



Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte



# **Europäische Technische Bewertung**

# ETA-23/0099 vom 18. März 2025

#### **Allgemeiner Teil**

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

TSM high performance

Schraubanker zur Verankerung im Mauerwerk

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE Dübel

39 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330460-00-0604, Edition 08/2022

ETA-23/0099 vom 1. August 2023

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z012684.25 | 8.06.04-173/24



Seite 2 von 39 | 18. März 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z012684.25 8.06.04-173/24

Seite 3 von 39 | 18. März 2025

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Die TOGE Betonschraube TSM high performance ist ein Dübel in den Größen 5, 6, 8 und 10 mm aus galvanisch verzinktem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes. Die Produktbeschreibung ist in Anhang A angegeben.

# 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                                                                                                   | Leistung                                                                                                                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Charakteristischer Widerstand eines einzelnen<br>Schraubankers gegen Stahlversagen unter<br>Zugbeanspruchung                                           | N <sub>Rk,s</sub> siehe Anhang C1                                                                                                                                                                                                 |  |
| Charakteristischer Widerstand eines einzelnen<br>Schraubankers gegen Stahlversagen unter<br>Querbeanspruchung                                          | V <sub>Rk,s</sub> [kN], M <sup>0</sup> <sub>Rk,s</sub><br>siehe Anhang C1                                                                                                                                                         |  |
| Charakteristischer Widerstand eines einzelnen<br>Schraubankers gegen Herausziehen oder<br>Ausbruch des Mauersteins unter<br>Zugbeanspruchung           | $\begin{array}{c} N_{Rk,p},N_{Rk,b},N_{Rk,p,c},N_{Rk,b,c}\\ \text{siehe Anhang B7, C4, C9, C14, C19, C23}\\ \alpha_{j,N}\\ \text{siehe Anhang C3, C8, C13, C18, C23} \end{array}$                                                 |  |
| Charakteristischer Widerstand eines einzelnen<br>Schraubankers gegen örtliches Versagen oder<br>Kantenbruch des Mauersteins unter<br>Querbeanspruchung | $\begin{array}{c} V_{Rk,b,II},V_{Rk,b,\perp},V_{Rk,c,II},V_{Rk,c,\perp}\\ \text{siehe Anhang B7, C4, C9, C14, C19, C23}\\ \alpha_{j,\forall II},\alpha_{j,\forall \perp}\\ \text{siehe Anhang C3, C8, C13, C18, C23} \end{array}$ |  |
| Charakteristischer Widerstand einer<br>Schraubankergruppe gegen Ausbruch des<br>Mauersteins unter Zugbeanspruchung                                     | $N_{Rk}^{g}$ siehe Anhang B7 $\alpha_{\rm g,N}$ siehe Anhang B7, C2, C8, C13, C18, C22                                                                                                                                            |  |
| Charakteristischer Widerstand einer<br>Schraubankergruppe gegen örtliches Versagen<br>oder Kantenbruch des Mauersteins unter<br>Querbeanspruchung      | $\begin{array}{c} V_{Rk,b,II}, V_{Rk,b,\perp}, V_{Rk,c,II}, V_{Rk,c,\perp} \\ \text{siehe Anhang B7} \\ \alpha_{\text{g,VII}}, \alpha_{\text{g,VII}\perp} \\ \text{siehe Anhang B7, C2, C8, C13, C18, C22} \end{array}$           |  |

Z012684.25 8.06.04-173/24



Seite 4 von 39 | 18. März 2025

| Wesentliches Merkmal                                                                              | Leistung                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                   | c <sub>cr</sub> , s <sub>crll</sub> , s <sub>cr⊥</sub><br>siehe Anhang B7                                                                |  |
| Randabstand, Abstand zur Fuge, Achsabstand,<br>Mauersteindicke                                    | c <sub>min</sub> , c <sub>jll</sub> , c <sub>j⊥</sub> , s <sub>minII</sub> , s <sub>min⊥</sub><br>siehe Anhang B7, C2, C8, C13, C18, C22 |  |
|                                                                                                   | h <sub>min</sub><br>siehe Anhang C2, C7, C12, C17, C22                                                                                   |  |
| Charakteristische Widerstand unter kombinierter Zug- und Querbeanspruchung (Hohl- und Lochsteine) | Grenzwert X für Interaktion siehe Anhang C14                                                                                             |  |
| Verschiebungen                                                                                    | $\delta_{N0},\delta_{N^\infty},\delta_{V0},\delta_{V^\infty}$ siehe Anhang C5, C10, C15, C 20, C 24                                      |  |

#### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal | Leistung                                                                                                                                                                                                                           |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Brandverhalten       | Klasse A1                                                                                                                                                                                                                          |  |  |
| Feuerwiderstand      | $N_{Rk,s,fi}$ , $N_{Rk,p,fi}$ , $N_{Rk,b,fi}$ , $V_{Rk,s,fi}$ , $M^0_{Rk,s,fi}$ , $C_{min,fi}$ , $C_{j,fi}$ siehe Anhang C6, C11, C16, C21 $N_{Rk,fi}^g$ , $S_{min,fi}$ , $C_{min,fi}$ , $C_{j,fi}$ siehe Anhang C5, C10, C15, C20 |  |  |

#### 3.3 Aspekte der Dauerhaftigkeit

| Wesentliches Merkmal | Leistung        |  |
|----------------------|-----------------|--|
| Dauerhaftigkeit      | Siehe Anhang B1 |  |

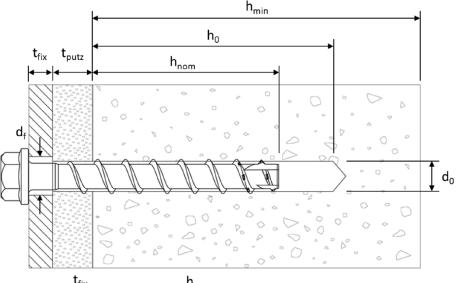
#### 4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330460-00-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

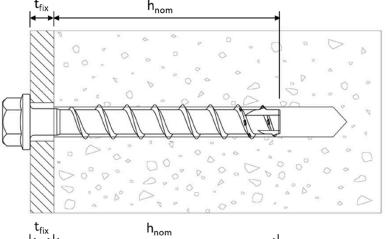
# Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

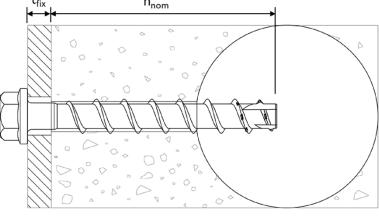

Ausgestellt in Berlin am 18. März 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin *Beglaubigt* Aksünger

Z012684.25 8.06.04-173/24






**TOGE Betonschraube** TSM high performance

im Vollbaustoff und Lochbaustoff mit nichttragender Schicht



**TOGE** Betonschraube TSM high performance im Vollbaustoff



**TOGE** Betonschraube TSM high performance im Lochbaustoff

d<sub>0</sub> = Nomineller Bohrlochdurchmesser

t<sub>fix</sub> = Dicke des Anbauteils

 $h_{nom}$ 

 $h_{min}$ = Mindestbauteildicke = Nominelle Einschraubtiefe

d<sub>f</sub> = Durchgangsloch im anzuschließenden Anbauteil

= Bohrlochtiefe

t<sub>putz</sub> = Dicke der nichttragenden Schicht

**TOGE Betonschrauben TSM high performance** 

# Produktbeschreibung

Produkt und Einbauzustand

**Anhang A1** 



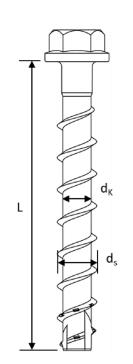
|                               | 0                    | Ausführung mit metrischem An Sechskantantrieb z.B. TSM 8x10                | •                    |  |  |
|-------------------------------|----------------------|----------------------------------------------------------------------------|----------------------|--|--|
|                               | (3 SA)               | Ausführung mit Sechskantkopf,<br>Unterlegscheibe z.B. TSM 8x80             |                      |  |  |
|                               | (TSA)                | Ausführung mit Sechskantkopf, legscheibe und TORX z.B. TSM 8               |                      |  |  |
|                               | (S)                  | Ausführung mit Sechskantkopf,<br>z.B. TSM 8x80 SW13 OS; Typ S              |                      |  |  |
|                               | (SA)                 | Ausführung mit Senkkopf und T<br>z.B. TSM 8x80 C VZ 40; Typ SK             | ORX                  |  |  |
|                               | (54)<br>(2)<br>(2)   | Ausführung mit Linsenkopf und z.B. TSM 8x80 P VZ 40; Typ P                 | TORX                 |  |  |
|                               | (SM)                 | Ausführung mit großem Linsenkopf und TORX z.B. TSM 8x80 LP VZ 40; Typ P    |                      |  |  |
|                               |                      | Ausführung mit Senkkopf und Anschlussgewinde z.B. TSM 6x55 AG M8; Typ ST-6 |                      |  |  |
|                               |                      | Ausführung mit Sechskantantrie Anschlussgewinde z.B. TSM 6x5               |                      |  |  |
|                               |                      | Ausführung mit Innengewinde z.B. TSM 6x55 IM M8/10; Typ I                  | und Sechskantantrieb |  |  |
|                               |                      |                                                                            |                      |  |  |
|                               |                      |                                                                            |                      |  |  |
|                               |                      |                                                                            |                      |  |  |
| TOGE Betonschra               | auben TSM high perfo | ormance                                                                    |                      |  |  |
| Produktbeschr<br>Ausführungen | Anhang A2            |                                                                            |                      |  |  |



## Tabelle 1: Werkstoffe

| Teil              | Bezeichnung          | eichnung Werkstoff                                                                                                                                                                                               |                                                            |                        |  |
|-------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|--|
| Alle Ausführungen | TSM high performance | - Stahl EN 10263-4:2017 galvanisch verzinkt nach EN ISO 4042:2018 - zinklamellenbeschichtet nach EN ISO 10683:2018 (≥5μm) - zinklamellenbeschichtet nach EN ISO 10683:2018 Spezialbeschichtung TOGE KORR (≥20μm) |                                                            |                        |  |
| Teil              | Bezeichnung          | nominelle cha<br>Streckgrenze<br>f <sub>yk</sub> [N/mm²]                                                                                                                                                         | rakteristische<br>Zugfestigkeit<br>f <sub>uk</sub> [N/mm²] | Bruchdehnung<br>A₅ [%] |  |
| Alle Ausführungen | TSM high performance | 560                                                                                                                                                                                                              | 700                                                        | ≤8                     |  |

## Tabelle 2: Abmessungen


| Schraubengröße               |                | 5                | (                 | 5                 | 8                 | 3                 | 1                 | 0                 |                   |
|------------------------------|----------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Nominelle                    |                | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Einschraubtiefe              |                | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| Schraubenlänge ≤ L           |                | [mm]             | 500               |                   |                   |                   |                   |                   |                   |
| Kerndurchmesser              | d <sub>K</sub> | [mm]             | 4,0               | 5                 | ,1                | 7                 | ,1                | 9                 | ,1                |
| Gewindeaußen-<br>durchmesser | ds             | [mm]             | 6,5               | 7                 | ,5                | 10                | ),6               | 12                | 2,6               |

## Prägung:

TSM high performance

Schraubentyp: TSM Schraubendurchmesser: 10 Schraubenlänge: 100





**TOGE Betonschraube TSM high performance** 

## Produktbeschreibung

Werkstoffe, Abmessungen und Prägungen

**Anhang A3** 



# Spezifizierung des Verwendungszwecks

## Beanspruchung der Verankerung:

- Statische und quasi-statische Zugbelastung, Querbelastung oder kombinierte Zug- und Querbelastung oder Biegung
- Brandbeanspruchung (nur für trockenes Mauerwerk)

#### Verankerungsgrund:

- Mauerwerk aus Vollsteinen und Lochsteinen siehe Anhang B3
- Minimale Bauteildicke h<sub>min</sub> siehe Anhänge C2, C7, C12, C17, C22
- Lagerfugen müssen vollständig mit Mörtel mindestens der Druckfestigkeitsklasse M5 gemäß EN 998-2:2016 vermörtelt sein. Stoßfugen können, müssen aber nicht vermörtelt sein.
- Im Brandfall müssen alle Fugen vollständig mit Mörtel mindestens der Druckfestigkeitsklasse M5 gemäß EN 998-2:2016 vermörtelt sein
- Trockenes oder nasses Mauerwerk (bei Installation)

#### Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: Alle Schraubentypen
- Temperaturbereich des Mauerwerks über die Einsatzdauer: -40°C bis +80°C

#### Bemessung:

- Die Bemessung der Verankerung erfolgt gemäß EOTA Technical Report TR 054:2022-07.
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs.
- Schrauben dürfen bei einer nominellen Verankerungstiefe <50 mm nur für Verankerungen von statisch unbestimmten Systemen verwendet werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zu den Auflagern, usw.) anzugeben.
- Die Schraube darf in der Wandseite und in der Laibungsseite des Mauerwerks gesetzt werden.
   Die Installationsparameter für die Montage in der Laibungsseite sind gemäß Anhang B8 einzuhalten. Bei Silka XL Kalksandvollstein KS 12DF darf die Montage nur in der Wandseite erfolgen.
- Für Vollsteine gelten die charakteristischen Tragfähigkeiten auch für größere Steinformate, größere Druckfestigkeiten und größere Rohdichten der Mauersteine.
- Montage in der Fuge und fugennah ist nicht möglich, die Abstände zu Fugen sind gemäß Anhang C3, C8, C13, C18, C23 einzuhalten.

| TOGE Betonschraube TSM high performance |           |
|-----------------------------------------|-----------|
|                                         | Anhang B1 |
| Spezifikation                           |           |



# Spezifizierung des Verwendungszwecks - Fortsetzung

#### Einbau:

- Die Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei der Auswahl der Schraubenlänge L ist die Dicke der Putzschicht t<sub>putz</sub> zu berücksichtigen. L ≥ h<sub>nom</sub> + t<sub>putz</sub> + t<sub>fix</sub> (siehe Abbildungen im Anhang A1)
- Bei der Montage sind die vom Planer vorgegebenen Fugen-, Achs- und Randabstände zu berücksichtigen.
- Einbau durch entsprechend geschultes Personal und unter der Aufsicht des Bauleiters.
- Das Bohrloch wird mit Hammer,- Schlag,- Saug- oder Steinbohrern im Hammermodus oder Drehmodus hergestellt. Das Mauerwerk darf beim Hammerbohren nicht beschädigt werden. Sollten Risse beim Bohren auftreten, muss der Drehmodus verwendet werden. In diesem Fall muss das Bohrloch verworfen werden.
- Im Fall von Fehlbohrungen sind diese mit hochfestem Mörtel zu verfüllen.

