

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-23/0099 of 18 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	TSM high performance
Product family to which the construction product belongs	Screw anchor for use in masonry
Manufacturer	TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND
Manufacturing plant	TOGE Dübel
This European Technical Assessment contains	39 pages including 3 annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330460-00-0604, Edition 08/2022
This version replaces	ETA-23/0099 issued on 1 August 2023

Page 2 of 39 | 18 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The TOGE concrete screw TSM high performance is an anchor in size 5.6, 8 and 10 mm made of galvanised steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Mechanical resistance and stability (BWR 1) Essential characteristic Performance Characteristic resistance to steel failure of a single $N_{Rk,s}$ screw anchor under tension loading see Annex C1 V_{Rk.s} [kN], M⁰_{Rk.s} Characteristic resistance to steel failure of a single see Annex C1 screw anchor under shear loading N_{Rk,p}, N_{Rk,b}, N_{Rk,p,c}, N_{Rk,b,c} Characteristic resistance to pull-out failure or brick see Annex B7, C4, C9, C14, C19, C23 breakout failure of a single screw anchor under $\alpha_{i,N}$ tension loading see Annex C3, C8, C13, C18, C23 $V_{\text{Rk,b,II}}, V_{\text{Rk,b,}\perp}, V_{\text{Rk,c,II}}, V_{\text{Rk,c,}\perp}$ Characteristic resistance to local brick failure and see Annex B7, C4, C9, C14, C19, C23 brick edge failure of a single screw anchor under shear loading $\alpha_{iVII}, \alpha_{iVI}$ see Annex C3, C8, C13, C18, C23 N_{Rk}^{g} Characteristic resistance to brick breakout failure of see Annex B7 a screw anchor group under tension loading $\alpha_{q,N}$ see Annex B7, C2, C8, C13, C18, C22 $V_{Rk,b,II}$, $V_{Rk,b,I}$, $V_{Rk,c,II}$, $V_{Rk,c,II}$ Characteristic resistance to local brick failure and see Annex B7 brick edge failure of a screw anchor group under $\alpha_{g,VII}, \alpha_{g,VII\perp}$ shear loading see Annex B7, C2, C8, C13, C18, C22

3.1

Page 4 of 39 | 18 March 2025

Essential characteristic	Performance
	c _{cr} , s _{crII} , s _{cr⊥} see Annex B7
Edge distances, joint distances, spacing, member thickness	$ c_{min}, c_{j11}, c_{j\perp}, s_{min11}, s_{min\perp} $ see Annex B7, C2, C8, C13, C18, C22 h_{min}
	see Annex C2, C7, C12, C17, C22
Resistance to combined tension and shear loading (hollow and perforated bricks)	Limit value X for interaction see Annex C14
Displacements	δ _{N0} , δ _{N∞} , δ _{V0} , δ _{V∞} see Annex C5, C10, C15, C 20, C 24

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A 1
Resistance to fire	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$N_{Rk,fi}^{g}$, s _{min,fi} , c _{min,fi} , c _{j,fi} see Annex C5, C10, C15, C20

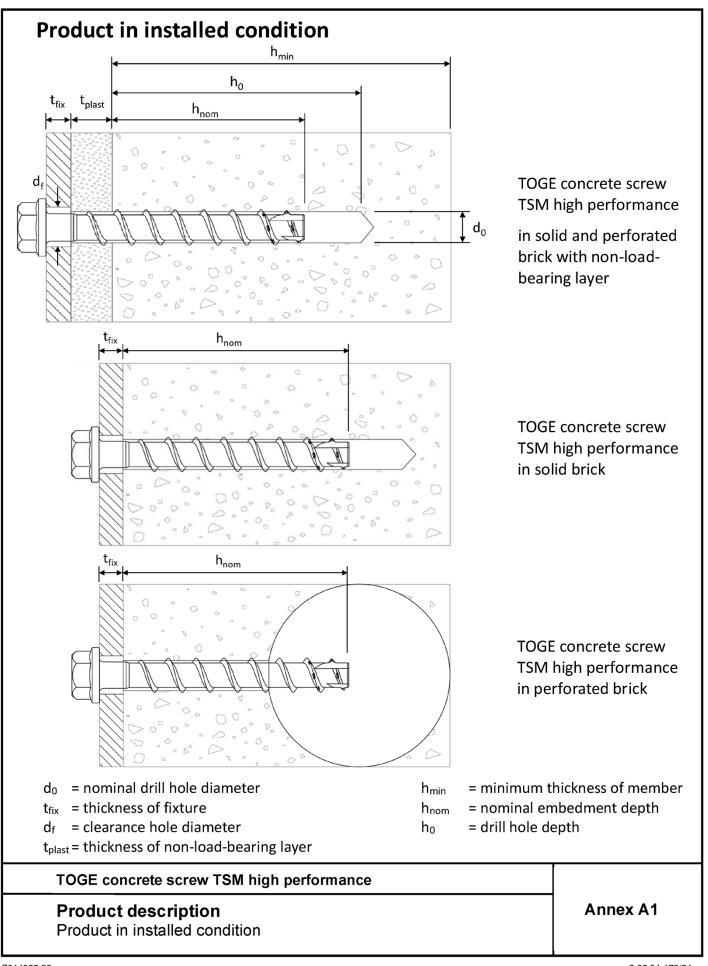
3.3 Aspects of durability

Essential characteristic	Performance
Durability	see Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330460-00-0604 the applicable European legal act is: 97/177/EC.

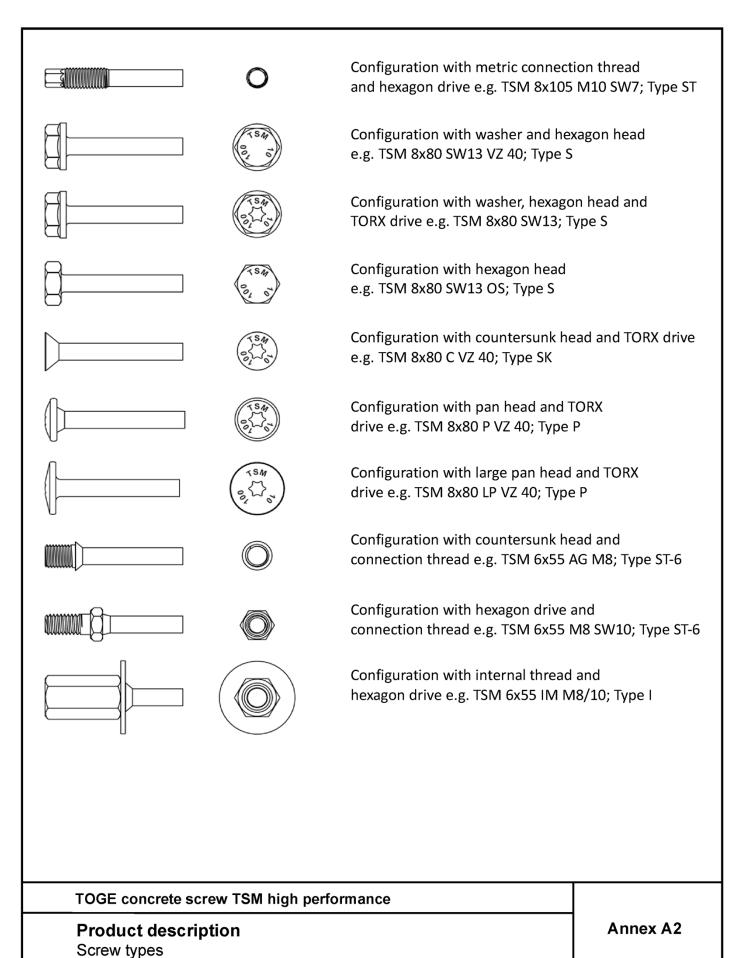
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 18 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Aksünger



