

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-23/0923 of 19 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TSM concrete screw TSM high performance LT

Screw anchor for use in masonry

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg **GERMANY**

TOGE Dübel GmbH & Co. KG

36 pages including 3 annexes which form an integral part of this assessment

EAD 330460-00-0604, edition 08/2022

ETA-23/0923 issued on 9 July 2025

Z214307.25

European Technical Assessment ETA-23/0923

English translation prepared by DIBt

Page 2 of 36 | 19 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 36 | 19 September 2025

Specific Part

1 Technical description of the product

The TOGE concrete screw TSM high performance LT is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to steel failure of a single screw anchor under tension loading	N _{Rk,s} see Annex C1
Characteristic resistance to steel failure of a single screw anchor under shear loading	V _{Rk,s} [kN], M ⁰ _{Rk,s} see Annex C1
Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under	N _{Rk,p} , N _{Rk,b} , N _{Rk,p,c} , N _{Rk,b,c} see Annex B7, C4, C9, C14, C19
tension loading	α _{j,N} see Annex C4, C9, C14, C19
Characteristic resistance to local brick failure and brick edge failure of a single screw anchor under	$V_{Rk,b,II}, V_{Rk,b,\perp}, V_{Rk,c,II}, V_{Rk,c,\perp}$ see Annex B7, C4, C9, C14, C19
shear loading	see Annex C3, C8, C13, C18
Characteristic resistance to brick breakout failure of a	N_{Rk}^{g} see Annex B7
screw anchor group under tension loading	$\alpha_{g,N}$ see Annex B7, C2, C8, C13, C18
Characteristic resistance to local brick failure and brick edge failure of a screw anchor group under	$V_{Rk,b,II}, V_{Rk,b,\perp}, V_{Rk,c,II}, V_{Rk,c,\perp}$ see Annex B7
shear loading	$\begin{array}{c} \alpha_{\text{g,VII}},\alpha_{\text{g,VII}\perp} \\ \text{see Annex B7, C2, C8, C13, C18} \end{array}$

Page 4 of 36 | 19 September 2025

Essential characteristic	Performance	
	$c_{cr},s_{crll},s_{cr\perp}$ see Annex B7, C3, C8, C13, C18	
Edge distances, joint distances, spacing, member thickness	c_{min} , c_{jll} , $c_{j\perp}$, s_{minll} , $s_{min\perp}$ see Annex C3, C8, C13, C18 h_{min} see Annex C3, C7, C12, C17	
Resistance to combined tension and shear loading	No performance assessed	
(hollow and perforated bricks)	The performance assessed	
Displacements	$\begin{array}{c} \delta_{N0},\delta_{N^{\infty}},\delta_{V0},\delta_{V^{\infty}}\\ \text{see Annex C2, C10, C15, C20} \end{array}$	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A 1
Resistance to fire	$\begin{array}{c} N_{Rk,s,fi} \;, N_{Rk,p,fi} \;, N_{Rk,b,fi} \;, V_{Rk,s,fi} \;, M^0{}_{Rk,s,fi} \;,\\ c_{min,fi} \;, c_{j,fi} \\ see\; Annex\; C6,\; C11,\; C16,\; C21 \end{array}$
	$N_{RK,fi}^{\ g}$, $S_{min,fi}$, $C_{min,fi}$, $C_{j,fi}$ see Annex C5, C10, C15, C20

3.3 Aspects of durability

Essential characteristic	Performance
Durability	see Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330460-00-0604 the applicable European legal act is: 97/177/EC.

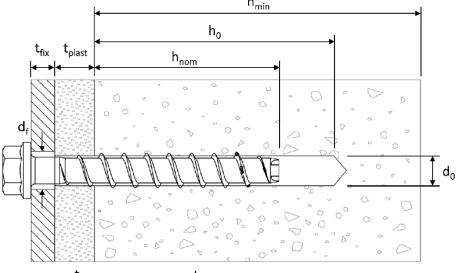
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

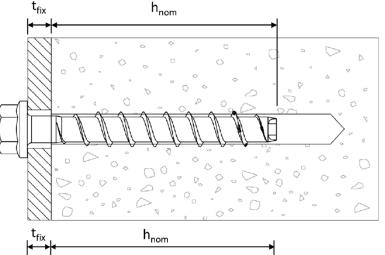
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

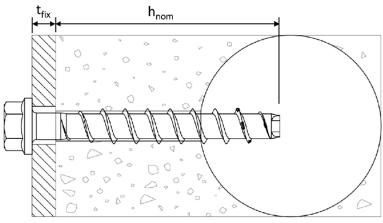
Issued in Berlin on 19 September 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock


Head of Section

beglaubigt:


Aksünger



TOGE concrete screw
TSM high performance LT
in solid and perforated
brick with non-loadbearing layer