TOGE Betonschraube TSM high performance

Verwendungszweck
Spezifikation - Fortsetzung

Anhang B2



Anhang

Tabelle 3: Vollsteine und Lochsteine, Abmessungen und Eigenschaften



| Kalksandvollstein KS nach DIN EN 7/1-2:2015-11 |             |                             |        |  |  |  |
|------------------------------------------------|-------------|-----------------------------|--------|--|--|--|
| Format                                         | Abmessungen | Mittlere<br>Druckfestigkeit | Dichte |  |  |  |



## Silka XL Kalksandvollstein KS 12DF nach DIN EN 771-2:2015-11

| Format                        | Abmessungen<br>[mm]              | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | Anhang      |
|-------------------------------|----------------------------------|----------------------------------------|--------------------|-------------|
| KS - R (P)<br>20 - 2,0 - 12DF | L: ≥ 498<br>B: ≥ 175<br>H: ≥ 248 | ≥ 14,0                                 | ≥ 1,8              | C7 –<br>C11 |



#### Kalksandlochstein KSL 3DF nach DIN EN 771-2:2015-11

|  | Format                     | Abmessungen<br>[mm]  | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | Anhang |
|--|----------------------------|----------------------|----------------------------------------|--------------------|--------|
|  | SWKV KSL<br>12 - 1,6 - 3DF | L: ≥ 240<br>B: ≥ 175 | ≥ 17,0                                 | ≥ 1,5              | C12 -  |
|  |                            | H: ≥ 113             |                                        |                    | C16    |



#### Mauerziegel MZ nach DIN EN 771-1:2015-11

| - 1 |                     |                                 |                                        |                    |              |
|-----|---------------------|---------------------------------|----------------------------------------|--------------------|--------------|
|     | Format              | Abmessungen<br>[mm]             | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | Anhang       |
|     | MZ<br>20 - 2,0 - NF | L: ≥ 240<br>B: ≥ 115<br>H: ≥ 71 | ≥ 21,0                                 | ≥ 2,1              | C17 –<br>C21 |



#### Vollblock aus Leichtbeton nach DIN EN 771-3:2015-11

| Format               | Abmessungen<br>[mm]              | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | Anhang       |
|----------------------|----------------------------------|----------------------------------------|--------------------|--------------|
| VBL<br>4 - 1,0 - 2DF | L: ≥ 240<br>B: ≥ 115<br>H: ≥ 113 | ≥ 4,0                                  | ≥ 1,5              | C22 -<br>C24 |

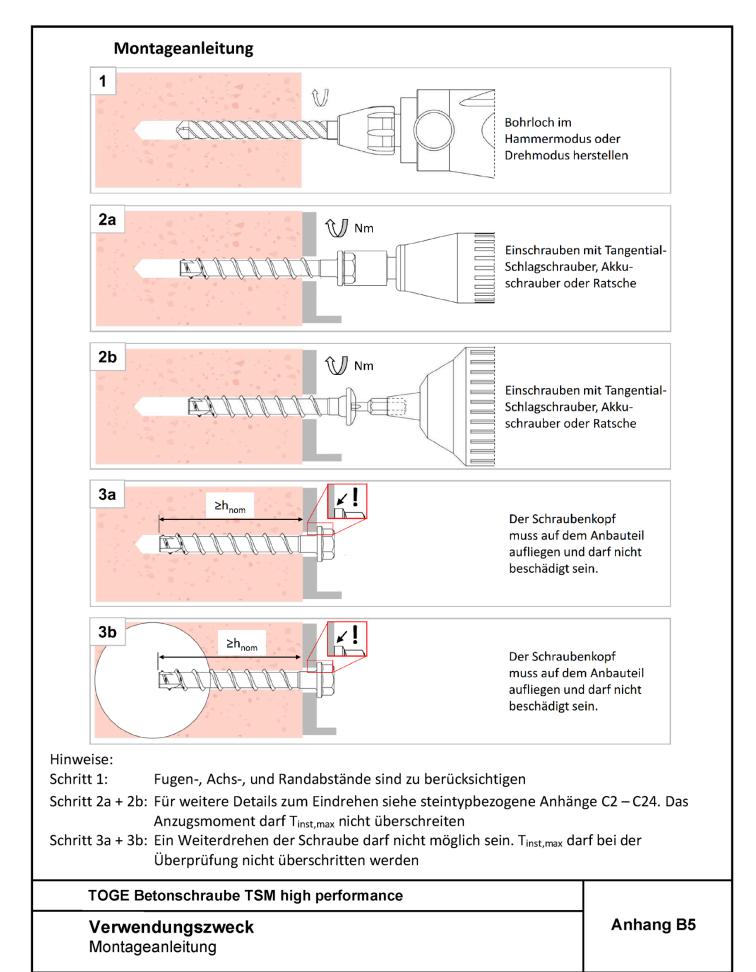
#### Verwendungszweck

Vollsteine und Lochsteine, Abmessungen und Eigenschaften

**Anhang B3** 



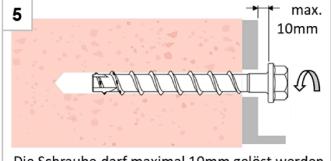
## Tabelle 4: Allgemeine Montagekennwerte


| TSM Schraubengröße                |                               |      | 5                 | (                 | 5                 | 8                 | 3                 | 1                 | 0                 |
|-----------------------------------|-------------------------------|------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Nominelle Einschraubtiefe         | Name to the Fire show hiteful |      | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Norminene Emschraubtiere          |                               | [mm] | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| Nomineller<br>Bohrlochdurchmesser | d <sub>0</sub>                | [mm] | 5                 | (                 | ô                 | 8                 | 3                 | 1                 | 0                 |
| Bohrerschneiden-<br>durchmesser   | d <sub>cut</sub> ≤            | [mm] | 5,40              | 6,                | 40                | 8,                | 45                | 10,               | 45                |
| Bohrlochtiefe                     | h <sub>0</sub> ≥              | [mm] | 55                | 55                | 75                | 65                | 85                | 75                | 95                |
| Durchgangsloch im<br>Anbauteil    | d <sub>f</sub> ≤              | [mm] | 7                 | ×                 | 3                 | 1                 | 2                 | 1                 | 4                 |

TOGE Betonschraube TSM high performance

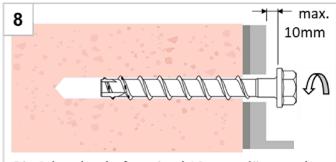
Verwendungszweck
Allgemeine Montagekennwerte

Anhang B4

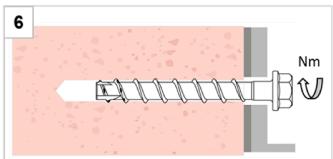




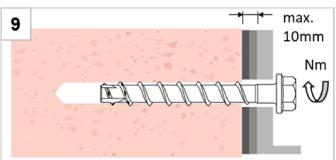




## Montageanleitung – Adjustierung

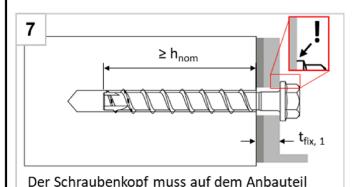
## 1. Adjustierung



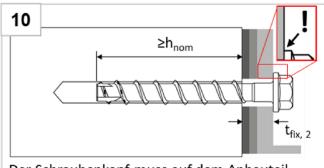

Die Schraube darf maximal 10mm gelöst werden.


## 2. Adjustierung




Die Schraube darf maximal 10mm gelöst werden.




Nach Adjustierung wird die Schraube mit einem Tangetial-Schlagschrauber, Akkuschrauber oder Ratsche eingeschraubt.



Nach Adjustierung wird die Schraube mit einem Tangetial-Schlagschrauber, Akkuschrauber oder Ratsche eingeschraubt.



aufliegen und darf nicht beschädigt sein.

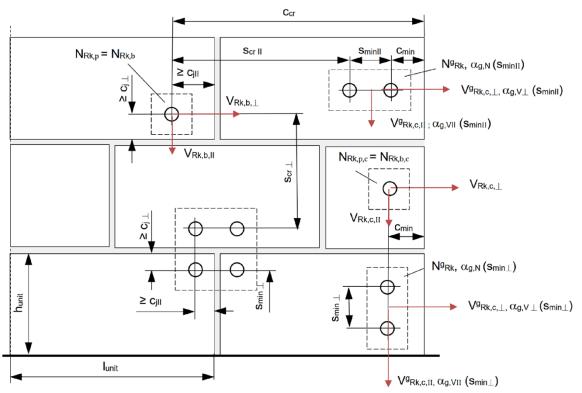


Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

#### Hinweis:

- 1. Die Schraube darf maximal zweimal adjustiert werden. Dabei darf die Schraube jeweils maximal um 10mm zurückgeschraubt werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10mm betragen. Die erforderliche Setztiefe h<sub>nom</sub> muss nach der Adjustierung eingehalten sein.
- 2. Für weitere Details zum Eindrehen siehe steintypbezogene Anhänge C2-C24

## **TOGE Betonschraube TSM high performance**


## Verwendungszweck

Montageanleitung - Adjustierung

**Anhang B6** 



## Mögliche Montageoptionen, die Abstände cj sind einzuhalten



c<sub>min</sub> = minimaler Randabstand zum freien Rand

 $c_{j\,\parallel}$  = Abstand zu Stoßfugen für Tragfähigkeit des Schraubankers ohne Fugeneinfluss  $c_{j\,\perp}$  = Abstand zu Lagerfugen für Tragfähigkeit des Schraubankers ohne Fugeneinfluss

 $s_{min \parallel}$  = Minimaler Achsabstand parallel zur Lagerfuge  $s_{min \perp}$  = Minimaler Achsabstand senkrecht zur Lagerfuge

c<sub>cr</sub> = Randabstand zur Übertragung des charakteristischen Widerstandes des Schraubankers = 1,5 h<sub>nom</sub>

 $s_{cr\,II}$  = Charakteristischer Achsabstand parallel zur Lagerfuge = 3,0  $h_{nom}$  = Charakteristischer Achsabstand senkrecht zur Lagerfuge = 3,0  $h_{nom}$ 

 $I_{unit}$  = Steinlänge  $h_{unit}$  = Steinhöhe

 $lpha_{g,N}$  (s<sub>min II</sub>) = Gruppenfaktor bei Zuglast bei minimalen Achsabstand parallel zur Lagerfuge  $lpha_{g,N}$  (s<sub>min I</sub>) = Gruppenfaktor bei Zuglast bei minimalen Achsabstand senkrecht zur Lagerfuge  $lpha_{g,V \, II}$  = Gruppenfaktor bei Querlast parallel zur Kante ( $lpha_{g,V \, II}$  =  $lpha_{g,V \, II}$  (s<sub>min II</sub>) =  $lpha_{g,V \, II}$  (s<sub>min II</sub>)

$$\begin{split} N_{Rk} &= N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c} \\ V_{Rk,\,\perp} &= V_{Rk,,b\,\perp} = V_{Rk,c\,\perp}; \ V_{Rk,\,\perp} = V_{Rk,,b\,\perp} = V_{Rk,c\,\perp} \end{split}$$

Für  $s \ge s_{cr}$ :  $\alpha_{g,N}(s_{min \parallel}) = \alpha_{g,N}(s_{min \perp}) = \alpha_{g,V \parallel} = \alpha_{g,V \perp} = 2$ 

 $\begin{aligned} & \text{F\"{u}r s}_{\text{min}} \leq \text{s} \leq \text{s}_{\text{cr}} : \alpha_{\text{g},\text{N}} \left( \text{s}_{\text{min} \, \text{I}} \right); \ \alpha_{\text{g},\text{N}} \left( \text{s}_{\text{min} \, \text{L}} \right); \ \alpha_{\text{g},\text{V} \, \text{I}}; \ \alpha_{\text{g},\text{V} \, \text{L}} \end{aligned} \\ & \text{entsprechend Montagekennwerte der Steine im Anhang C} \\ & \text{N}^{\text{g}}_{\text{Rk}} \left( \text{s}_{\text{min} \, \text{II}} \right) = \alpha_{\text{g},\text{N}} \left( \text{s}_{\text{min} \, \text{II}} \right) \times \text{N}_{\text{Rk}} \end{aligned} \\ & \text{(Gruppe von 2 Ankern bei minimalen Achsabstand parallel zur Lagerfuge)} \\ & \text{N}^{\text{g}}_{\text{Rk}} \left( \text{s}_{\text{min} \, \text{L}} \right) = \alpha_{\text{g},\text{N}} \left( \text{s}_{\text{min} \, \text{L}} \right) \times \text{N}_{\text{Rk}} \end{aligned} \\ & \text{(Gruppe von 2 Ankern bei minimalen Achsabstand senkrecht zur Lagerfuge)} \end{aligned}$ 

 $\begin{array}{ll} V^g_{Rk\,\parallel} = \alpha_{g,V\,\parallel}\,x\,\,V_{Rk,\,\parallel}\,;\, V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}\,x\,\,V_{Rk,\,\perp} & (Gruppe\ von\ 2\ Ankern) \\ N^g_{Rk} = \alpha_{g,N}\,(s_{min\,\parallel})\,x\,\,\alpha_{g,N}\,(s_{min\,\perp})\,x\,\,N_{Rk} & (Gruppe\ von\ 4\ Ankern) \\ V^g_{Rk\,\parallel} = \alpha_{g,V\,\parallel}^2\,x\,\,V_{Rk,\,\parallel}\,;\, V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}^2\,x\,\,V_{Rk,\,\perp} & (Gruppe\ von\ 4\ Ankern) \end{array}$ 

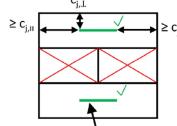
#### **TOGE Betonschraube TSM high performance**

#### Verwendungszweck

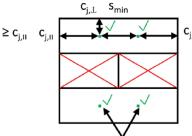
Mögliche Montagepositionen

**Anhang B7** 

7086690 25 8 06 04-173/24



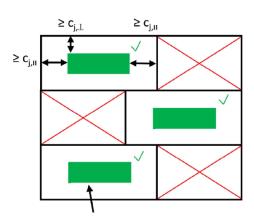

## Installationshinweise für die Montage in der Laibungsseite


## Positionierung in Laibung in Steintypen KS NF, MZ NF, VBL 2DF

#### Einzeldübel

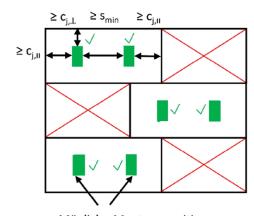






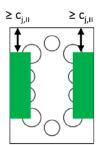



Mögliche Montageposition

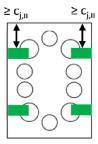

## Positionierung in Laibung in Steintypen KSL 3DF

Einzeldübel




Mögliche Montageposition

2er Gruppe




Mögliche Montageposition

Draufsicht



Draufsicht



#### **TOGE Betonschraube TSM high performance**

#### Leistungsmerkmale

Mögliche Montagepositionen in der Laibungsseite

**Anhang B8** 



# Tabelle 5: Charakteristischer Widerstand gegen Stahlversagen

| TSM Schraubengröße          |                                |                  | 5          |                   | 6                 | 8                 | 3                 | 1          | 0                 |
|-----------------------------|--------------------------------|------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|
| Nominelle Einschraubtiefe   |                                | h <sub>nom</sub> | $h_{nom1}$ | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | $h_{nom1}$ | h <sub>nom2</sub> |
| Norminelle Ellischladbliele |                                | [mm]             | 35         | 35                | 55                | 45                | 65                | 55         | 75                |
| Stahlversagen für Zug- und  | Querbe                         | eanspr           | uchung     |                   |                   |                   |                   |            |                   |
| Charakteristischer          | N <sub>-</sub> .               | [kN]             | 0 7        | 8,7 14,0 27,      |                   | ′ ∩               | 15                | 0          |                   |
| Widerstand bei Zuglast      | N <sub>Rk,s</sub>              | [KIN]            | 0,7        |                   |                   | 27,0              |                   | 45,0       |                   |
| Teilsicherheitsbeiwert      | γ <sub>Ms,N</sub> 1)           | [-]              |            |                   |                   | 1,5               |                   |            |                   |
| Charakteristischer          | $V_{Rk,s}$                     | [kN]             | 4,4        | _                 | 7,0               | 13,5              | 17,0              | 22,5       | 34,0              |
| Widerstand bei Querlast     | V Rk,s                         | [KIN]            | 4,4        | ′                 | ,0                | 13,3              | 17,0              | 22,3       | 34,0              |
| Teilsicherheitsbeiwert      | γ <sub>Ms,V</sub> 1)           | [-]              | 1,25       |                   |                   |                   |                   |            |                   |
| Charakteristisches          | N40                            | [Nm]             | F 2        | 1                 | 0.0               | 26                | . 0               | F.6        | 0                 |
| Biegemoment                 | M <sup>0</sup> <sub>Rk,s</sub> | [IMM]            | 5,3        | 1                 | 0,9               | 26                | ),U               | 56         | ,0                |

