$20 \le t_{fix} \le 50$		
Characteristic resistance	V ⁰ Rk,s FSU	J-P	[LNI]	66,1	69,6	86,4	96,7		
	V ⁰ Rk,s FSU	J-P R	[kN]	74,6	80,6	102,9	103,6		
Partial factor for steel failur	е үм	/Is	r 1		1,25				
Factor for ductility	k ₇		[-]	1,0					
Steel failure with lever arr	n								
Characteristic bending resi	stance M	$1^0_{ m Rk,s}$	[Nm]	59,8 104,8			1,8		
Partial factor for steel failur	е үм	/Is	[-]	1,25					
Concrete pryout failure									
Factor for pryout failure	Factor for pryout failure k ₈			2,4					
Concrete edge failure	Concrete edge failure								
Effective length in concrete	I _f		[mm]	100		125			
Effective diameter of faster	ner d	nom	- -	1	9	2	1		

fischer Strong Undercut Anchor FSU	
Performances Characteristic shear resistance under static and quasi-static action for working life 50 and 100 years	Annex C2

Table C3.1:	Minimum thickness of concrete members FSU, FSU R
-------------	--

Size			FSU				
			M10x100/20	M12x125/30	M12x125/50		
Minimum thickness of concrete member	h _{min}	[mm]	170	2	215		

Table C3.2: Minimum thickness of concrete members FSU-P, FSU-P R

Size		FSU-P				
		M10x100/20	M12x125/30	M12x125/50		
Maximum thickness of the fixture	t _{fix,max}	20	30	50		
Minimum thickness of concrete member	h _{min} [mm]	190-t _{fix} 1)	245-t _{fix} 1)	265-t _{fix} 1)		

 $^{^{1)}}$ t_{fix} = actual thickness of the fixture

Table C3.3: Minimum spacings and edge distances

Size			FSU, FSU-P, FSU R, FSU-P R				
			M10x100/20	M12x125/30	M12x125/50		
Minimum spacing	S _{min}	[mm]	80	90			
Minimum edge distance	C _{min}	- [mm]	80		90		

fischer Strong Undercut Anchor FSU

Performances
Minimum thickness of concrete member, minimum spacings and edge distances

Annex C3

Table C4.1: Characteristic **tension resistance** under **fire exposure** for working life 50 and 100 years

Cino				FSU, I	FSU-P	FSU R, I	FSU-P R
Size			M10x100	M12x125	M10x100	M12x125	
		R30		3,7	4,5	7,2	10,4
Characteristic resistance steel failure	$N_{Rk,s,fi}$	R60	FI . N. 17	2,2	3,2	5,3	7,7
		R90		1,7	2,8	4,7	6,8
		R120		1,5	2,6	4,4	6,4
Characteristic resistance	NI	R30-R90	[kN]	19,9	34,8	19,9	34,8
Concrete cone failure	$N_{Rk,c,fi}$	R120		15,9	27,7	15,9	27,8
Characteristic resistance	$N_{Rk,p,fi}$	R30-R90		7,5	10,0	7,5	10,0
pullout failure		R120		6,0	8,0	6,0	8,0

Table C4.2: Characteristic **shear resistance** under **fire exposure** for working life 50 and 100 years

C:	Sizo		FSU, I	FSU-P	FSU R, I	FSU-P R
Size			M10x100	M12x125	M10x100	M12x125
Obanastanistia nasistanas		R30_	3,7	4,4	7,2	10,4
Characteristic resistance steel failure without lever	\/	R60 [kN]	2,2	3,0	5,3	7,7
arm	V Rk,s,fi	R90 [KIV]	1,7	2,6	4,7	6,8
		R120	1,5	2,3	4,4	6,4
	M^0 Rk,s,fi	R30	4,8	6,9	9,2	16,2
Characteristic bending		R60	2,9	5,0	6,9	12,0
resistance steel failure with lever arm		R90 [Nm]	2,2	4,4	6,1	10,6
		R120	1,9	4,0	5,7	9,9
Concrete failure V ⁰ _{Rk,c,fi} and V _{Rk,cp,fi}			According to EN	N 1992-4:2018		