Page 6 of European Technical Assessment ETA-23/0099 of 18 March 2025

English translation prepared by DIBt

Table 1: Material								
Part	Product name	Material						
All types	TSM high performance	 Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 Zinc flake coating according to EN ISO 10683:2018 (≥5µm) Zinc flake coating according to EN ISO 10683:2018 special coating TOGE KORR (≥20µm) 						
Part	Product name	Nominal characteristic steelYield strengthUltimate strength f_{vk} [N/mm²] f_{uk} [N/mm²]		Elongation A ₅ [%]				
All types	TSM high performance	560	700	≤8				

Table 2: Dimensions

TSM concrete screw size		5 6		8		10				
		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
		[mm]	35	35	55	45	65	55	75	
Screw length	≤L	[mm]						500		
Core diameter	dκ	[mm]	4,0	5	5,1 7,1			9	,1	
Thread outer diameter	ds	[mm]	6,5	7,5		10),6	12	2,6	

Marking:

TSM high performance	
Screw type:	TSM
Screw size:	10
Screw length:	100

TOGE concrete screw TSM high performance

Product description Material, dimensions and marking

Annex A3

Specification of Intended use

Anchorages subject to:

- Static or quasi-static actions in tension, shear or combined tension and shear or bending
- Exposure to fire (for dry masonry only)

Base materials:

- Masonry made of solid bricks and perforated bricks see Annex B3
- Minimum thickness of member h_{min} see Annexes C2, C7, C12, C17, C22
- Bearing joints must be completely filled with mortar of at least compressive strength class M5 according to EN 998-2:2016. Butt joints may, but do not have to be filled with mortar.
- In case of fire, all joints must be completely filled with mortar according to EN 998-2:2016 with strength class at minimum M5
- Dry or wet masonry (during installation)

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Temperature range of the masonry over the period of use: -40°C to +80°C

Design:

- The anchorage is designed in accordance with EOTA Technical Report TR 054:2022-07.
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Screws with nominal embedment depth smaller than 50 mm may only be used for anchoring of statically indeterminate systems
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor to supports, etc.).
- The screw may be placed in the wall side and in the reveal side of the masonry. The installation parameters for installation in the reveal side must be observed in accordance with Annex B8. In case of Silka XL solid calcium silicate brick KS 12DF, the installation is possible in the wall side only.
- For solid blocks, the characteristic load-bearing capacities also apply to larger block formats, greater compressive strengths and densities of the masonry blocks.
- Installation in the joint and close to the joint is not permitted; the distances to joints according annexes C3, C8, C13, C18, C23 must be observed.

TOGE concrete screw TSM high performance

Intended use Specification

Annex B1

Specification of Intended use - continuation

Installation:

- Bridging of non-load-bearing layers (e.g. plaster) is possible. When selecting the screw length L, the thickness of the plaster layer t_{plast} must be taken into account. L $\ge h_{nom} + t_{plast} + t_{fix}$ (see figures in Annex A1)
- During installation, the joint, axis and edge distances specified by the planner must be taken into account.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site
- The borehole is drilled with hammer, percussion, suction or masonry drills in hammer mode or rotary mode. The masonry must not be damaged during hammer drilling. If cracks occur during drilling, the rotary mode must be used. In this case, the drill hole must be discarded.
- Incorrectly drilled holes must be filled with high-strength mortar.

TOGE concrete screw TSM high performance

Intended use Specification continuation Annex B2

Table 3: Solid and perforate	ed bricks, dimer	nsions and pro	perties				
	Solid calcium si	ilicate brick KS a	cc. to DIN EN 771-2:	2015-11			
	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Annex		
	KS 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 26,0	≥ 2,0	C2 – C6		
-	Silka XL solid ca	lcium silicate bri	ck KS 12DF acc. to DIN	N EN 771-2:20	15-11		
	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Annex		
	KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 D: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	C7 – C11		
	Perforated calc	ium silicate bric	k KSL 3DF acc. to DI	N EN 771-2:20)15-11		
	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Annex		
	SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 D: ≥ 175 H: ≥ 113	≥ 17,0	≥ 1,5	C12 - C16		
	Solid clay brick MZ acc. to DIN EN 771-1:2015-11						
	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Annex		
	MZ 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	C17 – C21		
	Solid light weig	ht concrete bric	ck acc. to DIN EN 771	-3:2015-11			
and the second sec	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Annex		
	VBL 4 - 1,0 - 2DF	L: ≥ 240 D: ≥ 115 H: ≥ 113	≥ 4,0	≥ 1,5	C22 – C24		
				-			
TOGE concrete screw Intended use Solid and perforated br	Annex B3						

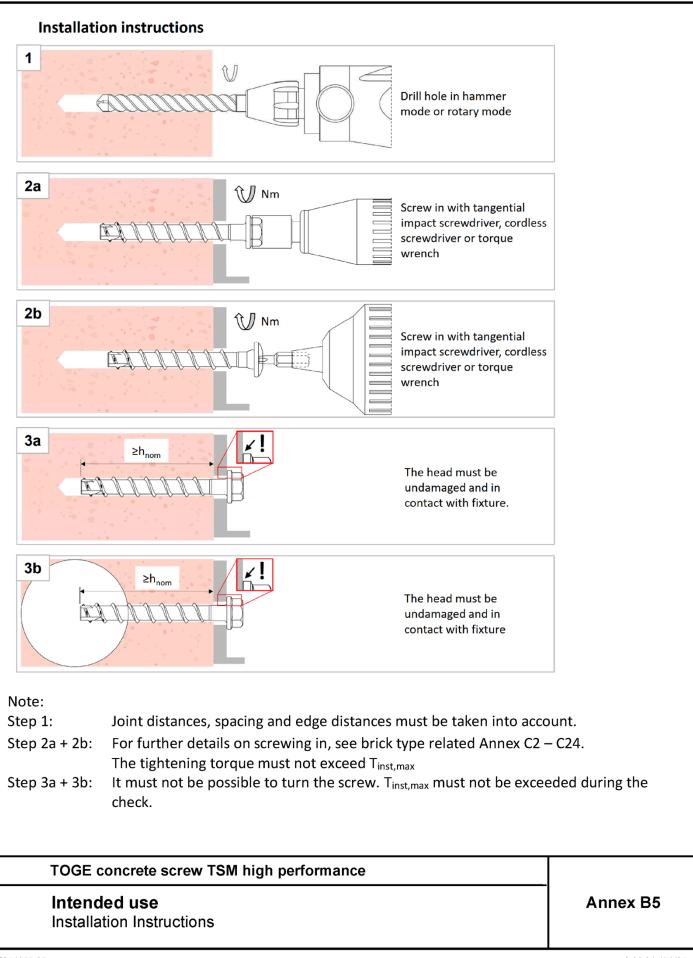
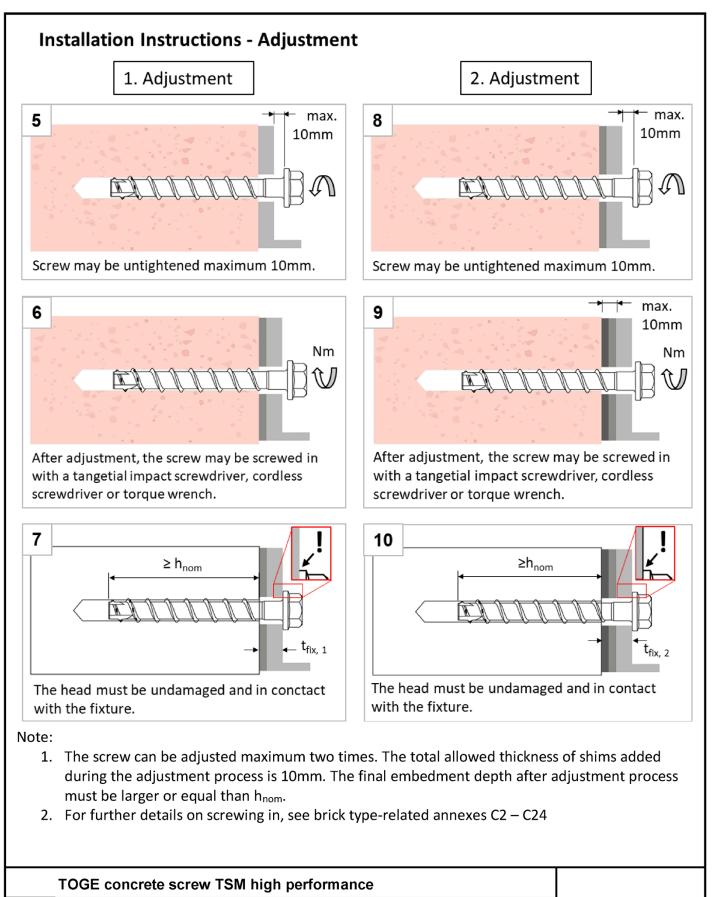
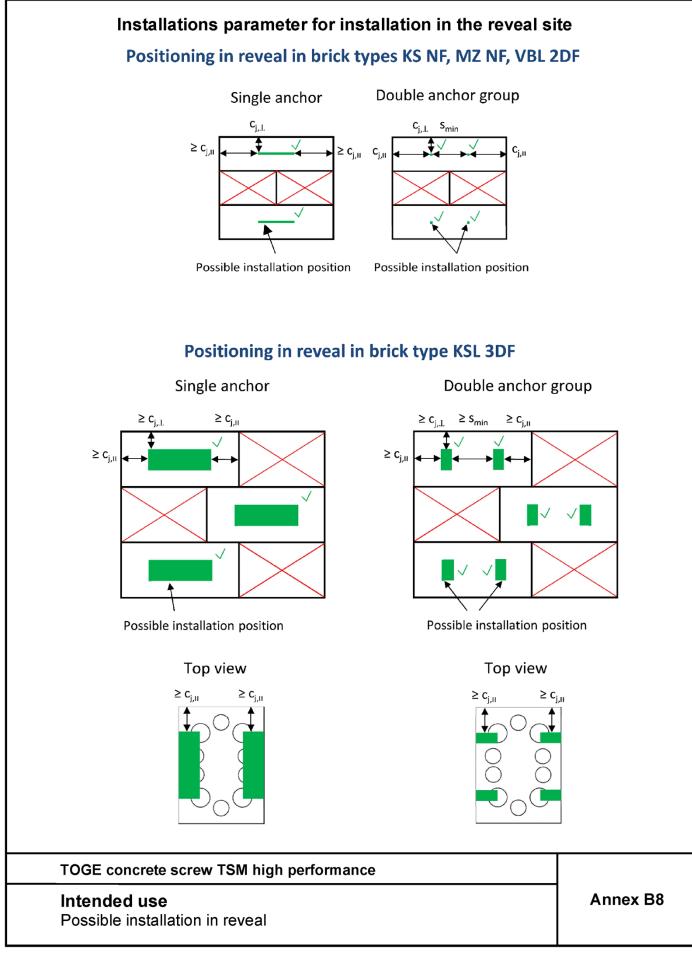