<sup>1)</sup> Falls keine abweichenden nationalen Regelungen existieren

| TOGE Betonschraube TSM high performance                             |           |
|---------------------------------------------------------------------|-----------|
| Leistungsmerkmale Charakteristischer Widerstand gegen Stahlversagen | Anhang C1 |



## Tabelle 6: Materialkennwerte Kalksandvollstein KS



| Kalksandvollstein KS nach DIN EN 771-2:2015-11 |                                 |                                        |                    |                                                |  |  |  |  |  |
|------------------------------------------------|---------------------------------|----------------------------------------|--------------------|------------------------------------------------|--|--|--|--|--|
| Format                                         | Abmessungen<br>[mm]             | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | minimale<br>Wanddicke<br>h <sub>min</sub> [mm] |  |  |  |  |  |
| KS<br>20 - 2,0 - NF                            | L: ≥ 240<br>B: ≥ 115<br>H: ≥ 71 | ≥ 26,0                                 | ≥ 2,0              | 240                                            |  |  |  |  |  |

# Tabelle 7: Montagekennwerte Kalksandvollstein KS

| Nutzungskategorie (Installation) |                                                         |                                                                                                                                                                                      |                                                       | lutzungskategorie (Installation) trocken oder nass    |                                                       |                                                       |                                                       |                                                       |  |  |  |  |
|----------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
|                                  |                                                         | 5                                                                                                                                                                                    | (                                                     | 5                                                     |                                                       | 3                                                     | 1                                                     | 10                                                    |  |  |  |  |
| Nominelle Einschraubtiefe        |                                                         | h <sub>nom1</sub>                                                                                                                                                                    | h <sub>nom1</sub>                                     | h <sub>nom2</sub>                                     | h <sub>nom1</sub>                                     | h <sub>nom2</sub>                                     | h <sub>nom1</sub>                                     | h <sub>nom2</sub>                                     |  |  |  |  |
| d <sub>0</sub>                   | [mm]                                                    | 5                                                                                                                                                                                    |                                                       |                                                       | 8                                                     |                                                       | 1                                                     | 0                                                     |  |  |  |  |
| d <sub>cut</sub> ≤               | [mm]                                                    | n] 5,40 6,40 8,45                                                                                                                                                                    |                                                       | ,40 6,40                                              |                                                       | 45                                                    | 10,                                                   | 45                                                    |  |  |  |  |
| h <sub>0</sub> ≥                 | [mm]                                                    | 55                                                                                                                                                                                   | 55                                                    | 75                                                    | 65                                                    | 85                                                    | 75                                                    | 95                                                    |  |  |  |  |
| d <sub>f</sub> ≤                 | [mm]                                                    | 7                                                                                                                                                                                    | 8                                                     |                                                       | 8 12                                                  |                                                       | 1                                                     | 4                                                     |  |  |  |  |
| max. T <sub>inst</sub>           | [Nm]                                                    | 6                                                                                                                                                                                    | 1                                                     | 1                                                     | 2                                                     | 7                                                     | 37                                                    | 46                                                    |  |  |  |  |
| T <sub>imp,max</sub>             | [Nm]                                                    | Max.                                                                                                                                                                                 |                                                       | ehmome                                                | ent gemä                                              |                                                       |                                                       | ngabe                                                 |  |  |  |  |
|                                  | $d_0$ $d_{cut} \le$ $h_0 \ge$ $d_f \le$ $max. T_{inst}$ | $\begin{array}{c} & & \\ & h_{nom} \\ \\ [mm] \\ \\ d_0 & [mm] \\ \\ d_{cut} \leq & [mm] \\ \\ h_0 \geq & [mm] \\ \\ d_f \leq & [mm] \\ \\ \\ max. \ T_{inst} & [Nm] \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |

## Tabelle 8: Min. Rand- und Achsabstand, Gruppenfaktoren

| TSM Schraubengröße  |                                           |                  | 5                 |                   | 6                 | W                 | 3                 | 1                 | 0                 |
|---------------------|-------------------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Nominelle Einschrau | htiofo                                    | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nominelle Emschau   | bliele                                    | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| min. Randabstand    | C <sub>min</sub>                          | [mm]             | nm] 80            |                   |                   |                   |                   |                   |                   |
| min. Achsabstand    | S <sub>min,II</sub> = S <sub>min, ⊥</sub> | [mm]             |                   |                   |                   | 80                |                   |                   |                   |
|                     | α <sub>g,N</sub> (s <sub>min II</sub> )   | [-]              | 1,65              | 1,70              | 1,05              | 1,15              | 1,15              | 1,05              | 1,65              |
| Coupponfoldonon     | $\alpha_{g,N}$ ( $s_{min \perp}$ )        | [-]              | 1,55              | 1,70              | 1,05              | 1,15              | 1,20              | 1,10              | 1,20              |
| Gruppenfaktoren     | $lpha_{g,V,II}$                           | [-]              | 1,55              | 1,55              | 1,35              | 1,15              | 1,05              | 1,05              | 1,35              |
|                     | $\alpha_{g,V,\perp}$                      | [-]              |                   |                   |                   | 1,30              |                   |                   |                   |

| TOGE Betonschraube TSM high performance                                                                                        |           |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|
| Leistungsmerkmale Kalksandvollstein KS – Materialkennwerte, Montagekennwerte, minimaler Achs- und Randabstand, Gruppenfaktoren | Anhang C2 |



# Tabelle 9: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

|                    |                                                    |                                          | _    | _                       | _  |    |  |  |
|--------------------|----------------------------------------------------|------------------------------------------|------|-------------------------|----|----|--|--|
| TSM Schraubengröße |                                                    |                                          | 5    | 6                       | 8  | 10 |  |  |
| Abstand zu Eugen   | C <sub>j ⊥</sub>                                   | $\frac{c_{j\perp}}{c_{j\parallel}}$ [mm] |      | ≥35                     |    |    |  |  |
| Abstand zu Fugen   | C <sub>j II</sub>                                  |                                          |      | ≥8                      | 80 |    |  |  |
| Abminderungsfaktor | $\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$ | [-]                                      | 1 (\ | 1 (volle Tragfähigkeit) |    |    |  |  |
| Abstond Fires      | C <sub>j ⊥</sub>                                   | [mm]                                     |      |                         |    |    |  |  |
| Abstand zu Fugen   | C <sub>j II</sub>                                  |                                          | <80  |                         |    |    |  |  |
| Abminderungsfaktor | $\alpha_{j, N}$                                    | [-]                                      |      | hraube<br>erwende       |    |    |  |  |

TOGE Betonschraube TSM high performance

Leistungsmerkmale

Kalksandvollstein KS – Montagekennwerte bei Montage in Fugennähe

**Anhang C3** 



# Tabelle 10: Charakteristische Tragfähigkeit

| Nutzungskategorie (Installation)             |                 |                  | trocken oder nass |                   |                   |                   |                   |                   |                   |
|----------------------------------------------|-----------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TSM Schraubengröße                           |                 | 5                |                   | 6                 | 8                 | 3                 | 1                 | 0                 |                   |
| Nominelle Einschraubtiefe                    |                 | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nominene Emschraubtiele                      |                 | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| Druckfestigkeit f <sub>mean</sub>            | [N/n            | nm²]             |                   |                   |                   | ≥ 26,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub> | [kN]             | 3,5               | 3,1               | 4,9               | 4,1               | 4,3               | 3,8               | 4,5               |
| Charakteristischer                           | $V_{Rk,II}$     | [kN]             | 5,3               | 5,3               | 8,6               | 6,3               | 11,3              | 7,7               | 13,0              |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$  | [kN]             |                   |                   |                   | 3,3               |                   |                   |                   |
| Druckfestigkeit f <sub>mean</sub>            | [N/n            | nm²]             |                   |                   |                   | ≥ 30,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub> | [kN]             | 3,7               | 3,4               | 5,3               | 4,4               | 4,6               | 4,0               | 4,8               |
| Charakteristischer                           | $V_{Rk,II}$     | [kN]             | 5,7               | 5,7               | 9,3               | 6,7               | 12,1              | 8,3               | 13,9              |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$  | [kN]             | 3,5               |                   |                   |                   |                   |                   |                   |
| Druckfestigkeit f <sub>mean</sub>            | [N/n            | nm²]             | n²] ≥ 35,0        |                   |                   |                   |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub> | [kN]             | 4,0               | 3,7               | 5,7               | 4,8               | 5,0               | 4,4               | 5,2               |
| Charakteristischer                           | $V_{Rk,II}$     | [kN]             | 6,1               | 6,1               | 10,0              | 7,3               | 13,1              | 8,9               | 15,0              |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$  | [kN]             |                   |                   |                   | 3,8               |                   |                   |                   |
| Druckfestigkeit f <sub>mean</sub>            | [N/mm²]         |                  |                   |                   |                   | ≥ 38,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub> | [kN]             | 4,2               | 3,8               | 6,0               | 5,0               | 5,2               | 4,5               | 5,4               |
| Charakteristischer                           | $V_{Rk,II}$     | [kN]             | 6,4               | 6,4               | 10,4              | 7,6               | 13,7              | 9,3               | 15,7              |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$  | [kN]             |                   |                   |                   | 4,0               |                   |                   |                   |

| TOGE Betonschraube | TSM higi | n performance |
|--------------------|----------|---------------|
|--------------------|----------|---------------|

# Leistungsmerkmale

Kalksandvollstein KS – Charakteristische Tragfähigkeit

Anhang C4



## Tabelle 11: Verschiebungen

| Nutzungskategorie (Installat            | Nutzungskategorie (Installation) |                  |                   |                   | trocken oder nass |                   |                   |                   |                   |  |  |
|-----------------------------------------|----------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| TSM Schraubengröße                      |                                  |                  | 5                 | 6                 |                   | 8                 |                   | 10                |                   |  |  |
| Nominelle Einschraubtiefe               |                                  | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |  |  |
| Nominelle Emschraubtiele                | _                                | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75                |  |  |
| Zuglast                                 | F <sub>N</sub>                   | [kN]             | 1,00              | 0,89              | 1,40              | 1,17              | 1,23              | 1,09              | 1,29              |  |  |
| Managhialanna in Zumialatuna            | $\delta_{\text{N0}}$             | [mm]             | 0,02              | 0,04              | 0,04              | 0,04              | 0,03              | 0,02              | 0,01              |  |  |
| Verschiebung in Zugrichtung             | $\delta_{N\infty}$               | [mm]             | 0,03              | 0,08              | 0,08              | 0,07              | 0,05              | 0,04              | 0,03              |  |  |
| Querlast parallel zum Rand              | F <sub>V</sub> , <sub>II</sub>   | [kN]             | 1,51              | 1,51              | 2,46              | 1,80              | 3,23              | 2,20              | 3,71              |  |  |
| Verschiebung der Querlast               | δ <sub>V0,II</sub>               | [mm]             | 0,93              | 0,09              | 1,51              | 0,52              | 1,00              | 0,22              | 0,98              |  |  |
| parallel zum Rand                       | $\delta_{V\varpi,II}$            | [mm]             | 1,40              | 0,13              | 2,26              | 0,78              | 1,50              | 0,33              | 1,46              |  |  |
| Querlast senkrecht zum Rand             | F <sub>V,⊥</sub>                 | [kN]             |                   |                   |                   | 0,94              |                   |                   |                   |  |  |
| Verschiebung der Querlast               | $\delta_{V0,\perp}$              | [mm]             |                   | 0,22 0,03         |                   |                   |                   | 0,02              |                   |  |  |
| l , , , , , , , , , , , , , , , , , , , | $\delta_{V\varpi,\perp}$         | [mm]             |                   | 0,33              |                   |                   | 0,05              |                   | 0,03              |  |  |

## Tabelle 12: Leistungen unter Brandbeanspruchung für Ankergruppen

| TSM Schraubengröße                                                           | TSM Schraubengröße |                          |                                |                                | 5                              | 8                       | 3                              | 10                |                                |  |
|------------------------------------------------------------------------------|--------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------|--------------------------------|-------------------|--------------------------------|--|
| Naminalla Einschraub                                                         | otiofo             | $h_{nom}$                | h <sub>nom1</sub>              | h <sub>nom1</sub>              | h <sub>nom2</sub>              | h <sub>nom1</sub>       | h <sub>nom2</sub>              | h <sub>nom1</sub> | h <sub>nom2</sub>              |  |
| Nominelle Einschraubtiefe                                                    |                    | [mm]                     | 35                             | 35                             | 55                             | 45                      | 65                             | 55                | 75                             |  |
| Charakteristischer Widerstand für Ausbruchsversagen unter Brandbeanspruchung |                    |                          |                                |                                |                                |                         |                                |                   |                                |  |
|                                                                              |                    | R30-R90                  | 0,09 ·                         | 0,09 ·                         | 0,15 ·                         | 0,12 ·                  | 0,18 ·                         | 0,15 ·            | 0,24 ·                         |  |
| $N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$                                          | [kN]               | N30-N30                  | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$          | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$    | Ng <sub>Rk,b</sub>             |  |
| N <sup>g</sup> <sub>Rk,p,fi</sub>                                            |                    | R120                     | 0,08 ·                         | 0,08 ·                         | 0,12 ·                         | 0,10 ·                  | 0,15 ·                         | 0,12 ·            | 0,19 ·                         |  |
|                                                                              |                    | N120                     | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$          | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$    | N <sup>g</sup> <sub>Rk,b</sub> |  |
| Minimaler Achs-                                                              | [mm]               | $C_{\min,fi} = C_{j,fi}$ |                                |                                |                                | 2 x h <sub>nom</sub> 1) |                                |                   |                                |  |
| und Randabstand                                                              | [111111]           | S <sub>min,fi</sub>      |                                | 107                            |                                |                         |                                |                   |                                |  |