Table C4.3: Minimum spacings and minimum edge distances under fire exposure for tension and shear load

Size			FSU, FSU-P, FSU R, FSU-P R All sizes
Spacing	S _{min,fi}		4·h _{ef}
Edge distance	C _{min,fi}	[mm]	$2 \cdot h_{ef}$, for fire exposure from more than one side $c_{min,fi} \ge 300 \text{ mm}$

fischer Strong Undercut Anchor FSU	
Performances Characteristic resistance under fire exposure with working life 50 and 100 years	Annex C4

Table C5.1: Characteristic values of tension and shear resistance under seismic performance category C1 for working life 50 and 100 years

Size				FSU, FSU-P, FSU R, FSU-P R				
Size				M10x	100	M12x125		
Steel failure								
Characteristic resistance	$N_{Rk,s,0}$	o1 FSU, F	SU-P	FIANT.	44,	,2	65	5,9
tension load C1	N _{Rk,s,0}	c1 FSU R,	FSU-P R	- [kN]	46,	,2	67	' ,4
Pullout failure								
Characteristic resistance tension load in cracked concrete C1			[kN]	30,0		40,0		
Steel failure without leve	r arm							
		for t _{fix}		[mm]	10 ≤ t _{fix} < 15	15 ≤ t _{fix} ≤ 20	12 ≤ t _{fix} < 20	20 ≤ t _{fix} ≤ 50
			18,8		26,8			
		V _{Rk,s,C1} FSU R		- 	23,	,0	34	,9
		V _{Rk,s,C1} FSU-P		[kN]	46,3	48,7	60,5	67,7
		V _{Rk,s,C1} F	SU-P R		52,2	56,4	72,0	72,5

Table C5.2: Characteristic values of tension and shear resistance under seismic performance category C2 with working life 50 and 100 years

Size			FSI	U, FSU-P, FS	U R, FSU-P	R	
				M10x	100	M12x125	
Steel failure							
Characteristic resistance	N _{Rk,s,C2} FSU,	FSU-P	[kN]	44,	,2	65	5,9
tension load C2	N _{Rk,s,C2} FSU I	R, FSU-P R		45	,0	67	',4
Pullout failure							
Characteristic resistance tension load in cracked concrete C2		[kN]	30,0		40,0		
Steel failure without leve	er arm						
	for t _{fix}		[mm]	10 ≤ t _{fix} < 15	15 ≤ t _{fix} ≤ 20	12 ≤ t _{fix} < 20	20 ≤ t _{fix} ≤ 50
	$V_{Rk,s,C2}$	V _{Rk,s,C2} FSU		20,1 22,8		24,5	
Characteristic resistance shear load C2	$V_{Rk,s,C2}$	V _{Rk,s,C2} FSU R				31,9	
	$V_{Rk,s,C2}$	V _{Rk,s,C2} FSU-P		39,6	41,8	51,8	62,9
	$V_{Rk,s,C2}$	V _{Rk,s,C2} FSU-P R		37,	,2	56,6	67,3

fischer Strong Undercut Anchor FSU	
Performances Characteristic resistance under seismic performance categories C1 and C2 for working life 50 and 100 years	Annex C5

Table C6.1:	Displacements under static and quasi-static tension loads
	for working life 50 and 100 years

Size			FSU, FSU-P, FSU R, FSU-P R		
Size			M10x100	M12x125	
Tension load in cracked concrete C20/25	N	[kN]	21,8	33,1	
	δ_{N0}		1,1	1,3	
Displacements	$\delta_{\text{N,50years}}$ = $\delta_{\text{N,100years}}$	[mm]	1,3	1,3	
Tension load in uncracked concrete C20/25	N	[kN]	21,8	33,1	
	δ_{N0}		1,1	1,7	
Displacements	$\delta_{\text{N,50years}} = \\ \delta_{\text{N,100years}}$	[mm]	2,8	2,8	

Table C6.2: Displacements under static and quasi-static shear loads for working life 50 and 100 years