Table 4: General installation parameters									
TSM screw size 5 6 8					3	1	0		
Nominal ambadment denth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	do	[mm]	5	(5	8		1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,40		6,40 8,45		10,	45
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter	d _f ≤	[mm]	7	5	3	1	2	1	4


TOGE concrete screw TSM high performance

Intended use General installation parameters Annex B4

Intended use


Installation instruction – adjustment

Annex B6

Possible installation positions, the distance c _j must be observed	
$N_{Rk,p} = N_{Rk,b}$ $\stackrel{i}{\searrow} C_{j l}$ $\stackrel{i}{\bigcirc} V_{Rk,b,\perp}$ $\stackrel{i}{\bigcirc} V_{Rk,b,\perp}$ $\stackrel{i}{\bigcirc} V_{Rk,c,\perp,0}$	nin⊓) 4g,V⊥ (SminII)
↓ V ^g _{Rk,c,I} ; α _{g,VI} (Smin1)	
$V_{Rk,b,II}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⊥) $lpha$ g,V⊥(Smin⊥)
unit ↓ V ^g _{Rk,c,II} , α _{g,VI} (Smin⊥)	
$\begin{array}{lll} c_{j\perp} & = distance to the horizontal joints without influence on resistance of the screen similary in the series of the screen similary in the$	rew anchor = 1,5h _{nom} joint horizontal joint ∨ ⊫ (s _{min ⊥}))
$\begin{split} N_{Rk} &= N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c} \\ V_{Rk, \perp} &= V_{Rk,,b \perp} = V_{Rk,c \perp}; \ V_{Rk, \perp} = V_{Rk,c \perp} = V_{Rk,c \perp} \end{split}$	
$ \begin{split} & \mbox{Für } s \geq s_{cr}: \ \alpha_{g,N} \left(s_{min \ II} \right) = \alpha_{g,N} \left(s_{min \ L} \right) = \alpha_{g,V \ II} = \alpha_{g,V \ II} = 2 \\ & \mbox{Für } s_{min} \leq s \leq s_{cr}: \ \alpha_{g,N} \left(s_{min \ II} \right); \ \alpha_{g,N} \left(s_{min \ L} \right); \ \alpha_{g,V \ II}, \ \alpha_{g,V \ II} \ according to installation parameters \\ & \ N^{g}_{Rk} (s_{min \ II}) = \alpha_{g,N} \left(s_{min \ II} \right) \times N_{Rk} (group \ of \ 2 \ anchors \ with \ minimum \ spacing \ parallel \ to \ here \\ & \ N^{g}_{Rk} (s_{min \ II}) = \alpha_{g,N} \left(s_{min \ II} \right) \times N_{Rk} (group \ of \ 2 \ anchors \ with \ minimum \ spacing \ perpendicular \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II} \times V_{Rk, \ II} (group \ of \ 2 \ anchors) \\ & \ N^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ of \ 4 \ anchors) \\ & \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II}; \ V^{g}_{Rk, \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ II) \ V^{g}_{Rk \ II} (group \ II) \ V^{g}_{Rk \ II} = \alpha_{g,V \ II}^{2} \times V_{Rk, \ II} (group \ II) $	orizontal joint)
TOGE concrete screw TSM high performance Intended use Possible installation position	Annex B7

Table 5: Characteristic resistance to steel failure									
TSM screw size			5		6	5	3	1	0
Nominal embedment depth		h_{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Steel failure for tension and shear loading									
Characteristic resistance under tension loading	N _{Rk,s}	[kN]	8,7	1	4,0	27	7,0	45	,0
Partial factor	$\gamma_{Ms,N}$ 1)	[-]				1,5			
Characteristic resistance under shear loading	V _{Rk,s}	[kN]	4,4	7	7,0	13,5	17,0	22,5	34,0
Partial factor	γ _{Ms,V} ¹⁾ [-] 1,25								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	5,3	1	0,9	26	<i>5,</i> 0	56	,0

¹⁾ In absence of other national regulations

TOGE concrete screw TSM high performance

Performances

Characteristic resistance to steel failure

Table 6: Material characteristics solid calcium silicate brick KS

BUTTER ALL CARD	Solid calcium silicate brick KS acc. to DIN EN 771-2:2015-11								
AND A LAND A	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]				
and the second second	KS 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 26,0	≥ 2,0	240				

Table 7: Installation parameters solid calcium silicate brick KS

Use category (installation)					(dry or w	et			
TSM screw size			5	6		Ľ,	5	8		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
		[mm]	35	35	55	45	65	55	75	
Nominal drill hole diameter	d ₀	[mm]	5	(5	5	3	1	0	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,	40	8,45		10,45		
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95	
Clearance hole diameter	d _f ≤	[mm]	7	5	3	12		14		
Torque for manual	max.	[Nm]	6	1	1	27		37	46	
installation	T _{inst}		-							
			Max. torque according to the manufacturer's						s	
Impact screw driver	act screw driver T _{imp,max} [Nn				i	nstructio	ns			
				185				300		