<sup>1)</sup> Es sind mindestens die Abstände gemäß Tabelle 13 einzuhalten

| TOGE Betonschraube TSM high performance                                                                                 |           |
|-------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Leistungsmerkmale</b> Kalksandvollstein KS – Verschiebungen und Leistungen unter Brandbeanspruchung bei Ankergruppen | Anhang C5 |



| TSM Schraubengröße  Nominelle Einschraubtier  Stahlversagen für Zug-  R3  R6  R9  R11  R3  Charakteristischer Widerstand R9  R12  R3 | und Que 0 N 0 N 0 N 0 V 0 V                          | erlast  Rk,s,fi30  Rk,s,fi60  Rk,s,fi90  Rk,s,fi120  Rk,s,fi30  Rk,s,fi60 | h <sub>nom</sub> [mm]  [kN] [kN] [kN] | 5<br>h <sub>nom1</sub><br>35<br>1,3<br>1,0<br>0,6 | h <sub>nom1</sub> 35  1,3 1,0 | h <sub>nom2</sub> 55 1,3 1,0 | 45<br>1,3 | h <sub>nom2</sub> 65 | h <sub>nom1</sub> 55 | 0<br>h <sub>nom2</sub><br>75<br>3,4 |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|-------------------------------|------------------------------|-----------|----------------------|----------------------|-------------------------------------|--|
| Stahlversagen für Zug-  R3  R6  R9  R12  Charakteristischer Widerstand  R9  R12                                                      | und Que 0 N 0 N 0 N 0 V 0 V                          | Rk,s,fi30<br>Rk,s,fi60<br>Rk,s,fi90<br>Rk,s,fi120<br>Rk,s,fi30            | [kN] [kN] [kN]                        | 1,3<br>1,0                                        | 1,3<br>1,0                    | 55<br>1,3                    | 1,3       | 1,3                  | 55                   | 75                                  |  |
| Stahlversagen für Zug-  R3  R6  R9  R12  Charakteristischer Widerstand  R9  R12                                                      | und Que 0 N 0 N 0 N 0 V 0 V                          | Rk,s,fi30<br>Rk,s,fi60<br>Rk,s,fi90<br>Rk,s,fi120<br>Rk,s,fi30            | [kN] [kN] [kN]                        | 1,3<br>1,0                                        | 1,3<br>1,0                    | 1,3                          | 1,3       | 1,3                  |                      |                                     |  |
| R3 R6 R9 R12 R3 Charakteristischer Widerstand R9 R12                                                                                 | 0 N<br>0 N<br>0 N<br>20 N <sub>1</sub><br>0 V<br>0 V | Rk,s,fi30<br>Rk,s,fi60<br>Rk,s,fi90<br>Rk,s,fi120<br>Rk,s,fi30            | [kN]<br>[kN]<br>[kN]                  | 1,0                                               | 1,0                           |                              |           |                      | 3,4                  | 3,4                                 |  |
| R6 R9 R12 R3 Charakteristischer Widerstand R9 R12                                                                                    | 0 N<br>0 N<br>20 N <sub>1</sub><br>0 V<br>0 V        | Rk,s,fi60<br>Rk,s,fi90<br>Rk,s,fi120<br>Rk,s,fi30                         | [kN]<br>[kN]<br>[kN]                  | 1,0                                               | 1,0                           |                              |           |                      | 3,4                  | 3,4                                 |  |
| R9 R12 R3 Charakteristischer Widerstand R9 R12                                                                                       | 0 N<br>20 N <sub>1</sub><br>0 V<br>0 V               | Rk,s,fi90<br>Rk,s,fi120<br>Rk,s,fi30                                      | [kN]                                  |                                                   |                               | 1.0                          | 1.0       |                      |                      | -                                   |  |
| R12 R3 Charakteristischer Widerstand R9 R12                                                                                          | 20 N <sub>1</sub><br>0 V<br>0 V<br>0 V               | Rk,s,fi120<br>Rk,s,fi30                                                   | [kN]                                  | 0,6                                               |                               | _,_                          | 1,0       | 1,0                  | 2,7                  | 2,7                                 |  |
| Charakteristischer R6 Widerstand R9 R12                                                                                              | 0 V<br>0 V<br>0 V                                    | Rk,s,fi30                                                                 |                                       |                                                   | 0,6                           | 0,6                          | 0,6       | 0,6                  | 2,0                  | 2,0                                 |  |
| Charakteristischer R6 Widerstand R9 R12                                                                                              | 0 V                                                  |                                                                           |                                       | 0,5                                               | 0,5                           | 0,5                          | 0,5       | 0,5                  | 1,7                  | 1,7                                 |  |
| Widerstand R9                                                                                                                        | 0 V                                                  | DI 6:00                                                                   | [kN]                                  | 1,3                                               | 1,3                           | 1,3                          | 1,3       | 1,3                  | 3,4                  | 3,4                                 |  |
| R12                                                                                                                                  |                                                      | KK,S,TIOU                                                                 | [kN]                                  | 1,0                                               | 1,0                           | 1,0                          | 1,0       | 1,0                  | 2,7                  | 2,7                                 |  |
|                                                                                                                                      | 20   V <sub>f</sub>                                  | Rk,s,fi90                                                                 | [kN]                                  | 0,6                                               | 0,6                           | 0,6                          | 0,6       | 0,6                  | 2,0                  | 2,0                                 |  |
| R3                                                                                                                                   |                                                      | Rk,s,fi120                                                                | [kN]                                  | 0,5                                               | 0,5                           | 0,5                          | 0,5       | 0,5                  | 1,7                  | 1,7                                 |  |
|                                                                                                                                      | 0 M                                                  | <sup>0</sup> Rk,s,fi30                                                    | [Nm]                                  | 0,8                                               | 1,1                           | 1,1                          | 1,5       | 1,5                  | 4,9                  | 4,9                                 |  |
| R6                                                                                                                                   | 0 M                                                  | <sup>0</sup> Rk,s,fi60                                                    | [Nm]                                  | 0,5                                               | 0,8                           | 0,8                          | 1,1       | 1,1                  | 4,0                  | 4,0                                 |  |
| R9                                                                                                                                   | 0 M                                                  | <sup>0</sup> Rk,s,fi90                                                    | [Nm]                                  | 0,3                                               | 0,5                           | 0,5                          | 0,8       | 0,8                  | 3,0                  | 3,0                                 |  |
| R12                                                                                                                                  | $20$ $M^{0}$                                         | Rk,s,fi120                                                                | [Nm]                                  | 0,2                                               | 0,4                           | 0,4                          | 0,6       | 0,6                  | 2,5                  | 2,5                                 |  |
| Herausziehen                                                                                                                         |                                                      |                                                                           |                                       |                                                   |                               |                              |           |                      |                      |                                     |  |
| R3                                                                                                                                   | 0 N                                                  | Rk,p,fi30                                                                 | [kN]                                  | 1,1                                               | 1,3                           | 1,3                          | 1,3       | 1,3                  | 3,4                  | 3,4                                 |  |
| Charakteristischer R6                                                                                                                | 0 N                                                  | Rk,p,fi60                                                                 | [kN]                                  | 0,8                                               | 1,0                           | 1,0                          | 1,0       | 1,0                  | 2,7                  | 2,7                                 |  |
| Widerstand R9                                                                                                                        |                                                      | Rk,p,fi90                                                                 | [kN]                                  | 0,5                                               | 0,6                           | 0,6                          | 0,6       | 0,6                  | 2,0                  | 2,0                                 |  |
| R12                                                                                                                                  | 20 N <sub>i</sub>                                    | Rk,p,fi120                                                                | [kN]                                  | 0,3                                               | 0,5                           | 0,5                          | 0,5       | 0,5                  | 1,7                  | 1,7                                 |  |
| Ausbruchsversagen                                                                                                                    |                                                      |                                                                           |                                       |                                                   |                               |                              |           |                      |                      |                                     |  |
| R3                                                                                                                                   | 0 N                                                  | Rk,b,fi30                                                                 | [kN]                                  | 1,1                                               | 1,3                           | 1,3                          | 1,3       | 1,3                  | 3,4                  | 3,4                                 |  |
| Charakteristischer R6                                                                                                                | 0 N                                                  | Rk,b,fi60                                                                 | [kN]                                  | 0,8                                               | 1,0                           | 1,0                          | 1,0       | 1,0                  | 2,7                  | 2,7                                 |  |
| Widerstand R9                                                                                                                        | 0 N                                                  | Rk,b,fi90                                                                 | [kN]                                  | 0,5                                               | 0,6                           | 0,6                          | 0,6       | 0,6                  | 2,0                  | 2,0                                 |  |
| R12                                                                                                                                  | 20 N                                                 | Rk,b,fi120                                                                | [kN]                                  | 0,3                                               | 0,5                           | 0,5                          | 0,5       | 0,5                  | 1,7                  | 1,7                                 |  |
| Randabstand                                                                                                                          |                                                      |                                                                           |                                       |                                                   |                               |                              |           |                      |                      |                                     |  |
|                                                                                                                                      |                                                      | c <sub>min,fi</sub> =<br>Cj,fi,II                                         | [mm]                                  |                                                   |                               |                              | 120       |                      |                      |                                     |  |
|                                                                                                                                      |                                                      | C <sub>j,fi,⊥</sub>                                                       | [mm]                                  |                                                   |                               |                              | 35        |                      |                      |                                     |  |
| Achsabstand                                                                                                                          |                                                      |                                                                           |                                       |                                                   |                               |                              |           |                      |                      |                                     |  |
| R30 - R120                                                                                                                           | R30 - R120 S <sub>cr,fi</sub>                        |                                                                           |                                       |                                                   |                               | 4 x h <sub>nom</sub>         |           |                      |                      |                                     |  |

| TOGE Betonschraube TSM high performance                                       |           |
|-------------------------------------------------------------------------------|-----------|
| Leistungsmerkmale<br>Kalksandvollstein KS – Leistung unter Brandbeanspruchung | Anhang C6 |



## Tabelle 14: Materialkennwerte Silka XL Kalksandvollstein KS 12DF



| Silka XL Kalksandvollstein KS 12DF nach DIN EN 771-2:2015-11 |                                  |                                        |                    |                                                |  |  |  |  |  |  |
|--------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------|------------------------------------------------|--|--|--|--|--|--|
| Format                                                       | Abmessungen<br>[mm]              | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | minimale<br>Wanddicke<br>h <sub>min</sub> [mm] |  |  |  |  |  |  |
| KS - R (P)<br>20 - 2,0 - 12DF                                | L: ≥ 498<br>B: ≥ 175<br>H: ≥ 248 | ≥ 14,0                                 | ≥ 1,8              | 175                                            |  |  |  |  |  |  |

# Tabelle 15: Montagekennwerte Silka XL Kalksandvollstein KS 12DF

| Nutzungskategorie (Install             |                           | trocken oder nass |                   |                   |                   |                         |                   |                   |                   |  |
|----------------------------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|--|
| TSM Schraubengröße                     |                           |                   | 5                 | 6                 |                   | 8                       |                   | 10                |                   |  |
| Nominelle Einschraubtiefe              |                           | h <sub>nom</sub>  | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub>       | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |  |
| Nonlinelle Emschladbliele              |                           | [mm]              | 35                | 35                | 55                | 45                      | 65                | 55                | 75                |  |
| Nomineller<br>Bohrlochdurchmesser      | d <sub>0</sub>            | [mm]              | 5                 |                   | 6                 |                         | 8                 |                   | 0                 |  |
| Bohrerschneiden-<br>durchmesser        | d <sub>cut</sub> ≤        | [mm]              | 5,40              | 6,                | 6,40 8,45         |                         | 8,45              |                   | 10,45             |  |
| Bohrlochtiefe                          | h₀ ≥                      | [mm]              | 55                | 55                | 75                | 65                      | 85                | 75                | 95                |  |
| Durchgangsloch im<br>Anbauteil         | d <sub>f</sub> ≤          | [mm]              | 7                 |                   | 8                 | 1                       | 12                |                   | 4                 |  |
| Drehmoment bei<br>Handmontage          | max.<br>T <sub>inst</sub> | [Nm]              | 6                 | 1                 | 10                | 25                      |                   | 45                |                   |  |
| Drehmoment bei<br>Drehschraubermontage | T <sub>imp,max</sub>      | [Nm]              | 8                 | 10                |                   | Leistung nicht bewertet |                   |                   |                   |  |
|                                        |                           |                   | Max.              | Nenndr            | ehmome            | ent gemä                | ß der He          | rstellerar        | gabe              |  |
| Tangentialschlagschrauber              | $T_{imp,max}$             | [Nm]              | Leistung<br>bewe  | _                 | 185               |                         | 30                | 00                |                   |  |

| TOGE Betonschraube TSM high performance                 |           |
|---------------------------------------------------------|-----------|
| Leistungsmerkmale                                       | Anhang C7 |
| Silka XL Kalksandvollstein KS 12DF – Materialkennwerte, |           |
| Montagekennwerte                                        |           |



# Tabelle 16: Min. Rand- und Achsabstand, Gruppenfaktoren

| TSM Schraubengrö          | 5                                         | 5 6 8            |            |                   | 3                 | 10                |                   |                   |                   |
|---------------------------|-------------------------------------------|------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Nominelle Einschraubtiefe |                                           | h <sub>nom</sub> | $h_{nom1}$ | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nominelle Emschrau        | ninelle Einschraubtiele                   |                  | 35         | 35                | 55                | 45                | 65                | 55                | 75                |
| min. Randabstand          | C <sub>min</sub>                          | [mm]             |            |                   |                   | 80                |                   |                   |                   |
| min. Achsabstand          | S <sub>min,II</sub> = S <sub>min, ⊥</sub> | [mm]             | 80         |                   |                   |                   |                   |                   |                   |
|                           | α <sub>g,N</sub> (S <sub>min II</sub> )   | [-]              | 1,65       | 1,65              | 1,75              | 1,40              | 1,40              | 1,60              | 1,30              |
| Crupponfaktoron           | α <sub>g,N</sub> (s <sub>min ⊥</sub> )    | [-]              | 1,30       | 1,30              | 1,80              | 1,25              | 1,25              | 1,40              | 1,25              |
| Gruppenfaktoren           | $\alpha_{g,V,II}$                         | [-]              | 2,00       | 2,00              | 1,65              | 2,00              | 1,65              | 1,40              | 1,40              |
|                           | $\alpha_{g,V,\perp}$                      | [-]              | 2,00       | 2,00              | 1,45              | 2,00              | 1,10              | 1,40              | 1,05              |