TOGE concrete screw
TSM high performance LT
in solid brick

TOGE concrete screw
TSM high performance LT
in perforated brick

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

d_f = clearance hole diameter

 t_{plast} = thickness of non-load-bearing layer

h_{min} = minimum thickness of member

 h_{nom} = nominal embedment depth

 $h_0 = drill hole depth$

TOGE concrete screw TSM high performance LT

Product description

Product in installed condition

Annex A1

TOGE concrete s	screw TSM high p	oorformanco I T	
		Configuration with internal thread hexagon drive e.g. TSM 6x55 IM N	
		Configuration with hexagon drive connection thread e.g. TSM 6x55	
		Configuration with countersunk head and connection thread e.g. TSM 6x55 AG M8; Type ST-6	
	(SM)	Configuration with large pan head and TORX drive e.g. TSM 8x80 LP VZ 40; Type P	
	(154) (2) (2)	Configuration with pan head and drive e.g. TSM 8x80 P VZ 40; Type	
	(SA)	Configuration with countersunk he e.g. TSM 8x80 C VZ 40; Type SK	ead and TORX drive
	(S) 0)	Configuration with hexagon head e.g. TSM 8x80 SW13 OS; Type S	
	(S.)	Configuration with washer, hexago TORX drive e.g. TSM 8x80 SW13; T	
	00, 0	Configuration with washer and he e.g. TSM 8x80 SW13 VZ 40; Type S	-
	0	Configuration with metric connect and hexagon drive e.g. TSM 8x105	

Table 1: Material

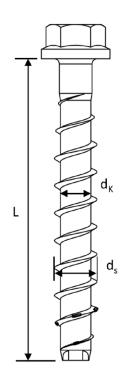
Part	Product name		Material		
A II +	TSM high performance LT A4	1.4401; 1.4404; 1.4571; 1.4578			
All types	TSM high performance LT HCR	1.4529			
		Nominal characteristic steel		El	
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	Elongation A ₅ [%]	
All true on	TSM high performance LT A4	560	700	≤ 8	
All types	TSM high performance LT HCR	560	700		

Table 2: Dimensions

TSM LT concrete screw size		6	8	10		
Tronmar embedment		h _{nom}	h _{nom1}	h _{nom1}	h _{nom1}	
		[mm]	45	55	75	
Screw length	≤L	[mm]		500		
Core diameter	d _K	[mm]	5,1 7,2	7,2	9,2	
Thread outer diameter	ds	[mm]	7,6	10,5	12,5	

Marking:

TSM high performance LT A4


Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

TSM high performance LT HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

TOGE concrete	screw	TSM	hiah	performance	LT
	301044	1 0111	HIMI	periorinaries	

Product description

Material, dimensions and markings

Annex A3

Specification of Intended use

Anchorages subject to:

- Static or quasi-static actions in tension, shear or combined tension and shear or bending
- Exposure to fire (for dry masonry only)

Base materials:

- Masonry made of solid bricks and perforated bricks see Annex B3
- Minimum thickness of member h_{min} see Annexes C2, C7, C12, C17
- Bearing joints must be completely filled with mortar of at least compressive strength class M5
 according to EN 998-2:2016. Butt joints may, but do not have to be filled with mortar.
- In case of fire, all joints must be completely filled with mortar according to EN 998-2:2016 with strength class at minimum M5
- Dry or wet masonry (during installation)

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4:CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V
- Temperature range of the masonry over the period of use: -40°C to +80°C

Design:

- The anchorage is designed in accordance with EOTA Technical Report TR 054:2022-07.
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Screws with nominal embedment depth smaller than 50 mm may only be used for anchoring of statically indeterminate systems, in internal exposure conditions.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor to supports, etc.).
- The screw may be placed in the wall side and in the reveal side of the masonry. The installation parameters for installation in the reveal side must be observed in accordance with Annex B8. In case of Silka XL solid calcium silicate brick KS 12DF, the installation is possible in the wall side only.
- For solid blocks, the characteristic load-bearing capacities also apply to larger block formats, greater compressive strengths and densities of the masonry blocks.
- Installation in the joint and close to the joint is not permitted; the distances to joints according to annexes C3, C8, C13, C18 must be observed.

TOGE concrete screw TSM high performance LT	
Intended use	Annex B1
Specification	

Specification of Intended use - continuation

Installation:

- Bridging of non-load-bearing layers (e.g. plaster) is possible. When selecting the screw length L, the thickness of the plaster layer t_{plast} must be considered.
 L ≥ h_{nom} + t_{plast} + t_{fix} (see figures in Annex A1)
- During installation, the joint, spacing and edge distances specified by the planner must be considered.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- The borehole is drilled with hammer, percussion, suction or masonry drills in hammer mode or rotary mode. The masonry must not be damaged during hammer drilling. If cracks occur during drilling, the rotary mode must be used. In this case, the drill hole must be discarded.
- Incorrectly drilled holes must be filled with high-strength mortar.