Table 8: Min. edge distance, spacing, group factors

TSM screw size			5		6	8		10		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
			35	35	55	45	65	55	75	
Min. edge distance	C _{min}	[mm]	80							
Min. spacing	S _{min,II} = S _{min, 1}	[mm]	80							
	$\alpha_{g,N}$ (Smin,II)	[-]	1,65	1,70	1,05	1,15	1,15	1,05	1,65	
Crown factors	$\alpha_{g,N}$ (s _{min, 1})	[-]	1,55	1,70	1,05	1,15	1,20	1,10	1,20	
Group factors	α _{g,V,II}	[-]	1,55	1,55	1,35	1,15	1,05	1,05	1,35	
	$lpha_{g,V, \perp}$	[-]	1,30							

TOGE concrete screw TSM high performance

Performances

Solid calcium silicate brick KS – material characteristics, installation parameters, min. edge distance and spacing, group factors

Annex C2

Z014955.25

Table 9: Reduction factors depending on the distance to joints

TSM screw size	TSM screw size								
Distance to joints	C _{j⊥}	[mm]	≥35						
Distance to joints	Сј 11	[mm]	≥80						
Reduction factor	r 1	1 (full resistance)							
Reduction factor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (full resistance)						
Distance to isinte	C _{j⊥}	[mm]	<35						
Distance to joints	Сј II		<80						
Reduction factor	α _{j, N}	[-]	Screw must not be used						

TOGE concrete screw TSM high performance

Performances

Solid calcium silicate brick KS – installation parameters close to the joints

Deutsches Institut für Bautechnik

Table 10: Characteristic resistances

Use category (installation)					(dry or w	et		
TSM screw size			5		6	8	3	1	0
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Compressive strength f _{mean}	[N/m	[N/mm²]		≥ 26,0					
Characteristic resistance to tension load	N _{Rk}	[kN]	3,5	3,1	4,9	4,1	4,3	3,8	4,5
Characteristic resistance to	V _{Rk,II}	[kN]	5 <i>,</i> 3	5,3	8,6	6,3	11,3	7,7	13,0
shear load	V _{Rk,,⊥}	[kN]				3,3			
Compressive strength fmean	[N/m	[N/mm ²]		≥ 30,0					
Characteristic resistance to tension load	N _{Rk}	[kN]	3,7	3,4	5 <i>,</i> 3	4,4	4,6	4,0	4,8
Characteristic resistance to	V _{Rk,II}	[kN]	5,7	5,7	9,3	6,7	12,1	8,3	13,9
shear load	V _{Rk,⊥}	[kN]				3,5			
Compressive strength f _{mean}	[N/m	nm²]				≥ 35,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	4,0	3,7	5,7	4,8	5,0	4,4	5,2
Characteristic resistance to	V _{Rk,II}	[kN]	6,1	6,1	10,0	7,3	13,1	8,9	15,0
shear load	V _{Rk,⊥}	[kN]				3,8			
Compressive strength f _{mean}	[N/m	nm²]				≥ 38,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	4,2	3,8	6,0	5,0	5,2	4,5	5,4
Characteristic resistance to	V _{Rk,II}	[kN]	6,4	6,4	10,4	7,6	13,7	9,3	15,7
shear load	V _{Rk,⊥}	[kN]	4,0						

TOGE concrete screw TSM high performance

Performance

Solid calcium silicate brick KS - characteristic resistances

Table 11: Displacements

Use category (installation)					(dry or w	et		
TSM screw size			5		6	5	3	10	
i Nominal empegment deptrission		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	1,00	0,89	1,40	1,17	1,23	1,09	1,29
Displacement in tension	δ_{N0}	[mm]	0,02	0,04	0,04	0,04	0,03	0,02	0,01
direction	$\delta_{N^{\infty}}$	[mm]	0,03	0,08	0,08	0,07	0,05	0,04	0,03
Shear load parallel to the edge	Fv,ıı	[kN]	1,51	1,51	2,46	1,80	3,23	2,20	3,71
Displacement in shear	δ _{ν0,} ,	[mm]	0,93	0,09	1,51	0,52	1,00	0,22	0,98
direction parallel to the edge	δν∞,п	[mm]	1,40	0,13	2,26	0,78	1,50	0,33	1,46
Shear load perpendicular to the edge	F _{V,⊥}	[kN]				0,94			
Displacement in shear	δ _{v0,⊥}	[mm]		0,22			0,03		0,02
direction perpendicular to the edge	δ _{V∞,⊥}	[mm]		0,33			0,05		0,03

Table 12: Performance under fire exposure for anchor groups

TSM screw size			5	E	õ	5	3	10				
Nominal embedmer	ıt	t h _{nom}		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}			
depth	[mm]		35	35	55	45	65	55	75			
Characteristic resistance to local brick failure of groups under fire exposure												
		R30-R90	0,09 ·	0,09 ·	0,15 ·	0,12 ·	0,18 ·	0,15 ·	0,24 ·			
$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$	[kN]	N30-N90	N ^g _{Rk,b}									
N ^g _{Rk,p,fi}		R120	0 <i>,</i> 08 ·	0,08 ·	0,12 ·	0,10 ·	0,15 ·	0,12 ·	0,19 ·			
		NIZU	N ^g _{Rk,b}									
Min. edge distance	[mm]	$C_{min,fi} = C_{j,fi}$				2 x h _{nom} 1)						
and spacing		[mm] S _{min,fi}		107								

¹⁾ At least the distances set out in Table 13 shall be observed

TOGE concrete screw TSM high performance

Performances

Solid calcium silicate brick KS – displacements and performance under fire exposure for anchor groups

TSM screw size				5	(5	5	3	1	0
Nominal ambadm	ont donth		h _{nom}	h _{nom1}	\mathbf{h}_{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	\mathbf{h}_{nom1}	h _{nom2}
Nominal embedm	ent depth		[mm]	35	35	55	45	65	55	75
Steel failure for te	ension and	d shear load	1							
	R30	N _{Rk,s,fi30}	[kN]	1,3	1,3	1,3	1,3	1,3	3,4	3,4
	R60	N _{Rk,s,fi60}	[kN]	1,0	1,0	1,0	1,0	1,0	2,7	2,7
	R90	N _{Rk,s,fi90}	[kN]	0,6	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,s,fi120}	[kN]	0,5	0,5	0,5	0,5	0,5	1,7	1,7
	R30	V _{Rk,s,fi30}	[kN]	1,3	1,3	1,3	1,3	1,3	3,4	3,4
Characteristic	R60	V _{Rk,s,fi60}	[kN]	1,0	1,0	1,0	1,0	1,0	2,7	2,7
resistance	R90	V _{Rk,s,fi90}	[kN]	0,6	0,6	0,6	0,6	0,6	2,0	2,0
	R120	V _{Rk,s,fi120}	[kN]	0,5	0,5	0,5	0,5	0,5	1,7	1,7
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,8	1,1	1,1	1,5	1,5	4,9	4,9
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,5	0,8	0,8	1,1	1,1	4,0	4,0
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	0,5	0,5	0,8	0,8	3,0	3,0
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,4	0,4	0,6	0,6	2,5	2,5
Pull-out failure										
Characteristic resistance	R30	N _{Rk,p,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	3,4	3,4
	R60	N _{Rk,p,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	2,7	2,7
	R90	N _{Rk,p,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,7	1,7
Breakout failure	•		1			1		1	1	1
	R30	N _{Rk,b,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	3,4	3,4
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	2,7	2,7
resistance	R90	N _{Rk,b,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,7	1,7
Edge and joint di		111,0,1120							,	,
Luge and joint di	stance	C + c=								
R30 - R120		C _{min,fi} = Cj,fi,II	[mm]				120			
N30 - N120		Cj,fi,⊥	[mm]				35			
Spacing		-),,,,	[]							
R30 - R120		[mm]				4 x h _{nom}				
TOGE conc	rete screw	TSM high p	perform	ance						