## Tabelle 17: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

| TSM Schraubengröße | TSM Schraubengröße                 |      |                                         |    |    | 10   |  |
|--------------------|------------------------------------|------|-----------------------------------------|----|----|------|--|
| Abstand zu Eugen   | Cj⊥                                | [mm] | ≥40                                     |    |    |      |  |
| Abstand zu Fugen   | C <sub>j II</sub>                  | [mm] | ≥80                                     |    |    |      |  |
| Abminderungsfaktor | α <sub>j, N</sub>                  | [-]  | 1 (volle Tragfähigkeit)                 |    |    | eit) |  |
|                    | $\alpha_{j, VII} = \alpha_{j, VL}$ | ſ1   | .10                                     |    |    |      |  |
| Abstand zu Fugen   | Cj⊥                                | [mm] | <40                                     |    |    |      |  |
| Abstanu zu Fugen   | C <sub>j II</sub>                  |      |                                         | <8 | 30 |      |  |
| Abminderungsfaktor | α <sub>j, N</sub>                  | [-]  | Schraube darf nicht<br>verwendet werden |    |    |      |  |

**TOGE Betonschraube TSM high performance** 

Leistungsmerkmale

Silka XL Kalksandvollstein KS 12DF – minimaler Achs- und Randabstand, Gruppenfaktoren, Montagekennwerte bei der Montage in Fugennähe **Anhang C8** 



# Tabelle 18: Charakteristische Tragfähigkeit

| Nutzungskategorie (Installa                  | trocken oder nass         |                  |                   |                   |                   |                   |                   |                   |                   |  |
|----------------------------------------------|---------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
| TSM Schraubengröße                           |                           |                  | 5                 | 6                 |                   | 8                 | 8                 |                   | 10                |  |
| Nominelle Einschraubtiefe                    |                           | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |  |
| Norminene Emschlaubtiele                     | Norminene Linschladbliefe |                  | 35                | 35                | 55                | 45                | 65                | 55                | 75                |  |
| Druckfestigkeit f <sub>mean</sub>            | [N/m                      | nm²]             |                   |                   |                   | ≥ 14,0            |                   |                   |                   |  |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>           | [kN]             | 2,3               | 2,3               | 4,1               | 6,3               | 6,3               | 6,4               | 6,7               |  |
| Charakteristischer                           | $V_{Rk,II}$               | [kN]             | 3,2               | 3,2               | 9,7               | 3,2               | 9,7               | 17,4              | 17,4              |  |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$            | [kN]             | 3,6               | 3,6               | 8,3               | 3,6               | 7,5               | 5,9               | 9,8               |  |
| Druckfestigkeit f <sub>mean</sub>            | [N/m                      | nm²]             |                   |                   |                   | ≥ 15,0            |                   |                   |                   |  |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>           | [kN]             | 2,4               | 2,4               | 4,3               | 6,5               | 6,5               | 6,6               | 6,9               |  |
| Charakteristischer                           | $V_{Rk,II}$               | [kN]             | 3,3               | 3,3               | 10,1              | 3,3               | 10,1              | 18,0              | 18,0              |  |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$            | [kN]             | 3,7               | 3,7               | 8,6               | 3,7               | 7,8               | 6,1               | 10,1              |  |
| Druckfestigkeit f <sub>mean</sub>            | [N/m                      | nm²]             |                   |                   |                   | ≥ 20,0            |                   |                   |                   |  |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>           | [kN]             | 2,8               | 2,8               | 4,9               | 7,5               | 7,5               | 7,6               | 8,0               |  |
| Charakteristischer                           | $V_{Rk,II}$               | [kN]             | 3,8               | 3,8               | 11,7              | 3,8               | 11,7              | 20,8              | 20,8              |  |
| Widerstand bei Querlast                      | V <sub>Rk,⊥</sub>         | [kN]             | 4,3               | 4,3               | 9,9               | 4,3               | 9,0               | 7,0               | 11,7              |  |

TOGE Betonschraube TSM high performance

Leistungsmerkmale

Silka XL Kalksandvollstein KS 12DF – charakteristische Tragfähigkeit

Anhang C9



## Tabelle 19: Verschiebungen

| Nutzungskategorie (Installa | Nutzungskategorie (Installation) |                  |            |                   | troc              | ken oder          | nass              |                   |                   |
|-----------------------------|----------------------------------|------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TSM Schraubengröße          |                                  |                  | 5          | 6                 |                   | 8                 |                   | 10                |                   |
| Nominelle Einschraubtiefe   |                                  | h <sub>nom</sub> | $h_{nom1}$ | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Norminene Emschraubtiele    |                                  | [mm]             | 35         | 35                | 55                | 45                | 65                | 55                | 75                |
| Zuglast                     | F <sub>N</sub>                   | [kN]             | 0,66       | 0,66              | 1,17              | 1,80              | 1,80              | 1,83              | 1,91              |
| Verschiebung in Zugrichtung | $\delta_{\text{N0}}$             | [mm]             | 0,02       | 0,02              | 0,04              | 0,01              | 0,01              | 0,01              | 0,02              |
| verschiebung in zugnentung  | $\delta_{N\varpi}$               | [mm]             | 0,04       | 0,04              | 0,08              | 0,02              | 0,02              | 0,02              | 0,05              |
| Querlast parallel zum Rand  | F <sub>V,II</sub>                | [kN]             | 0,91       | 0,91              | 2,77              | 0,91              | 2,77              | 4,97              | 4,97              |
| Verschiebung der Querlast   | $\delta_{\text{V0,II}}$          | [mm]             | 0,98       | 0,98              | 3,00              | 0,98              | 3,00              | 2,95              | 2,95              |
| parallel zum Rand           | $\delta_{V^{\infty,II}}$         | [mm]             | 1,47       | 1,47              | 4,50              | 1,47              | 4,50              | 4,42              | 4,42              |
| Querlast senkrecht zum Rand | $F_{V,\!\perp}$                  | [kN]             | 1,03       | 1,03              | 2,37              | 1,03              | 2,14              | 1,69              | 2,80              |
| Verschiebung der Querlast   | $\delta_{V0,\perp}$              | [mm]             | 0,42       | 0,42              | 0,03              | 0,42              | 1,00              | 0,05              | 0,44              |
| senkrecht zum Rand          | $\delta_{V\varpi,\!\perp}$       | [mm]             | 0,63       | 0,63              | 0,05              | 0,63              | 1,50              | 0,08              | 0,66              |

## Tabelle 20: Leistungen unter Brandbeanspruchung für Ankergruppen

| TSM Schraubengröße                                                           | 9                         |                         | 5                 | E                              | 5                              | 3                              | 3                              | 1                 | 0                 |  |  |  |
|------------------------------------------------------------------------------|---------------------------|-------------------------|-------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|-------------------|--|--|--|
| Nominalla Einschrauf                                                         | Nominelle Einschraubtiefe |                         | h <sub>nom1</sub> | h <sub>nom1</sub>              | h <sub>nom2</sub>              | h <sub>nom1</sub>              | h <sub>nom2</sub>              | h <sub>nom1</sub> | h <sub>nom2</sub> |  |  |  |
| Nominene Emschrau                                                            | ollere                    | [mm]                    |                   | 35                             | 55                             | 45                             | 65                             | 55                | 75                |  |  |  |
| Charakteristischer Widerstand für Ausbruchsversagen unter Brandbeanspruchung |                           |                         |                   |                                |                                |                                |                                |                   |                   |  |  |  |
|                                                                              |                           | R30-R90                 | 0,09 ·            | 0,09 ·                         | 0,15 ·                         | 0,12 ·                         | 0,18 ·                         | 0,15 ·            | 0,24 ·            |  |  |  |
| $N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$                                          | <br>  [kN]                | N3U-N3U                 | $N^{g}_{Rk,b}$    | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$    | $N^{g}_{Rk,b}$    |  |  |  |
| N <sup>g</sup> <sub>Rk,p,fi</sub>                                            | [KIN]                     | R120                    | 0,08 ·            | 0,08 ·                         | 0,12 ·                         | 0,10 ·                         | 0,15 ·                         | 0,12 ·            | 0,19 ·            |  |  |  |
|                                                                              |                           | KIZU                    | $N^{g}_{Rk,b}$    | $N^{g}_{Rk,b}$                 | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$    | $N^{g}_{Rk,b}$    |  |  |  |
| Minimaler Achs-                                                              | [mm]                      | $C_{min,fi} = C_{j,fi}$ |                   | 2 x h <sub>nom</sub> 1)        |                                |                                |                                |                   |                   |  |  |  |
| und Randabstand                                                              | [mm]                      | S <sub>min,fi</sub>     |                   | 107                            |                                |                                |                                |                   |                   |  |  |  |

<sup>1)</sup> Es sind mindestens die Abstände gemäß Tabelle 21 einzuhalten

TOGE Betonschraube TSM high performance

Leistungsmerkmale
Silka XL Kalksandvollstein KS 12DF – Verschiebungen und
Leistungen unter Brandbeanspruchung bei Ankergruppen

Anhang C10



| TSM Schraubengrö   | öße      |                                      |                  | 5                 | 6                 | 5                 | 8                    | 3                 | 1                 | 0                |
|--------------------|----------|--------------------------------------|------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|------------------|
|                    |          |                                      | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub>    | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom</sub> |
| Nominelle Einschra | ubtiere  |                                      | [mm]             | 35                | 35                | 55                | 45                   | 65                | 55                | 75               |
| Stahlversagen für  | Zug- und | Querlast                             |                  |                   |                   |                   |                      |                   |                   |                  |
|                    | R30      | N <sub>Rk,s,fi30</sub>               | [kN]             | 1,1               | 1,5               | 1,5               | 1,3                  | 1,3               | 3,4               | 3,4              |
|                    | R60      | N <sub>Rk,s,fi60</sub>               | [kN]             | 0,8               | 1,1               | 1,1               | 1,0                  | 1,0               | 2,7               | 2,7              |
|                    | R90      | N <sub>Rk,s,fi90</sub>               | [kN]             | 0,5               | 0,6               | 0,6               | 0,6                  | 0,6               | 2,0               | 2,0              |
|                    | R120     | N <sub>Rk,s,fi120</sub>              | [kN]             | 0,3               | 0,4               | 0,4               | 0,5                  | 0,5               | 1,7               | 1,7              |
|                    | R30      | V <sub>Rk,s,fi30</sub>               | [kN]             | 1,1               | 1,5               | 1,5               | 1,3                  | 1,3               | 3,4               | 3,4              |
| Charakteristischer | R60      | V <sub>Rk,s,fi60</sub>               | [kN]             | 0,8               | 1,1               | 1,1               | 1,0                  | 1,0               | 2,7               | 2,7              |
| Widerstand         | R90      | V <sub>Rk,s,fi90</sub>               | [kN]             | 0,5               | 0,6               | 0,6               | 0,6                  | 0,6               | 2,0               | 2,0              |
|                    | R120     | V <sub>Rk,s,fi120</sub>              | [kN]             | 0,3               | 0,4               | 0,4               | 0,5                  | 0,5               | 1,7               | 1,7              |
|                    | R30      | M <sup>0</sup> <sub>Rk,s,fi30</sub>  | [Nm]             | 0,8               | 1,2               | 1,2               | 1,5                  | 1,5               | 4,9               | 4,9              |
| F                  | R60      | M <sup>0</sup> <sub>Rk,s,fi60</sub>  | [Nm]             | 0,5               | 0,9               | 0,9               | 1,1                  | 1,1               | 4,0               | 4,0              |
|                    | R90      | M <sup>0</sup> <sub>Rk,s,fi90</sub>  | [Nm]             | 0,3               | 0,5               | 0,5               | 0,8                  | 0,8               | 3,0               | 3,0              |
|                    | R120     | M <sup>0</sup> <sub>Rk,s,fi120</sub> | [Nm]             | 0,2               | 0,3               | 0,3               | 0,6                  | 0,6               | 2,5               | 2,5              |
| Herausziehen       |          |                                      |                  |                   |                   |                   |                      |                   |                   |                  |
|                    | R30      | N <sub>Rk,p,fi30</sub>               | [kN]             | 1,1               | 0,4               | 0,72              | 1,3                  | 1,3               | 3,4               | 3,4              |
| Charakteristischer | R60      | N <sub>Rk,p,fi60</sub>               | [kN]             | 0,8               | 0,4               | 0,72              | 1,0                  | 1,0               | 2,7               | 2,7              |
| Widerstand         | R90      | N <sub>Rk,p,fi90</sub>               | [kN]             | 0,5               | 0,4               | 0,72              | 0,6                  | 0,6               | 2,0               | 2,0              |
|                    | R120     | N <sub>Rk,p,fi120</sub>              | [kN]             | 0,3               | 0,32              | 0,57              | 0,5                  | 0,5               | 1,7               | 1,7              |
| Ausbruchsversage   | n        |                                      |                  |                   |                   |                   |                      |                   |                   |                  |
|                    | R30      | N <sub>Rk,b,fi30</sub>               | [kN]             | 1,1               | 0,28              | 0,79              | 1,3                  | 1,3               | 3,4               | 3,4              |
| Charakteristischer | R60      | N <sub>Rk,b,fi60</sub>               | [kN]             | 0,8               | 0,28              | 0,79              | 1,0                  | 1,0               | 2,7               | 2,7              |
| Widerstand         | R90      | N <sub>Rk,b,fi90</sub>               | [kN]             | 0,5               | 0,28              | 0,79              | 0,6                  | 0,6               | 2,0               | 2,0              |
|                    | R120     | N <sub>Rk,b,fi120</sub>              | [kN]             | 0,3               | 0,23              | 0,63              | 0,5                  | 0,5               | 1,7               | 1,7              |
| Randabstand        |          |                                      |                  |                   |                   |                   |                      |                   |                   |                  |
|                    |          | C <sub>min,fi</sub> =                | [                |                   |                   |                   | 120                  |                   |                   |                  |
| R30 - R120         |          | Cj,fi,II                             | [mm]             |                   |                   |                   | 120                  |                   |                   |                  |
|                    |          | C <sub>j,fi,⊥</sub>                  | [mm]             |                   |                   |                   | 35                   |                   |                   |                  |
| Achsabstand        |          |                                      |                  |                   |                   |                   |                      |                   |                   |                  |
| R30 - R120         |          | S <sub>cr,fi</sub>                   | [mm]             |                   |                   |                   | 4 x h <sub>nom</sub> |                   |                   |                  |

| TOGE Betonschraube TSM high performance                                                         |            |
|-------------------------------------------------------------------------------------------------|------------|
| <b>Leistungsmerkmale</b> Silka XL Kalksandvollstein KS 12DF – Leistung unter Brandbeanspruchung | Anhang C11 |



# Tabelle 22: Materialkennwerte Kalksandlochstein KSL, 3DF

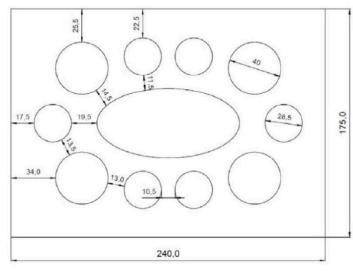


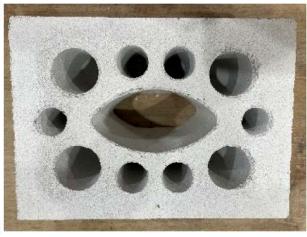
| Kalksandlochst             | Kalksandlochstein KSL, 3DF nach DIN EN 771-2:2015-11 |                                        |                    |                                                |  |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------|----------------------------------------|--------------------|------------------------------------------------|--|--|--|--|--|--|--|
| Format                     | Abmessungen<br>[mm]                                  | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | minimale<br>Wanddicke<br>h <sub>min</sub> [mm] |  |  |  |  |  |  |  |
| SWKV KSL<br>12 - 1,6 - 3DF | L: ≥ 240<br>B: ≥ 175<br>H: ≥ 113                     | ≥ 17,0                                 | ≥ 1,5              | 175                                            |  |  |  |  |  |  |  |