Size			FSU, FSU-P, F M10x100	SU R, FSU-P R M12x125
Shear load in cracked and uncracked concrete C20/25	V	[kN]	13,8	21,3
Diantagementa ESII	δ_{V0}	[mm]	5,4	6,7
Displacements FSU	$\delta_{\text{V}^{\infty}}$	- [mm]	8,0	10,0
Shear load in cracked and uncracked concrete C20/25	V	[kN]	16,9	25,6
Picale company FCU P		[mm]	2,4	3,8
Displacements FSU R	$\delta_{\text{V}^{\infty}}$	- [mm]	3,6	5,8
Shear load in cracked and uncracked concrete C20/25	V	[kN]	36,3	52,2
B: 1		δνο	5,9	7,2
Displacements FSU-P	$\delta_{\text{V}^{\infty}}$	- [mm]	8,8	10,7
Shear load in cracked and uncracked concrete C20/25	V	[kN]	39,6	55,4
Displacements FSU-P R		[mm]	8,91	8,7
		- [mm]	13,4	13,1

fischer Strong Undercut Anchor FSU	
Performances Displacement under static and quasi-static loads for working life 50 and 100 years	Annex C6

Table C7.1:	Displacements under tension loads for seismic performance category C2
	for working life 50 and 100 years

Cina			FSU, FSU-P, FSU R, FSU-P R	
Size		M10x100	M12x125	
Displacement	$\delta_{\text{N,C2(0,5)}}$	[mama]	4,6	4,6
	δ _{N,C2(0,8)}	[mm]	11,4	10,4

Table C7.2: Displacements under shear loads for seismic performance category C2 for working life 50 and 100 years

Size			FSU, FSU-P, FSU R, FSU-P R	
Size		M10x100	M12x125	
Displacement FSU	$\delta_{\text{V,C2(0,5)}}$	- - - [mm] -	5,2	5,0
	δv,c2(0,8)		7,3	6,7
Displacement FSU R	δv,c2(0,5)		4,7	4,1
	δ _{V,C2(0,8)}		6,8	5,9
Displacement FSU-P	$\delta_{\text{V,C2(0,5)}}$		4,8	5,0
	δv,c2(0,8)		10,7	18,5
Displacement FSU-P R	$\delta_{\text{V,C2(0,5)}}$		3,7	4,2
	$\delta_{\text{V,C2(0,8)}}$	_	7,8	13,2

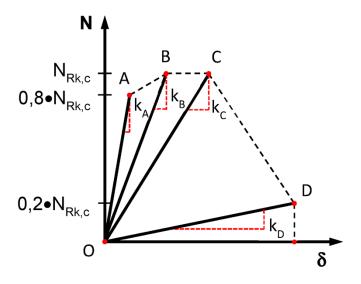

fischer Strong Undercut Anchor FSU	
Performances Displacement under tension and shear loads for seismic performance category C2 for working life 50 and 100 years	Annex C7

Table C8.1: Stiffness characteristics (mean values) under static and quasi-static tension loads for working life 50 and 100 years

Size	FSU, FSU-P, FSU-R, FSU-P R		
Size	M10x100	M12x125	
	k A,cr	20,1	22,6
Stiffness characteristics in cracked concrete	k B,cr	13,8	16,0
Sumess characteristics in cracked concrete	k _{C,cr}	10,4	12,2
	k _{D,cr} [kN/mm]	1,8	2,0
	k _{A,ucr} [KIN/IIIII]	33,1	35,0
Stiffness characteristics in uncracked concrete	k B,ucr	25,2	24,5
Stiffless characteristics in uncracked concrete	k _{C,ucr}	20,6	17,3
	k _{D,ucr}	3,7	3,4

- The stiffness characteristics k_A-k_D are intended to be used in finite element calculations, such as linear- and non-linear spring models (k_A for linear spring model and k_A-k_D for non-linear spring model), for the design of the fastener group as a function of fastener displacements and the anchor plate stiffness.
- For linear spring model: mean displacement for any load N: δ_{mean} = N / k_A

fischer Strong Undercut Anchor FSU	
Performances Stiffness characteristics under static and quasi-static loads with working life 50 and 100 years	Annex C8