Solid calcium silicate brick KS - characteristic resistance under fire

exposure

Table 14: Material characteristics Silka XL solid calcium silicate brick KS 12DF

	Silka XL solid calcium silicate brick KS 12DF acc. to DIN EN 771-2:2015-11											
A TRANSPORT OF A 100 MILLION AND A	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]							
and the second	KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 D: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	175							

Table 15: Installation parameters Silka XL solid calcium silicate brick KS 12DF

Use category (installation)					(dry or w	et		
TSM screw size			5	6		5	3	10	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	d ₀	[mm]	5	6			3	1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,4	10	8,	45	10,	45
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter	d _f ≤	[mm]	7	8		1	2	1	4
Torque for manual installation	max. T _{inst}	[Nm]	6	10	ס	2	5	4	5
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	8	10		No perf	ormance	assessed	l
			Max. to	rque acc	ording t	to the ma	anufactur	er's instr	uctions
Impact screw driver	T _{imp,max}	[Nm]	No performance assessed		185	300			

TOGE concrete screw TSM high performance

Performances

Silka XL solid calcium silicate brick KS 12DF – material characteristics, installation parameters

Table 16: Min edge distance, spacing, group factors

TSM screw size	TSM screw size			5 6			8		0
Nominal ombodmo	Nominal embedment depth [mn		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
			35	35	55	45	65	55	75
Min. edge distance	C _{min}	[mm]	80						
Min. spacing	S _{min,II} = S _{min,⊥}	[mm]	80						
	α _{g,N} (S _{min Ⅱ})	[-]	1,65	1,65	1,75	1,40	1,40	1,60	1,30
Crown factors	α _{g,N} (s _{min ⊥})	[-]	1,30	1,30	1,80	1,25	1,25	1,40	1,25
Group factors	α _{g,V,II}	[-]	2,00	2,00	1,65	2,00	1,65	1,40	1,40
	$lpha_{g,V,\perp}$	[-]	2,00	2,00	1,45	2,00	1,10	1,40	1,05

Table 17: Reduction factors depending on the distance to joints

TSM screw size	TSM screw size								
Distance to joints	Cj⊥	[mm]	≥40						
Distance to joints	Сј 11	[[11111]	≥80						
Reduction factor	α _{j, N}	1	1 (full resistance)						
	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]							
Distance to joints	Cj⊥	[mm]	<40						
Distance to joints	Сј II			<4	40				
Reduction factor	[-]	Screw must not be used							

TOGE concrete screw TSM high performance

Performances

Silka XL solid calcium silicate brick KS 12DF – min. edge distance and spacing, group factors group factors and installation parameters close to the joints

Table 18: Characteristic resistances

	lice estagen (installation)				dur, e uet							
Use category (installation)						ry or we	et					
TSM screw size			5	6		8		10				
Nominal ambadmant danth	Nominal embedment depth		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}			
		[mm]	35	35	55	45	65	55	75			
Compressive strength fmean	[N/m	חm²]	≥ 14,0									
Characteristic resistance to tension load	N _{Rk}	[kN]	2,3	2,3	4,1	6,3	6,3	6,4	6,7			
Characteristic resistance to	V _{Rk,II}	[kN]	3,2	3,2	9,7	3,2	9,7	17,4	17,4			
shear load	V _{Rk,⊥}	[kN]	3,6	3,6	8,3	3,6	7,5	5,9	9,8			
Compressive strength f _{mean}	[N/m	וm²]		≥ 15,0								
Characteristic resistance to tension load	N _{Rk}	[kN]	2,4	2,4	4,3	6,5	6,5	6,6	6,9			
Characteristic resistance to	V _{Rk,II}	[kN]	3,3	3,3	10,1	3,3	10,1	18,0	18,0			
shear load	V _{Rk,⊥}	[kN]	3,7	3,7	8,6	3,7	7,8	6,1	10,1			
Compressive strength f _{mean}	[N/m	זm²]				≥ 20,0						
Characteristic resistance to tension load	N _{Rk}	[kN]	2,8	2,8	4,9	7,5	7,5	7,6	8,0			
Characteristic resistance to	V _{Rk,II}	[kN]	3,8	3,8	11,7	3,8	11,7	20,8	20,8			
shear load	V _{Rk,⊥}	[kN]	4,3	4,3	9,9	4,3	9,0	7,0	11,7			

TOGE concrete screw TSM high performance

Performances

Silka XL solid calcium silicate brick KS 12DF – characteristic resistances

Table 19: Displacements

Use category (installation)					(dry or w	et		
TSM screw size			5	6		5	3	10	
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	0,66	0,66	1,17	1,80	1,80	1,83	1,91
Displacement in tension	δ_{N0}	[mm]	0,02	0,02	0,04	0,01	0,01	0,01	0,02
direction	$\delta_{N^{\infty}}$	[mm]	0,04	0,04	0,08	0,02	0,02	0,02	0,05
Shear load parallel to the edge	F _V ,	[kN]	0,91	0,91	2,77	0,91	2,77	4,97	4,97
Displacement in shear	δ _{ν0,}	[mm]	0,98	0,98	3,00	0,98	3,00	2,95	2,95
direction parallel to the edge	δ _{ν∞,ιι}	[mm]	1,47	1,47	4,50	1,47	4,50	4,42	4,42
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	1,03	1,03	2,37	1,03	2,14	1,69	2,80
Displacement in shear δ		[mm]	0,42	0,42	0,03	0,42	1,00	0,05	0,44
direction perpendicular to the edge	δ _{v∞,⊥}	[mm]	0,63	0,63	0,05	0,63	1,50	0,08	0,66

Table 20: Performance under fire exposure for anchor groups

TSM screw size			5	e	5	5	3	1	0	
Nominal embedmen	bedment h _{nom}		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
depth		[mm]		35	55	45	65	55	75	
Characteristic resistance to local brick failure of groups under fire exposure										
		R30-R90	0 <i>,</i> 09 ·	0,09 ·	0,15 ·	0,12 ·	0,18 ·	0,15 ·	0,24 ·	
$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$	[kN]	K30-K90	N ^g _{Rk,b}	$N^{g}_{Rk,b}$						
N ^g _{Rk,p,fi}		R120	0,08 ·	0,08 ·	0,12 ·	0,10 ·	0,15 ·	0,12 ·	0,19·	
		N120	N ^g _{Rk,b}	$N^{g}_{Rk,b}$						
Min. edge distance	[mm]	C _{min,fi} = C _{j,fi}				2 x h _{nom} 1)				
and spacing		S _{min,fi}	107							

¹⁾ At least the distances set out in Table 21 shall be observed

TOGE concrete screw TSM high performance

Performances

Silka XL solid calcium silicate brick KS 12DF – displacements and performance under fire exposure for anchor groups

Table 21: Fire ex TSM screw size				5		5	8	3	1	0
			h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedme	nt depth		[mm]	35	35	55	45	65	55	75
Steel failure for te	ension and	d shear load								
	R30	N _{Rk,s,fi30}	[kN]	1,1	1,5	1,5	1,3	1,3	3,4	3,4
	R60	N _{Rk,s,fi60}	[kN]	0,8	1,1	1,1	1,0	1,0	2,7	2,7
	R90	N _{Rk,s} ,fi90	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,s,fi120}	[kN]	0,3	0,4	0,4	0,5	0,5	1,7	1,7
	R30	V _{Rk,s,fi30}	[kN]	1,1	1,5	1,5	1,3	1,3	3,4	3,4
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,8	1,1	1,1	1,0	1,0	2,7	2,7
resistance	R90	V _{Rk,s,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	V _{Rk,s,fi120}	[kN]	0,3	0,4	0,4	0,5	0,5	1,7	1,7
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,8	1,2	1,2	1,5	1,5	4,9	4,9
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,5	0,9	0,9	1,1	1,1	4,0	4,0
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	0,5	0,5	0,8	0,8	3,0	3,0
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,3	0,3	0,6	0,6	2,5	2,5
Pull-out failure										
	R30	N _{Rk,p,fi30}	[kN]	1,1	0,4	0,72	1,3	1,3	3,4	3,4
Characteristic resistance	R60	N _{Rk,p,fi60}	[kN]	0,8	0,4	0,72	1,0	1,0	2,7	2,7
	R90	N _{Rk,p,fi90}	[kN]	0,5	0,4	0,72	0,6	0,6	2,0	2,0
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,32	0,57	0,5	0,5	1,7	1,7
Due also set fails una		•••••••••••••••••••••••••••••••••••••••		-/-			- /	-,-		
Breakout failure	D 20		FL NJ		0.00	0.70	1.2	1.2	2.4	2.4
	R30	N _{Rk,b,fi30}	[kN]	1,1	0,28	0,79	1,3	1,3	3,4	3,4
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,8	0,28	0,79	1,0	1,0	2,7	2,7
resistance	R90	N _{Rk,b,fi90}	[kN]	0,5	0,28	0,79	0,6	0,6	2,0	2,0
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,23	0,63	0,5	0,5	1,7	1,7
Edge and joint dis	stance									
R30 - R120		C _{min,fi} = Cj,fi,II	[mm]				120			
		Cj,fi,⊥	[mm]				35			
Spacing										
R30 - R120		S _{cr,fi}	[mm]				4 x h _{nom}			
TOGE concr Performar		TSM high p	perform	ance				-	Annex	044