# Tabelle 23: Montagekennwerte Kalksandlochstein KSL, 3DF

| Nutzungskategorie (Installa            | ation)                    |                  |                            |                            | troc              | ken oder          | nass              |                   |                   |
|----------------------------------------|---------------------------|------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TSM Schraubengröße                     |                           |                  | 5                          | 6                          |                   | 8                 |                   | 1                 | 0                 |
| Nominelle Einschraubtiefe              |                           | h <sub>nom</sub> | $h_{nom1}$                 | h <sub>nom1</sub>          | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Normitelle Linschladbliele             | _                         | [mm]             | 35                         | 35                         | 55                | 45                | 65                | 55                | 75                |
| Nomineller<br>Bohrlochdurchmesser      | d <sub>0</sub>            | [mm]             | 5                          | 6                          |                   | 8                 |                   | 10                |                   |
| Bohrerschneiden-<br>durchmesser        | d <sub>cut</sub> ≤        | [mm]             | 5,40                       | 6,40                       |                   | 8,45              |                   | 10,45             |                   |
| Bohrlochtiefe                          | h <sub>0</sub> ≥          | [mm]             | 55                         | 55                         | 75                | 65                | 85                | 75                | 95                |
| Durchgangsloch im<br>Anbauteil         | d <sub>f</sub> ≤          | [mm]             | 7                          |                            | 8                 | 1                 | 2                 | 14                |                   |
| Drehmoment bei<br>Handmontage          | max.<br>T <sub>inst</sub> | [Nm]             | 3                          |                            | 4                 | Ç                 | Ð                 | g                 | )                 |
| Drehmoment bei<br>Drehschraubermontage | T <sub>imp,max</sub>      | [Nm]             | 9                          | 11 Leistung nicht bewertet |                   |                   |                   |                   |                   |
|                                        |                           |                  |                            | Nenndr                     | ehmome            | ent gemä          | ß der He          | rstellerar        | igabe             |
| Tangentialschlagschrauber              | T <sub>imp,max</sub>      | [Nm]             | Leistung nicht<br>bewertet |                            | 100               | 200               |                   |                   |                   |

| TOGE Betonschraube TSM high performance         |            |
|-------------------------------------------------|------------|
| Leistungsmerkmale                               | Anhang C12 |
| Kalksandlochstein KSL, 3DF – Materialkennwerte, |            |
| Montagekennwerte                                |            |





## Tabelle 24: Min. Rand- und Achsabstand, Gruppenfaktoren

| TSM Schraubengröße           |                                           |                  | 5                 |                   | 6                 | 8                 |                   | 10                |                   |
|------------------------------|-------------------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Naminalla Finankunuktiafa    |                                           | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nominelle Einschraubtiefe [n |                                           |                  | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| min. Randabstand             | C <sub>min</sub>                          | [mm]             | mm] 58            |                   |                   |                   |                   |                   |                   |
| min. Achsabstand             | S <sub>min,II</sub> = S <sub>min, ⊥</sub> | [mm]             | nm] 80            |                   |                   |                   |                   |                   |                   |
|                              | α <sub>g,N</sub> (S <sub>min II</sub> )   | [-]              | 2,00              | 2,00              | 2,00              | 1,55              | 1,55              | 1,95              | 1,80              |
| Crummanfaktaran              | α <sub>g,N</sub> (s <sub>min ⊥</sub> )    | [-]              | 2,00              | 2,00              | 2,00              | 1,55              | 1,55              | 1,45              | 1,70              |
| Gruppenfaktoren              | $\alpha_{g,V,II}$                         | [-]              | 2,00              | 2,00              | 2,00              | 2,00              | 2,00              | 2,00              | 2,00              |
|                              | $\alpha_{g,V,\perp}$                      | [-]              | 2,00              | 1,80              | 1,80              | 1,80              | 1,80              | 1,30              | 1,30              |

## Tabelle 25: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

| TSM Schraubengröße |                                                    |      | 5                       | 6   | 8               | 10 |  |  |  |
|--------------------|----------------------------------------------------|------|-------------------------|-----|-----------------|----|--|--|--|
| Abstand zu Fugen   | Cj⊥                                                | [mm] |                         | ≥35 |                 |    |  |  |  |
| Abstanu zu Fugen   | C <sub>j II</sub>                                  | [mm] | ≥58                     |     |                 |    |  |  |  |
| Abminderungsfaktor | $\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$ | [-]  | 1 (volle Tragfähigkeit) |     |                 |    |  |  |  |
| Abstand zu Fugen   | Cj⊥                                                | [mm] |                         | <35 |                 |    |  |  |  |
| Abstand zu Fugen   | C <sub>j II</sub>                                  |      |                         | <58 |                 |    |  |  |  |
| Abminderungsfaktor | α <sub>j, N</sub>                                  | [-]  |                         |     | darf nicet werd |    |  |  |  |





## **TOGE Betonschraube TSM high performance**

## Leistungsmerkmale

Kalksandlochstein KSL, 3DF – minimaler Achs- und Randabstand, Gruppenfaktoren, Montagekennwerte bei der Montage in Fugennähe

**Anhang C13** 



# Tabelle 26: Charakteristische Tragfähigkeit

| Nutzungskategorie (Installa                  | ition)                                   |              |                   |                   | troc              | ken oder                | nass              |                   |                   |  |
|----------------------------------------------|------------------------------------------|--------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|--|
| TSM Schraubengröße                           |                                          |              | 5                 | 6 8               |                   |                         | 10                |                   |                   |  |
| Nominelle Einschraubtiefe                    | Nominelle Einschraubtiefe h <sub>r</sub> |              | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub><br>45 | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |  |
| Druckfestigkeit f <sub>mean</sub>            | [N/m                                     | [mm]<br>nm²] |                   |                   |                   |                         |                   |                   |                   |  |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>                          | [kN]         | 1,1               | 1,1               | 1,1               | 1,6                     | 1,6               | 2,2               | 2,2               |  |
| Charakteristischer                           | $V_{Rk,II}$                              | [kN]         |                   |                   |                   | 3,4                     |                   |                   |                   |  |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$                           | [kN]         | 1,6               | 1,6               | 1,6               | 1,6                     | 1,6               | 2,2               | 2,2               |  |
| Druckfestigkeit f <sub>mean</sub>            | [N/n                                     | nm²]         | ≥ 20,0            |                   |                   |                         |                   |                   |                   |  |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>                          | [kN]         | 1,3               | 1,3               | 1,3               | 1,9                     | 1,9               | 2,5               | 2,5               |  |
| Charakteristischer                           | $V_{Rk,II}$                              | [kN]         | 3,8               | 3,8               | 3,8               | 3,8                     | 3,8               | 3,9               | 3,9               |  |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$                           | [kN]         | 1,8               | 1,8               | 1,8               | 1,8                     | 1,8               | 2,5               | 2,5               |  |
| Druckfestigkeit f <sub>mean</sub>            | [N/n                                     | nm²]         |                   |                   |                   | ≥ 25,0                  |                   |                   |                   |  |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>                          | [kN]         | 1,5               | 1,5               | 1,5               | 2,2                     | 2,2               | 3,0               | 3,0               |  |
| Charakteristischer                           | $V_{Rk,II}$                              | [kN]         | 4,5               | 4,5               | 4,5               | 4,5                     | 4,5               | 4,6               | 4,6               |  |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$                           | [kN]         | 2,1               | 2,1               | 2,1               | 2,1                     | 2,1               | 2,9               | 2,9               |  |
| Interaktion                                  | X                                        | [-]          |                   |                   |                   | 1,0                     |                   |                   |                   |  |

**TOGE Betonschraube TSM high performance** 

Leistungsmerkmale

Kalksandlochstein KSL, 3DF – charakteristische Tragfähigkeit

**Anhang C14** 



## Tabelle 27: Verschiebungen

| Nutzungskategorie (Installa       | tion)                          |                  |            |                   | troc              | ken odei          | r nass            |                   |                   |
|-----------------------------------|--------------------------------|------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TSM Schraubengröße                |                                |                  | 5          | 5 6 8             |                   |                   | 1                 | 10                |                   |
| Nominelle Einschraubtiefe         |                                | h <sub>nom</sub> | $h_{nom1}$ | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nonlinelle Emschraubtiele         |                                | [mm]             | 35         | 35                | 55                | 45                | 65                | 55                | 75                |
| Zuglast                           | $F_N$                          | [kN]             | 0,31       | 0,31              | 0,31              | 0,46              | 0,46              | 0,63              | 0,63              |
| <br>  Verschiebung in Zugrichtung | $\delta_{\text{NO}}$           | [mm]             | 0,01       | 0,01              | 0,01              | 0,01              | 0,01              | 0,01              | 0,01              |
| verschiebung in zugnentung        | $\delta_{N\varpi}$             | [mm]             | 0,02       | 0,02              | 0,02              | 0,02              | 0,02              | 0,02              | 0,02              |
| Querlast parallel zum Rand        | F <sub>V,II</sub>              | [kN]             |            |                   |                   | 0,97              |                   |                   |                   |
| Verschiebung der Querlast         | $\delta_{\text{V0,II}}$        | [mm]             | 0,80       | 0,80              | 0,80              | 0,80              | 0,80              | 1,42              | 1,42              |
| parallel zum Rand                 | $\delta_{V\varpi,II}$          | [mm]             | 1,19       | 1,19              | 1,19              | 1,19              | 1,19              | 2,12              | 2,12              |
| Querlast senkrecht zum Rand       | $F_{V,\!\perp}$                | [kN]             | 0,46       | 0,46              | 0,46              | 0,46              | 0,46              | 0,63              | 0,63              |
| Verschiebung der Querlast         | $\delta_{V0,\perp}$            | [mm]             | 0,01       | 0,01              | 0,01              | 0,01              | 0,01              | 0,01              | 0,01              |
| senkrecht zum Rand                | $\delta_{\text{V}\text{00,L}}$ | [mm]             | 0,02       | 0,02              | 0,02              | 0,02              | 0,02              | 0,02              | 0,02              |

# Tabelle 28: Leistungen unter Brandbeanspruchung für Ankergruppen

| TSM Schraubengröße                                                                                                                                                                                                                      |                  |                         | 5                                     | (                                     | õ                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|---------------------------------------|---------------------------------------|-------------------------|--|--|--|--|
| Nominelle Einschraubtiefe                                                                                                                                                                                                               | h <sub>nom</sub> | h <sub>nom1</sub>       | h <sub>nom1</sub>                     | h <sub>nom2</sub>                     |                         |  |  |  |  |
| Norminene Emschraubtiere                                                                                                                                                                                                                | =                | [mm]                    | 35                                    | 35                                    | 55                      |  |  |  |  |
| Charakteristischer Widerstand für Ausbruchsversagen unter Brandbeanspruchung                                                                                                                                                            |                  |                         |                                       |                                       |                         |  |  |  |  |
| Nig - Nig - Nig                                                                                                                                                                                                                         | [kN]             | R30-R90                 | 0,09 · N <sup>g</sup> <sub>Rk,b</sub> | 0,09 · N <sup>g</sup> <sub>Rk,b</sub> | $0,15\cdotN^{g}_{Rk,b}$ |  |  |  |  |
| $\mathbf{N}^{\mathbf{g}}_{\mathbf{R}\mathbf{k},\mathbf{f}\mathbf{i}} = \mathbf{N}^{\mathbf{g}}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{f}\mathbf{i}} = \mathbf{N}^{\mathbf{g}}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{f}\mathbf{i}}$ | [KIN]            | R120                    | 0,08 · N <sup>g</sup> <sub>Rk,b</sub> | 0,08 · N <sup>g</sup> <sub>Rk,b</sub> | $0,12 \cdot N^g_{Rk,b}$ |  |  |  |  |
| Minimaler Achs- und                                                                                                                                                                                                                     | [mm]             | $c_{min,fi} = c_{j,fi}$ | 2 x h <sub>nom</sub> 1)               |                                       |                         |  |  |  |  |
| Randabstand                                                                                                                                                                                                                             | [[[[[[]]]        | S <sub>min,fi</sub>     |                                       | 107                                   |                         |  |  |  |  |

<sup>1)</sup> Es sind mindestens die Abstände gemäß Tabelle 29 einzuhalten

| TOGE Betonschraube TSM high performance                                                                                |            |
|------------------------------------------------------------------------------------------------------------------------|------------|
| Leistungsmerkmale Kalksandlochstein KSL, 3DF – Verschiebungen und Leistungen unter Brandbeanspruchung bei Ankergruppen | Anhang C15 |



| Tabelle 29: | Leistung | unter | Brandbeans | pruchung |
|-------------|----------|-------|------------|----------|
|             |          |       |            |          |