resistance under fire exposure

Table 22: Material characteristics perforated calcium silicate brick KSL 3DF

Perforated calc	ium silicate br	ick KSL 3DF acc. to D	IN EN 771-	2:2015-11
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]
SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 D: ≥ 175 H: ≥ 113	≥ 17,0	≥ 1,5	175

Table 23: Installation parameters perforated calcium silicate brick KSL 3DF

Use category (installation)					(dry or w	et		
TSM screw size			5	6		5	3	10	
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	d ₀	[mm]	5		6	5	3	1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,	.40	8,	45	10,	45
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter	d _f ≤	[mm]	7		8	1	2	1	4
Torque for manual installation	max. T _{inst}	[Nm]	3		4	Q,	Ð	0)
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	9	11		No perfo	ormance	assessed	
			Max. to	rque ac	cording t	to the ma	anufactur	er's instr	uctions
Impact screw driver	T _{imp,max}	[Nm]	No perforr asses	nance	100		20	00	

TOGE concrete screw TSM high performance

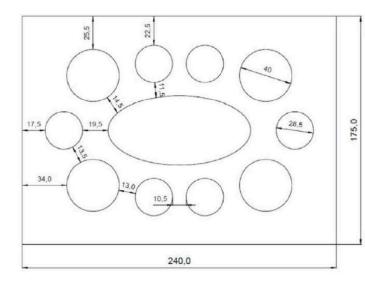

Performances Perforated calcium silicate brick KSL 3DF- material characteristics, installation parameters

Table 24: Min. edge distance, spacing, group factors									
TSM screw size			5		6	٤	8	1	.0
Nominal embedme	nt donth	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
	[mm]	35	35	55	45	65	55	75	
Min. edge distance	C _{min}	[mm]	58						
Min. spacing	S _{min,II} = S _{min,⊥}	[mm]				80			
	α _{g,N} (S _{min II})	[-]	2,00	2,00	2,00	1,55	1,55	1,95	1,80
Croup factors	α _{g,N} (s _{min ⊥})	[-]	2,00	2,00	2,00	1,55	1,55	1,45	1,70
Group factors $\alpha_{g,V,II}$		[-]	2,00	2,00	2,00	2,00	2,00	2,00	2,00
	[-]	2,00	1,80	1,80	1,80	1,80	1,30	1,30	

Table 25: Reduction factors depending on the distance to joints

TSM screw size	5	6	8	10				
Dinstance to joints	Cj⊥	[mm]	≥35					
	Сј 11	[[11111]		≥5	58			
Reduction factor	α _{j, N}	[-]	1	(full ro	cictonco			
	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (full resistance)					
Distance to joints	Cj⊥	[mm]		<3	35			
Distance to joints	Сј II			<"	58			
Reduction factor	[-]	Scre	w must	not be	used			

TOGE concrete screw TSM high performance

Performance

Perforated calcium silicate brick KSL 3DF - min. edge distance and spacing, group factors and installation parameters close to the joints

Page 29 of European Technical Assessment ETA-23/0099 of 18 March 2025

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Table 26: Characteristic resistances

Use category (installation)					C	ry or we	et			
TSM screw size			5	E	5	8		1	0	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Compressive strength f _{mean}	[N/n	[mm] 2m²]	35	35	55	45 ≥ 17,0	65	55	75	
Characteristic resistance to tension load	N _{Rk}	[kN]	1,1	1,1	1,1	1,6	1,6	2,2	2,2	
Characteristic resistance to	V _{Rk,II}	[kN]				3,4				
shear load	V _{Rk,⊥}	[kN]	1,6	1,6	1,6	1,6	1,6	2,2	2,2	
Compressive strength f _{mean}	[N/n	[N/mm ²]		[N/mm ²] ≥ 20,0						
Characteristic resistance to tension load	N _{Rk}	[kN]	1,3	1,3	1,3	1,9	1,9	2,5	2,5	
Characteristic resistance to	V _{Rk,II}	[kN]	3,8	3,8	3,8	3,8	3 <i>,</i> 8	3,9	3,9	
shear load	V _{Rk,⊥}	[kN]	1,8	1,8	1,8	1,8	1,8	2,5	2,5	
Compressive strength f _{mean}	[N/n	nm²]				≥ 25,0				
Characteristic resistance to tension load	N _{Rk}	[kN]	1,5	1,5	1,5	2,2	2,2	3,0	3,0	
Characteristic resistance to	V _{Rk,II}	[kN]	4,5	4,5	4,5	4,5	4,5	4,6	4,6	
shear load	V _{Rk,⊥}	[kN]	2,1	2,1	2,1	2,1	2,1	2,9	2,9	
Interaction	Х	[-]				1,0				

TOGE concrete screw TSM high performance

Performance

Perforated calcium silicate brick KSL 3DF - Characteristic resistances

Table 27: Displacements

Use category (Installation)					(dry or w	et		
TSM screw size			5	5 6 8			1	0	
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth	_	[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	0,31	0,31	0,31	0,46	0,46	0,63	0,63
Displacement in tension	δ_{N0}	[mm]	0,01	0,01	0,01	0,01	0,01	0,01	0,01
direction	δ_{N^∞}	[mm]	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Shear load parallel to the edge	F _{V,II}	[kN]				0,97			
Displacement in shear	δ _{ν0,} ,	[mm]	0,80	0,80	0,80	0,80	0,80	1,42	1,42
direction parallel to the edge	δγ∞,ιι	[mm]	1,19	1,19	1,19	1,19	1,19	2,12	2,12
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,46	0,46	0,46	0,46	0,46	0,63	0,63
Displacement in shear	$\delta_{V0,\perp}$	[mm]	0,01	0,01	0,01	0,01	0,01	0,01	0,01
direction perpendicular to the edge	δ _{V∞,⊥}	[mm]	0,02	0,02	0,02	0,02	0,02	0,02	0,02

Table 28: Performance under fire exposure for anchor groups

TSM screw size			5	E	5			
Nominal embedment de	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}				
Nominal embedment de	pth	[mm]	35	35	55			
Characteristic resistance	to local	brick failure of g	roups under fire	exposure				
	[LN]	R30-R90	0,09 · N ^g _{Rk,b}	0,09 · N ^g _{Rk,b}	0,15 · № _{Rk,b}			
$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} = N^{g}_{Rk,p,fi}$	[kN]	R120	0,08 · N ^g _{Rk,b}	0,08 ⋅ N ^g _{Rk,b}	0,12 · N ^g _{Rk,b}			
Min. edge distance and	C _{min,fi} = C _{j,fi}		2 x h _{nom} 1)					
spacing	[mm]	S _{min,fi}	107					

¹⁾ At least the distances set out in Table 29 shall be observed

TOGE concrete screw TSM high performance

Performances

Perforated calcium silicate brick KSL 3DF – displacements and performance under fire exposure for anchor groups

Page 31 of European Technical Assessment ETA-23/0099 of 18 March 2025

English translation prepared by DIBt

TSM screw size				5		6
Newinglanded	ant danth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedm	ent depth		[mm]	35	35	55
Steel failure for t	ension and	d shear load				
	R30	N _{Rk,s,fi30}	[kN]	0,7	1,0	1,0
	R60	N _{Rk,s,fi60}	[kN]	0,6	0,8	0,8
	R90	N _{Rk,s,fi90}	[kN]	0,4	0,5	0,5
	R120	N _{Rk,s,fi120}	[kN]	0,3	0,4	0,4
	R30	V _{Rk,s,fi30}	[kN]	0,7	1,0	1,0
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,6	0,8	0,8
resistance	R90	V _{Rk,s,fi90}	[kN]	0,4	0,5	0,5
	R120	V _{Rk,s,fi120}	[kN]	0,3	0,4	0,4
	R30	M ⁰ Rk,s,fi30	[Nm]	0,5	0,8	0,8
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,4	0,6	0,6
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,2	0,4	0,4
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,3	0,3
Pull-out failure						
	R30	N _{Rk,p,fi30}	[kN]	0,7	0,6	0,6
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,6	0,4	0,4
resistance	R90	N _{Rk,p,fi90}	[kN]	0,4	0,3	0,3
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,2	0,2
Breakout failure	•	1 ///			1	1
	R30	N _{Rk,b,fi30}	[kN]	0,7	0,6	0,6
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,6	0,4	0,4
resistance	R90	N _{Rk,b,fi90}	[kN]	0,4	0,3	0,3
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,2	0,2
Edge and joint di	stance		1 1		, ·	
		C _{min,fi} =				
R30 - R120		Cj,fi,II	[mm]		101	
		Cj,fi,⊥	[mm]		56	
Spacing			· · ·			
R30 - R120		S _{cr,fi}	[mm]		4 x h _{nom}	
TOGE conc	rete screw	TSM high p	erforman	ice		

Perforated calcium silicate brick KSL 3DF - characteristic

resistance under fire exposure

Table 30: Material characteristic solid clay brick MZ

Solid
Nome
20 -

	Solid clay brick	MZ acc. to D	IN EN 771-1:2015-11		
7	Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]
	MZ 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	240

Table 31: Installation parameters solid clay brick MZ

Use category (installation)					(dry or w	et		
TSM screw size			5	6		8		10	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	d ₀	[mm]	5	ť	5	8	3	1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,	40	8,4	45	10,	45
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter	d _f ≤	[mm]	7	5	3	1	2	1	4
Torque for manual	max.	[Nima]	2			1	c	2	,
installation	T _{inst}	[Nm]	2		3	L	6	2	3
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	4	Q	9	1	4	N perfor asse	mance
			N	lax. torc	lue acco	rding to t	the manu	Ifacturer'	s
Impact screw drvier	T _{imp,max}	[Nm]			i	nstructio	ns		
				No perfo	ormance	assessed	1	18	5

TOGE concrete screw TSM high performance

Performances Solid clay brick MZ – material characteristic, installation parameters

Table 32: Min. edge distance, spacing, group factors										
TSM screw size	TSM screw size					٤	8	1	.0	
Nominal ombodme	Nominal embedment depth			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
	[mm]	35	35	55	45	65	55	75		
Min. edge distance	C _{min}	[mm]		80						
Min. spacing	S _{min,II} = S _{min,⊥}	[mm]		80						
	α _{g,N} (S _{min II})	[-]	1,60	1,60	1,60	1,00	1,00	1,70	1,10	
Croup factors	α _{g,N} (S _{min ⊥})	[-]	1,75	1,75	1,75	1,15	1,15	1,45	1,40	
Group factors $\alpha_{g,V,II}$		[-]	1,45	1,45	1,45	1,45	1,45	2,00	1,05	
	α _{g,V, ⊥}	[-]	1,20	1,20	1,20	1,20	1,20	1,50	1,15	

Table 33: Reduction factors depending on the distance to joints

TSM screw size			5	6	8	10	
Distance to joints	Cj⊥	[mm]	≥35				
Distance to joints	[mm]		≥8	30			
Reduction factor	α _{j, N}		1	(full ro	cictonco		
	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (full resistance)				
Distance to isinte	Cj⊥	[mm]		<35			
Distance to joints		<80					
Reduction factor	α _{j, N}	[-]	Scre	w must	not be	used	

TOGE concrete screw TSM high performance

Performances Solid clay brick MZ – min. edge distance, spacing,

Annex C18

Solid clay brick MZ – min. edge distance, spacing, group factors and installation parameters close to the joints

Deutsches Institut für Bautechnik

Table 34: Characteristic resistances

Liss sate some (installation)							. +		
Use category (installation)						dry or we			
TSM screw size		1	5		5		3		0
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Compressive strength f _{mean}	[N/n	<u>י</u> m²]				≥ 21,0		1	
Characteristic resistance to tension load	N _{Rk}	[kN]	1,6	1,6	1,6	2,3	2,3	3,1	3,2
Characteristic resistance to	V _{Rk,II}	[kN]	2,5	2,5	2,5	2,5	2,5	2,6	8,1
shear load	V _{Rk,⊥}	[kN]	2,1	2,1	2,1	2,1	2,1	2,1	2,7
Compressive strength f _{mean}	[N/n	າm²]				≥ 25,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,7	1,7	1,7	2,5	2,5	3,4	3,5
Characteristic resistance to	V _{Rk,II}	[kN]	2,7	2,7	2,7	2,7	2,7	2,8	8,9
shear load	V _{Rk,⊥}	[kN]	2,3	2,3	2,3	2,3	2,3	2,3	3,0
Compressive strength f _{mean}	[N/m	רm²]	≥ 30,0						
Characteristic resistance to tension load	N _{Rk}	[kN]	1,9	1,9	1,9	2,8	2,8	3,7	3,8
Characteristic resistance to	V _{Rk,II}	[kN]	2,9	2,9	2,9	2,9	2,9	3,1	9,7
shear load	V _{Rk,⊥}	[kN]	2,5	2,5	2,5	2,5	2,5	2,5	3,2
Compressive strength f _{mean}	[N/n	nm²]				≥ 31,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,9	1,9	1,9	2,8	2,8	3,8	3,9
Characteristic resistance to	V _{Rk,,II}	[kN]	3,0	3,0	3,0	3,0	3,0	3,2	9,9
shear load	V _{Rk,,} ⊥	[kN]	2,5	2,5	2,5	2,5	2,5	2,6	3,3

TOGE concrete screw TSM high performance

Performances Solid clay brick MZ – characteristic resistances

Table 35: Displacements

Use category (installation)	Use category (installation)					dry or w	et		
TSM screw size	5	6 8			10				
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	0,46	0,46	0,46	0,66	0,66	0,89	0,91
Displacement in tension	δ_{N0}	[mm]	0,01	0,01	0,01	0,01	0,01	0,03	0,02
direction	δ_{N^∞}	[mm]	0,02	0,02	0,02	0,02	0,02	0,05	0,05
Shear load parallel to the edge	F _{V,II}	[kN]	0,71	0,71	0,71	0,71	0,71	0,74	2,31
Displacement in shear	δ _{v0,II}	[mm]	1,08	1,08	1,08	1,08	1,08	0,04	2,24
direction parallel to the edge	δ _{ν∞,ιι}	[mm]	1,61	1,61	1,61	1,61	1,61	0,07	3,36
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,60	0,60	0,60	0,60	0,60	0,60	0,77
Displacement in shear	δ _{v0,⊥}	[mm]	1,13	1,13	1,13	1,13	1,13	0,03	0,34
direction perpendicular to the edge	δ _{V∞,⊥}	[mm]	1,69	1,69	1,69	1,69	1,69	0,04	0,51