| TSM Schraubengrö    | iße      |                                      |                  | 5                    | 6          |                   |  |  |
|---------------------|----------|--------------------------------------|------------------|----------------------|------------|-------------------|--|--|
| Nominelle Einschra  | ubtiofo  |                                      | h <sub>nom</sub> | $h_{nom1}$           | $h_{nom1}$ | h <sub>nom2</sub> |  |  |
| Norminene Emscria   | ubtiele  |                                      | [mm]             | 35                   | 35         | 55                |  |  |
| Stahlversagen für 3 | Zug- und | Querlast                             |                  |                      |            |                   |  |  |
|                     | R30      | N <sub>Rk,s,fi30</sub>               | [kN]             | 0,7                  | 1,0        | 1,0               |  |  |
|                     | R60      | N <sub>Rk,s,fi60</sub>               | [kN]             | 0,6                  | 0,8        | 0,8               |  |  |
|                     | R90      | N <sub>Rk,s,fi90</sub>               | [kN]             | 0,4                  | 0,5        | 0,5               |  |  |
|                     | R120     | N <sub>Rk,s,fi120</sub>              | [kN]             | 0,3                  | 0,4        | 0,4               |  |  |
|                     | R30      | V <sub>Rk,s,fi30</sub>               | [kN]             | 0,7                  | 1,0        | 1,0               |  |  |
| Charakteristischer  | R60      | V <sub>Rk,s,fi60</sub>               | [kN]             | 0,6                  | 0,8        | 0,8               |  |  |
| Widerstand          | R90      | V <sub>Rk,s,fi90</sub>               | [kN]             | 0,4                  | 0,5        | 0,5               |  |  |
|                     | R120     | V <sub>Rk,s,fi120</sub>              | [kN]             | 0,3                  | 0,4        | 0,4               |  |  |
|                     | R30      | M <sup>0</sup> <sub>Rk,s,fi30</sub>  | [Nm]             | 0,5                  | 0,8        | 0,8               |  |  |
| _                   | R60      | M <sup>0</sup> <sub>Rk,s,fi60</sub>  | [Nm]             | 0,4                  | 0,6        | 0,6               |  |  |
|                     | R90      | M <sup>0</sup> <sub>Rk,s,fi90</sub>  | [Nm]             | 0,2                  | 0,4        | 0,4               |  |  |
|                     | R120     | M <sup>0</sup> <sub>Rk,s,fi120</sub> | [Nm]             | 0,2                  | 0,3        | 0,3               |  |  |
| Herausziehen        |          |                                      |                  |                      |            |                   |  |  |
|                     | R30      | N <sub>Rk,p,fi30</sub>               | [kN]             | 0,7                  | 0,6        | 0,6               |  |  |
| Charakteristischer  | R60      | N <sub>Rk,p,fi60</sub>               | [kN]             | 0,6                  | 0,4        | 0,4               |  |  |
| Widerstand          | R90      | N <sub>Rk,p,fi90</sub>               | [kN]             | 0,4                  | 0,3        | 0,3               |  |  |
|                     | R120     | N <sub>Rk,p,fi120</sub>              | [kN]             | 0,3                  | 0,2        | 0,2               |  |  |
| Ausbruchsversage    | n        |                                      |                  |                      |            |                   |  |  |
|                     | R30      | N <sub>Rk,b,fi30</sub>               | [kN]             | 0,7                  | 0,6        | 0,6               |  |  |
| Charakteristischer  | R60      | N <sub>Rk,b,fi60</sub>               | [kN]             | 0,6                  | 0,4        | 0,4               |  |  |
| Widerstand          | R90      | N <sub>Rk,b,fi90</sub>               | [kN]             | 0,4                  | 0,3        | 0,3               |  |  |
|                     | R120     | N <sub>Rk,b,fi120</sub>              | [kN]             | 0,3                  | 0,2        | 0,2               |  |  |
| Randabstand         |          |                                      |                  |                      |            |                   |  |  |
|                     |          | C <sub>min,fi</sub> =                | [mm]             | 101                  |            |                   |  |  |
|                     |          | C <sub>j,fi,⊥</sub>                  | [mm]             | 56                   |            |                   |  |  |
| Achsabstand         |          |                                      |                  |                      |            |                   |  |  |
| R30 - R120          |          | S <sub>cr,fi</sub>                   | [mm]             | 4 x h <sub>nom</sub> |            |                   |  |  |

| TOGE Betonschraube TSM high performance                                                |            |
|----------------------------------------------------------------------------------------|------------|
| Leistungsmerkmale<br>Kalksandlochstein KSL, 3DF – Leistung unter<br>Brandbeanspruchung | Anhang C16 |



# Tabelle 30: Materialkennwerte Mauerziegel MZ



| Mauerziegel MZ nach DIN EN 771-1:2015-11 |                                 |                                        |                    |                                                |  |  |  |
|------------------------------------------|---------------------------------|----------------------------------------|--------------------|------------------------------------------------|--|--|--|
| Format                                   | Abmessungen<br>[mm]             | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | minimale<br>Wanddicke<br>h <sub>min</sub> [mm] |  |  |  |
| MZ<br>20 - 2,0 - NF                      | L: ≥ 240<br>B: ≥ 115<br>H: ≥ 71 | ≥ 21,0                                 | ≥ 2,1              | 240                                            |  |  |  |

# Tabelle 31: Montagekennwerte Mauerziegel MZ

| Nutzungskategorie (Installation)       |                                                  |                  | trocken oder nass         |                   |                   |                   |                   |                   |                      |                  |
|----------------------------------------|--------------------------------------------------|------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|------------------|
| TSM Schraubengröße                     |                                                  |                  | 5                         | 6                 |                   | 8                 |                   | 10                |                      |                  |
| Nominelle Einschraubtiefe              |                                                  | h <sub>nom</sub> | h <sub>nom1</sub> 35      | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> 75 |                  |
| Nomineller<br>Bohrlochdurchmesser      | d <sub>0</sub>                                   | [mm]             | 5                         |                   |                   | 8                 |                   |                   |                      | 0                |
| Bohrerschneiden-<br>durchmesser        | d <sub>cut</sub> ≤                               | [mm]             | 5,40                      | 6,40              |                   | 40 6,40 8,4       |                   | 45                | 10,                  | .45              |
| Bohrlochtiefe                          | h <sub>0</sub> ≥                                 | [mm]             | 55                        | 55                | 75                | 65                | 85                | 75                | 95                   |                  |
| Durchgangsloch im<br>Anbauteil         | d <sub>f</sub> ≤                                 | [mm]             | 7                         | 8                 | 3                 | 1                 | 2                 | 1                 | 4                    |                  |
| Drehmoment bei<br>Handmontage          | max.<br>T <sub>inst</sub>                        | [Nm]             | 2                         | (1)               | 3                 | 1                 | 6                 | 2                 | 3                    |                  |
| Drehmoment bei<br>Drehschraubermontage | T <sub>imp,max</sub>                             | [Nm]             | 4                         | 9                 |                   | 9 14              |                   | 4                 |                      | g nicht<br>ertet |
| Tangontialechlagechrauber              | т.                                               | [Nm]             | Max.                      | Nenndr            | ehmome            | ent gemä          | ß der He          | rstellerar        | ngabe                |                  |
| langentialschlagschrauber              | Tangentialschlagschrauber   T <sub>imp,max</sub> |                  | Leistung nicht bewertet 1 |                   |                   |                   | 18                | 35                |                      |                  |

| TOGE Betonschraube TSM high performance                                   |            |
|---------------------------------------------------------------------------|------------|
| Leistungsmerkmale<br>Mauerziegel MZ – Materialkennwerte, Montagekennwerte | Anhang C17 |



# Tabelle 32: Min. Rand- und Achsabstand, Gruppenfaktoren

| TSM Schraubengröße  |                                           | 5                |            | 6                 | 8                 | 3                 | 1                 | 0                 |                   |
|---------------------|-------------------------------------------|------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Naminalla Finashrau | htiafa                                    | h <sub>nom</sub> | $h_{nom1}$ | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nominelle Einschrau | Nominelle Einschraubtiefe                 |                  | 35         | 35                | 55                | 45                | 65                | 55                | 75                |
| min. Randabstand    | C <sub>min</sub>                          | [mm]             | nm] 80     |                   |                   |                   |                   |                   |                   |
| min. Achsabstand    | S <sub>min,II</sub> = S <sub>min, ⊥</sub> | [mm]             | [mm] 80    |                   |                   |                   |                   |                   |                   |
|                     | α <sub>g,N</sub> (S <sub>min II</sub> )   | [-]              | 1,60       | 1,60              | 1,60              | 1,00              | 1,00              | 1,70              | 1,10              |
| Cruppopfaktoron     | α <sub>g,N</sub> (s <sub>min ⊥</sub> )    | [-]              | 1,75       | 1,75              | 1,75              | 1,15              | 1,15              | 1,45              | 1,40              |
| Gruppenfaktoren     | $\alpha_{g,V,II}$                         | [-]              | 1,45       | 1,45              | 1,45              | 1,45              | 1,45              | 2,00              | 1,05              |
|                     | $\alpha_{g,V,\perp}$                      | [-]              | 1,20       | 1,20              | 1,20              | 1,20              | 1,20              | 1,50              | 1,15              |

## Tabelle 33: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

| TSM Schraubengröße   | 5                                  | 6                      | 8                       | 10  |  |      |  |
|----------------------|------------------------------------|------------------------|-------------------------|-----|--|------|--|
| Abstand zu Eugen     | C <sub>j ⊥</sub>                   | [mm]                   | ≥35                     |     |  |      |  |
| Abstand zu Fugen     | Cj II                              | $c_{j \parallel}$ [mm] |                         | ≥80 |  |      |  |
| Abminderungsfaktor   | α <sub>j, N</sub>                  | [-]                    | 1 /valla Tranfähinkait  |     |  | oi+\ |  |
| Abililiderungstaktor | $\alpha_{j, VII} = \alpha_{j, VL}$ | [-]                    | 1 (volle Tragfähigkeit) |     |  |      |  |
| Abstand zu Fugen     | C <sub>j ⊥</sub>                   | [mm]                   | <35                     |     |  |      |  |
| Abstand zu Fugen     | C <sub>j II</sub>                  |                        | <80                     |     |  |      |  |
| Abminderungsfaktor   | 01                                 | гі                     | Schraube darf nicht     |     |  | ht   |  |
|                      | $\alpha_{j, N}$                    | [-]                    | verwendet werden        |     |  |      |  |

TOGE Betonschraube TSM high performance

Leistungsmerkmale

Mauerziegel MZ – minimaler Achs- und Randabstand, Gruppenfaktoren, Montagekennwerte bei der Montage in Fugennähe **Anhang C18** 



| Nutzungskategorie (Installation)             |                   |                  | trocken oder nass |                   |                   |                   |                   |                   |                   |
|----------------------------------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TSM Schraubengröße                           |                   | 5 6              |                   | 8                 |                   | 10                |                   |                   |                   |
| Nominelle Einschraubtiefe                    |                   | h <sub>nom</sub> | $h_{nom1}$        | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Norminene Emschladbliefe                     |                   | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| Druckfestigkeit f <sub>mean</sub>            | [N/m              | nm²]             |                   |                   |                   | ≥ 21,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>   | [kN]             | 1,6               | 1,6               | 1,6               | 2,3               | 2,3               | 3,1               | 3,2               |
| Charakteristischer                           | $V_{Rk,II}$       | [kN]             | 2,5               | 2,5               | 2,5               | 2,5               | 2,5               | 2,6               | 8,1               |
| Widerstand bei Querlast                      | V <sub>Rk,⊥</sub> | [kN]             | 2,1               | 2,1               | 2,1               | 2,1               | 2,1               | 2,1               | 2,7               |
| Druckfestigkeit f <sub>mean</sub>            | [N/n              | nm²]             |                   |                   |                   | ≥ 25,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>   | [kN]             | 1,7               | 1,7               | 1,7               | 2,5               | 2,5               | 3,4               | 3,5               |
| Charakteristischer                           | $V_{Rk,II}$       | [kN]             | 2,7               | 2,7               | 2,7               | 2,7               | 2,7               | 2,8               | 8,9               |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$    | [kN]             | 2,3               | 2,3               | 2,3               | 2,3               | 2,3               | 2,3               | 3,0               |
| Druckfestigkeit f <sub>mean</sub>            | [N/n              | nm²]             |                   |                   |                   | ≥ 30,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>   | [kN]             | 1,9               | 1,9               | 1,9               | 2,8               | 2,8               | 3,7               | 3,8               |
| Charakteristischer                           | $V_{Rk,II}$       | [kN]             | 2,9               | 2,9               | 2,9               | 2,9               | 2,9               | 3,1               | 9,7               |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$    | [kN]             | 2,5               | 2,5               | 2,5               | 2,5               | 2,5               | 2,5               | 3,2               |
| Druckfestigkeit f <sub>mean</sub>            | [N/n              | nm²]             |                   |                   |                   | ≥ 31,0            |                   |                   |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>   | [kN]             | 1,9               | 1,9               | 1,9               | 2,8               | 2,8               | 3,8               | 3,9               |
| Charakteristischer                           | $V_{Rk,II}$       | [kN]             | 3,0               | 3,0               | 3,0               | 3,0               | 3,0               | 3,2               | 9,9               |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$    | [kN]             | 2,5               | 2,5               | 2,5               | 2,5               | 2,5               | 2,6               | 3,3               |

| TOGE Betonschraube | TSM high | performance |
|--------------------|----------|-------------|
|--------------------|----------|-------------|

# Leistungsmerkmale

Mauerziegel MZ – charakteristische Tragfähigkeit

Anhang C19



## Tabelle 35: Verschiebungen

| Nutzungskategorie (Installation) |                       |                  | trocken oder nass |                   |                   |                   |                   |                   |                   |
|----------------------------------|-----------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| TSM Schraubengröße               |                       |                  | 5                 | 6                 |                   | 8                 |                   | 10                |                   |
| Nominelle Einschraubtiefe        |                       | h <sub>nom</sub> | $h_{nom1}$        | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> |
| Nonlinelle Ellischlaubtiele      |                       | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75                |
| Zuglast                          | F <sub>N</sub>        | [kN]             | 0,46              | 0,46              | 0,46              | 0,66              | 0,66              | 0,89              | 0,91              |
| Verschiebung in                  | $\delta_{\text{NO}}$  | [mm]             | 0,01              | 0,01              | 0,01              | 0,01              | 0,01              | 0,03              | 0,02              |
| Zugrichtung                      | $\delta_{N\varpi}$    | [mm]             | 0,02              | 0,02              | 0,02              | 0,02              | 0,02              | 0,05              | 0,05              |
| Querlast parallel zum Rand       | F <sub>V,II</sub>     | [kN]             | 0,71              | 0,71              | 0,71              | 0,71              | 0,71              | 0,74              | 2,31              |
| Verschiebung der Querlast        | δ <sub>V0,II</sub>    | [mm]             | 1,08              | 1,08              | 1,08              | 1,08              | 1,08              | 0,04              | 2,24              |
| parallel zum Rand                | $\delta_{V\varpi,II}$ | [mm]             | 1,61              | 1,61              | 1,61              | 1,61              | 1,61              | 0,07              | 3,36              |
| Querlast senkrecht zum<br>Rand   | F <sub>V,⊥</sub>      | [kN]             | 0,60              | 0,60              | 0,60              | 0,60              | 0,60              | 0,60              | 0,77              |
| Verschiebung der Querlast        | $\delta_{V0,\perp}$   | [mm]             | 1,13              | 1,13              | 1,13              | 1,13              | 1,13              | 0,03              | 0,34              |
| senkrecht zum Rand               | δνω,⊥                 | [mm]             | 1,69              | 1,69              | 1,69              | 1,69              | 1,69              | 0,04              | 0,51              |