Table 36: Performance under fire exposure for anchor groups

TSM screw size			5	e	5	5	3	1	0		
Nominal embedmen	nt	h_{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h_{nom1}	h _{nom2}		
depth		[mm]	35	35	55	45	65	55	75		
Characteristic resista	ance to l	local brick fa	ailure of g	roups un	der fire e	xposure					
		R30-R90	0,09 ·	0,09 ·	0,15 ·	0,12 ·	0,18 ·	0,15 ·	0,24 ·		
N ^g _{Rk,fi} = N ^g _{Rk,b,fi} =	[kN]	K30-K90	N ^g _{Rk,b}								
N ^g _{Rk,p,fi}		R120	0,08 ·	0,08 ·	0,12 ·	0,10 ·	0,15 ·	0,12 ·	0,19·		
		KIZU	N ^g _{Rk,b}								
Min. edge distance	[mm]	$C_{min,fi} = C_{j,fi}$		2 x h _{nom} 1)							
and spacing		S _{min,fi}				107					

¹⁾ At least the distances set out in Table 37 shall be observed

TOGE concrete screw TSM high performance

Performances Solid clay brick MZ – displacements and performance under fire exposure for anchor groups

Table 37: Fire exp	oosure –	Characteri	stic res			-	c	2	1	•
TSM screw size			h	5		5	3			0
Nominal embedme	ent depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Stool failura far ta	ncion on		[mm] 	35	35	55	45	65	55	75
Steel failure for te	1		1	11	1.2	1.2	1.2	1.2	17	17
	R30	N _{Rk,s,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7
	R60 R90	N _{Rk,s,fi60}	[kN]	0,8	1,0	1,0 0,6	1,0	1,0	1,6	1,6 1,6
	R120	N _{Rk,s,fi90}	[kN] [kN]	0,5 0,3	0,6 0,5	0,8	0,6 0,5	0,6 0,5	1,6 1,5	1,5
	R30	N _{Rk,s,fi120}	[kN]	1,1	1,3	1,3	1,3	1,3	1,5	1,5
Chavastaristia	R60	V _{Rk,s,fi30}	[kN]	0,8	1,0	1,0	1,0	1,0	1,7	1,6
Characteristic resistance	R90	V _{Rk,s,fi60}	[kN]	0,5	0,6	0,6	0,6	0,6	1,6	1,6
	R120	V _{Rk,s,fi90} V _{Rk,s,fi120}	[kN]	0,3	0,0	0,0	0,0	0,5	1,5	1,5
	R30	^V Rk,s,fi120 M ⁰ Rk,s,fi30	[Nm]	0,3	1,1	1,1	1,5	1,5	2,5	2,5
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,5	0,8	0,8	1,1	1,1	2,3	2,3
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	0,5	0,5	0,8	0,8	2,3	2,3
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,4	0,4	0,6	0,6	2,2	2,2
Pull-out failure		100 100,5,1120		-,-		- / -	- / -			_,_
	R30	N _{PL} cao	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7
Chanset anistic	R60	N _{Rk,p,fi30}	[kN]	0,8	1,0	1,0	1,0	1,0	1,6	1,6
Characteristic resistance	R90	N _{Rk,p,fi60}	[kN]	0,8	0,6	0,6	0,6	0,6	1,6	1,6
	R120	N _{Rk,p,fi90}	[kN]	0,3	0,0	0,0	0,5	0,0		1,5
	KI20	N _{Rk,p,fi120}		0,5	0,5	0,5	0,5	0,5	1,5	1,5
Breakout failure	[I	I						1	
	R30	N _{Rk,b,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	1,6	1,6
resistance	R90	N _{Rk,b,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	1,6	1,6
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,5	0,5	0 <i>,</i> 5	0,5	1,5	1,5
Edge and joint dis	tance									
		C _{min,fi} =	[mm]				120			
R30 - R120		Cj,fi,II	[mm]				35			
Spacing		Cj,fi,⊥	[[[[[[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]				55			
R30 - R120		S _{cr,fi}	[mm]				4 x h _{nom}			

TOGE concrete screw TSM high performance

Performances Solid clay brick MZ – characteristic resistance under fire exposure

Table 38: Material characteristic solid light concrete brick VBL

Solid light conc	Solid light concrete brick VBL acc. to DIN EN 771-3:2015-11							
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm ²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]				
VBL 4 - 1,0 - 2DF	L: ≥ 240 D: ≥ 115 H: ≥ 113	≥ 4,0	≥ 1,5	240				

Table 39: Installation parameters solid light concrete brick VBL

Use category (installatio	n)		dr	У
TSM screw size			8	10
Nominal embedment dept	h	h _{nom} [mm]	h _{nom} 65	h _{nom} 75
Nominal drill hole diameter	d ₀	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Drill hole depth	h₀ ≥	[mm]	85	95
Clearance hole diameter	d _f ≤	[mm]	12	14
Torque for manual installation	max. T _{inst}	[Nm]	6	5
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	10	14

Table 40: Min. edge distance, spacing, group factors

TSM screw size			8	10
Nominal ombodme	nt donth	h_{nom}	h _{nom}	h _{nom}
Nominal embedme	int depth	[mm]	65	75
Min. edge distance	C _{min}	[mm]	80)
Min. spacing	S _{min,II} = S _{min,⊥}	[mm]	80)
	α _{g,N} (S _{min} ⊪)	[-]	1,45	1,45
Croup factors	α _{g,N} (S _{min⊥})	[-]	1,35	1,35
Group factors	α _{g,V,II}	[-]	0,90	0,90
	α _{g,V,⊥}	[-]	0,75	0,75

TOGE concrete screw TSM high performance

Performances

Solid light concrete brick – material characteristics, installation parameters, min. edge distance and spacing, group factors

Table 41: Reduction factors depending on the distance to joints

TSM screw size	-		8	10	
Distance to joints	Cj⊥	[mm]	≥3	35	
Distance to joints	Сј 11	[mm]	≥80		
Reduction factor	$\frac{\alpha_{j, N}}{\alpha_{j, VII} = \alpha_{j, VII}}$	[-]	1 (full re	sistance)	
Distance to joints	Cj⊥	[mm]	3	5	
Distance to joints	Сј II		8	0	
Reduction factor	G 1	[_]	Screw mu	ist not be	
	$\alpha_{j, N}$	[-]	us	ed	

Table 42: Characteristic resistances

Use category (installation)	dry			
TSM screw size			8	10
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}
		[mm]	65	75
Compressive strength fmean	[N/mm²]		≥ 4,0	
Characteristic tension load	N _{Rk}	[kN]	0,6	1,2
Characteristic shear load	V _{Rk,II}	[kN]	4,0	5,1
	V _{Rk,⊥}	[kN]	2,3	3,3
Compressive strength f_{mean}	[N/mm ²]		≥ 5,0	
Characteristic resistance to tension load	N _{Rk}	[kN]	0,7	1,4
Characteristic resistance to	V _{Rk,II}	[kN]	4,4	5,7
shear load	V _{Rk,⊥}	[kN]	2,6	3,7

TOGE concrete screw TSM high performance

Performances

Solid light concrete brick – characteristic resistances and installation parameters close to the joints

Table 43: Displacements

Use category (installation)	dry			
TSM screw size	8	10		
Nominal embedment depth			h _{nom}	h _{nom}
			65	75
Tension load	F _N	[kN]	0,17	0,34
Displacement in tension direction	δ_{N0}	[mm]	0,01	0,01
	$\delta_{N\varpi}$	[mm]	0,02	0,02
Shear load parallel to the edge	F _{V,II}	[kN]	1,14	1,46
Displacement in shear direction parallel to the edge	δ _{ν0,}	[mm]	1,94	2,11
	δνω,ιι	[mm]	2,92	3,16
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,66	0,94
Displacement in shear direction perpendicular to the edge	$\delta_{V0, \perp}$	[mm]	0,36	1,92
	δ _{∨∞,⊥}	[mm]	0,54	2,89

TOGE concrete screw TSM high performance

Performances Solid light concrete brick – displacements