## Tabelle 36: Leistungen unter Brandbeanspruchung für Ankergruppen

|   | TSM Schraubengröße                  |          |                         | 5                       | 6                              |                                | 8                              |                   | 10                             |                                |  |
|---|-------------------------------------|----------|-------------------------|-------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|--------------------------------|--------------------------------|--|
|   | Nominalla Finsehraul                | otiofo   | h <sub>nom</sub>        | h <sub>nom1</sub>       | h <sub>nom1</sub>              | h <sub>nom2</sub>              | h <sub>nom1</sub>              | h <sub>nom2</sub> | h <sub>nom1</sub>              | h <sub>nom2</sub>              |  |
| l | Nominelle Einschraubtiefe           |          | [mm]                    | 35                      | 35                             | 55                             | 45                             | 65                | 55                             | 75                             |  |
| l | Charakteristischer W                | iderstan | d für Ausbru            | ıchsversa               | gen unter                      | Brandbea                       | nspruchu                       | ng                |                                |                                |  |
| l |                                     |          | R30-R90                 | 0,09 ·                  | 0,09 ·                         | 0,15 ·                         | 0,12 ·                         | 0,18 ·            | 0,15 ·                         | 0,24 ·                         |  |
| l | $N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$ | [FVI]    |                         | $N^{g}_{Rk,b}$          | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$    | N <sup>g</sup> <sub>Rk,b</sub> | N <sup>g</sup> <sub>Rk,b</sub> |  |
| l | N <sup>g</sup> <sub>Rk,p,fi</sub>   | [KIN]    |                         | 0,08 ·                  | 0,08 ·                         | 0,12 ·                         | 0,10 ·                         | 0,15 ·            | 0,12 ·                         | 0,19 ·                         |  |
| l |                                     |          | N12U                    | $N^{g}_{Rk,b}$          | $N^{g}_{Rk,b}$                 | N <sup>g</sup> <sub>Rk,b</sub> | $N^{g}_{Rk,b}$                 | $N^{g}_{Rk,b}$    | $N^{g}_{Rk,b}$                 | N <sup>g</sup> <sub>Rk,b</sub> |  |
| l | Minimaler Achs-                     | [mm]     | $c_{min,fi} = c_{j,fi}$ | 2 x h <sub>nom</sub> 1) |                                |                                |                                |                   |                                |                                |  |
| l | und Randabstand                     | [[[[]]]] | S <sub>min,fi</sub>     | 107                     |                                |                                |                                |                   |                                |                                |  |

<sup>1)</sup> Es sind mindestens die Abstände gemäß Tabelle 37 einzuhalten

TOGE Betonschraube TSM high performance

Leistungsmerkmale
Mauerziegel MZ – Verschiebungen und Leistungen unter
Brandbeanspruchung bei Ankergruppen

Anhang C20



| TSM Schraubengröße                  |         |                                      |                  | 5                 | e                 | 5                 | 8                 | 3                 | 10                |                  |
|-------------------------------------|---------|--------------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Nominelle Einschra                  | ubtiofo |                                      | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom2</sub> | h <sub>nom1</sub> | h <sub>nom</sub> |
| Nominelle Einschra                  | ubtiele |                                      | [mm]             | 35                | 35                | 55                | 45                | 65                | 55                | 75               |
| Stahlversagen für Zug- und Querlast |         |                                      |                  |                   |                   |                   |                   |                   |                   |                  |
|                                     | R30     | N <sub>Rk,s,fi30</sub>               | [kN]             | 1,1               | 1,3               | 1,3               | 1,3               | 1,3               | 1,7               | 1,7              |
|                                     | R60     | N <sub>Rk,s,fi60</sub>               | [kN]             | 0,8               | 1,0               | 1,0               | 1,0               | 1,0               | 1,6               | 1,6              |
|                                     | R90     | N <sub>Rk,s,fi90</sub>               | [kN]             | 0,5               | 0,6               | 0,6               | 0,6               | 0,6               | 1,6               | 1,6              |
|                                     | R120    | N <sub>Rk,s,fi120</sub>              | [kN]             | 0,3               | 0,5               | 0,5               | 0,5               | 0,5               | 1,5               | 1,5              |
|                                     | R30     | V <sub>Rk,s,fi30</sub>               | [kN]             | 1,1               | 1,3               | 1,3               | 1,3               | 1,3               | 1,7               | 1,7              |
| Charakteristischer                  | R60     | V <sub>Rk,s,fi60</sub>               | [kN]             | 0,8               | 1,0               | 1,0               | 1,0               | 1,0               | 1,6               | 1,6              |
| Widerstand                          | R90     | V <sub>Rk,s,fi90</sub>               | [kN]             | 0,5               | 0,6               | 0,6               | 0,6               | 0,6               | 1,6               | 1,6              |
|                                     | R120    | V <sub>Rk,s,fi120</sub>              | [kN]             | 0,3               | 0,5               | 0,5               | 0,5               | 0,5               | 1,5               | 1,5              |
|                                     | R30     | M <sup>0</sup> <sub>Rk,s,fi30</sub>  | [Nm]             | 0,8               | 1,1               | 1,1               | 1,5               | 1,5               | 2,5               | 2,5              |
|                                     | R60     | M <sup>0</sup> <sub>Rk,s,fi60</sub>  | [Nm]             | 0,5               | 0,8               | 0,8               | 1,1               | 1,1               | 2,4               | 2,4              |
|                                     | R90     | M <sup>0</sup> <sub>Rk,s,fi90</sub>  | [Nm]             | 0,3               | 0,5               | 0,5               | 0,8               | 0,8               | 2,3               | 2,3              |
|                                     | R120    | M <sup>0</sup> <sub>Rk,s,fi120</sub> | [Nm]             | 0,2               | 0,4               | 0,4               | 0,6               | 0,6               | 2,2               | 2,2              |
| Herausziehen                        |         |                                      |                  |                   |                   |                   |                   |                   |                   |                  |
|                                     | R30     | N <sub>Rk,p,fi30</sub>               | [kN]             | 1,1               | 1,3               | 1,3               | 1,3               | 1,3               | 1,7               | 1,7              |
| Charakteristischer                  | R60     | N <sub>Rk,p,fi60</sub>               | [kN]             | 0,8               | 1,0               | 1,0               | 1,0               | 1,0               | 1,6               | 1,6              |
| Widerstand                          | R90     | N <sub>Rk,p,fi90</sub>               | [kN]             | 0,5               | 0,6               | 0,6               | 0,6               | 0,6               | 1,6               | 1,6              |
|                                     | R120    | N <sub>Rk,p,fi120</sub>              | [kN]             | 0,3               | 0,5               | 0,5               | 0,5               | 0,5               | 1,5               | 1,5              |
| Ausbruchsversage                    | n       |                                      | '                |                   |                   |                   | •                 |                   |                   |                  |
| 7 taski acrisversage                | R30     | N <sub>Rk,b,fi30</sub>               | [kN]             | 1,1               | 1,3               | 1,3               | 1,3               | 1,3               | 1,7               | 1,7              |
| Charakteristischer                  | R60     | N <sub>Rk,b,fi60</sub>               | [kN]             | 0,8               | 1,0               | 1,0               | 1,0               | 1,0               | 1,6               | 1,6              |
| Widerstand                          | R90     | N <sub>Rk,b,fi90</sub>               | [kN]             | 0,5               | 0,6               | 0,6               | 0,6               | 0,6               | 1,6               | 1,6              |
|                                     | R120    | N <sub>Rk,b,fi120</sub>              | [kN]             | 0,3               | 0,5               | 0,5               | 0,5               | 0,5               | 1,5               | 1,5              |
| Randabstand                         |         | 1,.,.,                               |                  | ,                 | ,                 | ,                 | ,                 | ,                 | ,                 |                  |
| R30 - R120                          |         | C <sub>min,fi</sub> =                | [mm]             |                   |                   |                   | 120               |                   |                   |                  |
|                                     |         | C <sub>j,fi,⊥</sub>                  | [mm]             | 35                |                   |                   |                   |                   |                   |                  |
| Achsabstand                         |         |                                      | •                |                   |                   |                   |                   |                   |                   |                  |
| R30 - R120                          |         |                                      |                  |                   |                   |                   |                   |                   |                   |                  |

| TOGE Betonschraube TSM high performance                                 |            |
|-------------------------------------------------------------------------|------------|
| Leistungsmerkmale<br>Mauerziegel MZ – Leistung unter Brandbeanspruchung | Anhang C21 |



## Tabelle 38: Materialkennwerte Vollblock aus Leichtbeton



| Vollblock aus Leichtbeton nach DIN EN 771-3:2015-11 |                                  |                                        |                    |                                                |  |  |  |  |  |
|-----------------------------------------------------|----------------------------------|----------------------------------------|--------------------|------------------------------------------------|--|--|--|--|--|
| Format                                              | Abmessungen<br>[mm]              | Mittlere<br>Druckfestigkeit<br>[N/mm²] | Dichte<br>[kg/dm³] | minimale<br>Wanddicke<br>h <sub>min</sub> [mm] |  |  |  |  |  |
| VBL<br>4 - 1,0 - 2DF                                | L: ≥ 240<br>B: ≥ 115<br>H· > 113 | ≥ 4,0                                  | ≥ 1,5              | 240                                            |  |  |  |  |  |

## Tabelle 39: Montagekennwerte Vollblock aus Leichtbeton

| Nutzungskategorie (Insta               | trocken                   |                          |                        |                        |
|----------------------------------------|---------------------------|--------------------------|------------------------|------------------------|
| TSM Schraubengröße                     | 8                         | 10                       |                        |                        |
| Nominelle Einschraubtiefe              | :                         | h <sub>nom</sub><br>[mm] | h <sub>nom</sub><br>65 | h <sub>nom</sub><br>75 |
| Nomineller<br>Bohrlochdurchmesser      | d <sub>0</sub>            | [mm]                     | 8                      | 10                     |
| Bohrerschneiden-<br>durchmesser        | d <sub>cut</sub> ≤        | [mm]                     | 8,45                   | 10,45                  |
| Bohrlochtiefe                          | h <sub>0</sub> ≥          | [mm]                     | 85                     | 95                     |
| Durchgangsloch im<br>Anbauteil         | d <sub>f</sub> ≤          | [mm]                     | 12                     | 14                     |
| Drehmoment bei<br>Handmontage          | max.<br>T <sub>inst</sub> | [Nm]                     | 6                      | 5                      |
| Drehmoment bei<br>Drehschraubermontage | T <sub>imp,max</sub>      | [Nm]                     | 10                     | 14                     |

# Tabelle 40: Min. Rand- und Achsabstand, Gruppenfaktoren

| TSM Schraubengr                   | röße                                      | 8                | 10               |      |  |
|-----------------------------------|-------------------------------------------|------------------|------------------|------|--|
| Naminalla Einschrau               | $h_{nom}$                                 | h <sub>nom</sub> | h <sub>nom</sub> |      |  |
| Nominelle Einschraubtiefe         |                                           | [mm]             | 65               | 75   |  |
| min. Randabstand c <sub>min</sub> |                                           | [mm]             | 80               |      |  |
| min. Achsabstand                  | S <sub>min,II</sub> = S <sub>min, ⊥</sub> | [mm]             | 80               |      |  |
|                                   | α <sub>g,N</sub> (S <sub>min II</sub> )   | [-]              | 1,45             | 1,45 |  |
| Cumponfaktoron                    | α <sub>g,N</sub> (S <sub>min ⊥</sub> )    | [-]              | 1,35             | 1,35 |  |
| Gruppenfaktoren                   | $\alpha_{g,V,II}$                         | [-]              | 0,90             | 0,90 |  |
|                                   | $lpha_{g,V,\;\perp}$                      | [-]              | 0,75             | 0,75 |  |

| TOGE Betonschraube TSM high performance                                                                                             |            |
|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| Leistungsmerkmale Vollblock aus Leichtbeton – Materialkennwerte, Montagekennwerte, minimaler Achs- und Randabstand, Gruppenfaktoren | Anhang C22 |



# Tabelle 41: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

| TSM Schraubengröße | 8                                  | 10   |                         |             |
|--------------------|------------------------------------|------|-------------------------|-------------|
| Abatand Turan      | C <sub>j ⊥</sub>                   | []   | ≥35                     |             |
| Abstand zu Fugen   | C <sub>j II</sub>                  | [mm] | ≥80                     |             |
| Abmindarungsfaktor | α <sub>j, N</sub>                  | гэ   | 1 /valla Tra            | afähiakoit) |
| Abminderungsfaktor | $\alpha_{j, VII} = \alpha_{j, VL}$ | [-]  | 1 (volle Tragfähigkeit) |             |
| Abstand zu Eugen   | C <sub>j ⊥</sub>                   | [mm] | <35                     |             |
| Abstand zu Fugen   | C <sub>j II</sub>                  |      | <8                      | 30          |
| Abminderungsfaktor | α <sub>j, N</sub>                  | [-]  | Schraube<br>verwende    |             |

# Tabelle 42: Charakteristische Tragfähigkeit

| Nutzungskategorie (Installa                  | trocken           |                  |                   |                   |
|----------------------------------------------|-------------------|------------------|-------------------|-------------------|
| TSM Schraubengröße                           |                   |                  | 8                 | 10                |
| Nominelle Einschraubtiefe                    |                   | h <sub>nom</sub> | h <sub>nom1</sub> | h <sub>nom1</sub> |
| Nonlinelle Ellischraubtiele                  |                   | [mm]             | 65                | 75                |
| Druckfestigkeit f <sub>mean</sub>            | [N/m              | nm²]             | ≥ ∠               | l,0               |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>   | [kN]             | 0,6               | 1,2               |
| Charakteristischer                           | $V_{Rk,II}$       | [kN]             | 4,0               | 5,1               |
| Widerstand bei Querlast                      | $V_{Rk,\perp}$    | [kN]             | 2,3               | 3,3               |
| Druckfestigkeit f <sub>mean</sub>            | [N/m              | nm²]             | ≥ 5,0             |                   |
| Charakteristischer<br>Widerstand bei Zuglast | N <sub>Rk</sub>   | [kN]             | 0,7               | 1,4               |
| Charakteristischer                           | $V_{Rk,II}$       | [kN]             | 4,4               | 5,7               |
| Widerstand bei Querlast                      | V <sub>Rk,⊥</sub> | [kN]             | 2,6               | 3,7               |

| TOGE Betonschraube TSM high performance                                                                                      |            |
|------------------------------------------------------------------------------------------------------------------------------|------------|
| Leistungsmerkmale Vollblock aus Leichtbeton – charakteristische Tragfähigkeit, Montagekennwerte bei der Montage in Fugennähe | Anhang C23 |



# Tabelle 43: Verschiebungen

| Nutzungskategorie (Installati | trocken              |                  |                  |                  |
|-------------------------------|----------------------|------------------|------------------|------------------|
| TSM Schraubengröße            |                      |                  | 8                | 10               |
| Nominelle Einschraubtiefe     |                      | h <sub>nom</sub> | h <sub>nom</sub> | h <sub>nom</sub> |
| Nominelle Einschraubtiele     |                      | [mm]             | 65               | 75               |
| Zuglast                       | F <sub>N</sub>       | [kN]             | 0,17             | 0,34             |
| Managhialanna in 70 mialatura | $\delta_{\text{NO}}$ | [mm]             | 0,01             | 0,01             |
| Verschiebung in Zugrichtung   | $\delta_{N\varpi}$   | [mm]             | 0,02             | 0,02             |
| Querlast parallel zum Rand    | F <sub>V,II</sub>    | [kN]             | 1,14             | 1,46             |
| Verschiebung der Querlast     | δ <sub>V0,II</sub>   | [mm]             | 1,94             | 2,11             |
| parallel zum Rand             | δνω,ιι               | [mm]             | 2,92             | 3,16             |
| Querlast senkrecht zum Rand   | F <sub>V,⊥</sub>     | [kN]             | 0,66             | 0,94             |
| Verschiebung der Querlast     | δ <sub>V0,⊥</sub>    | [mm]             | 0,36             | 1,92             |
| senkrecht zum Rand            | δνω,⊥                | [mm]             | 0,54             | 2,89             |

TOGE Betonschraube TSM high performance

Leistungsmerkmale
Vollblock aus Leichtbeton – Verschiebungen

Anhang C24