TOGE concrete screw TSM high performance LT

Intended use
Specification continuation

Annex B2

Table 3: Solid and perforated bricks, dimensions and properties

	Solid cal	lcium silica	te brick KS a	cc. to EN 771-	-2:2011+A1:2015
ı					

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
KS 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	≥ 26,0	≥ 2,0	C2 – C6

Silka XL solid calcium silicate brick KS 12DF acc. to EN 771-2:2015-11

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 B: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	C7 – C11

Perforated calcium silicate brick KSL 3DF acc. to EN 771-2:2015-11

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 B: ≥ 175 H: ≥ 113	≥ 17,0	≥ 1,5	C12 - C16

Solid clay brick MZ acc. to EN 771-1:2015-11

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
MZ 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	C17 – C21

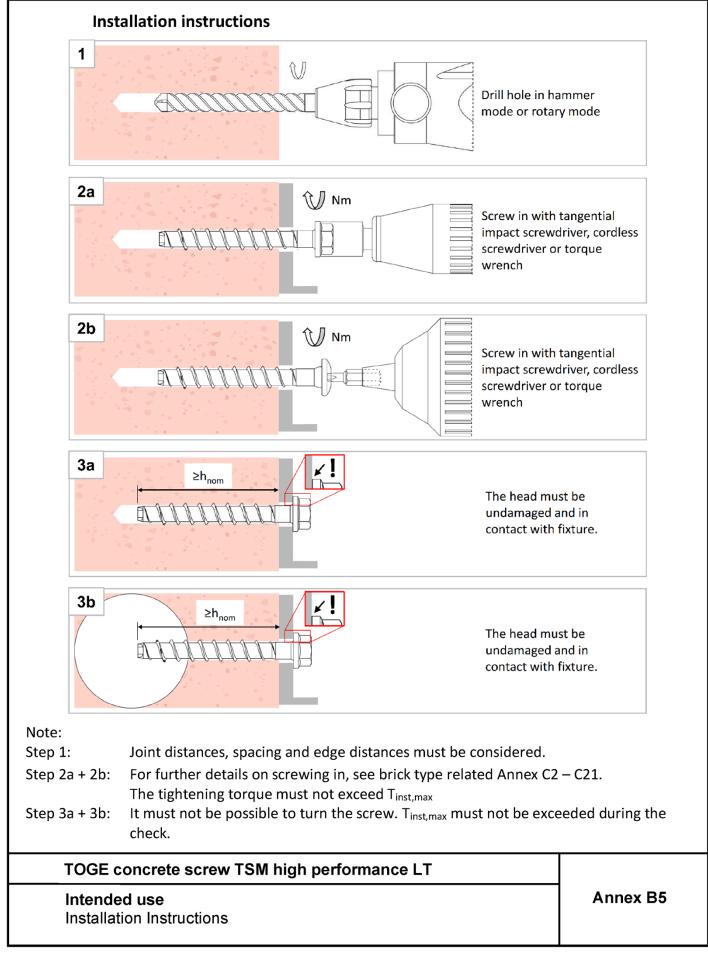
TOGE concrete screw TSM high performance LT

Intended use

Solid and perforated bricks, dimensions and properties

Annex B3

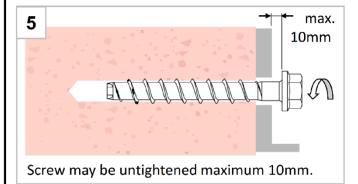
Table 4: General installation parameters

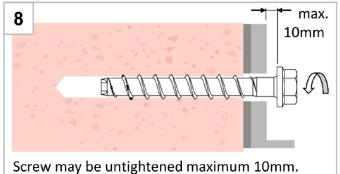

TSM LT screw size			6	8	10
Naminal ambadment denth			h_{nom1}	h _{nom1}	h _{nom1}
Nominal embedment depth		[mm]	45	55	75
Nominal drill hole diameter	d ₀	[mm]	6	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45
Drill hole depth	h₀ ≥	[mm]	55	65	85
Clearance hole diameter	d _f ≤	[mm]	8	12	14

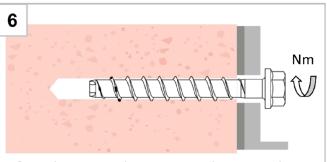
TOGE concrete screw TSM high performance LT

Intended use
General installation parameters

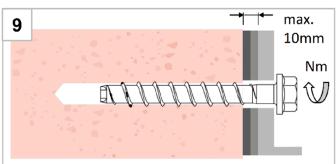
Annex B4



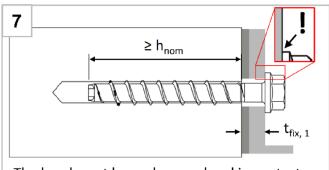


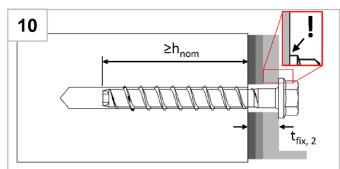

Installation Instructions - Adjustment

1. Adjustment



2. Adjustment




After adjustment, the screw may be screwed in with a tangential impact screwdriver, cordless screwdriver or torque wrench.

After adjustment, the screw may be screwed in with a tangential impact screwdriver, cordless screwdriver or torque wrench.

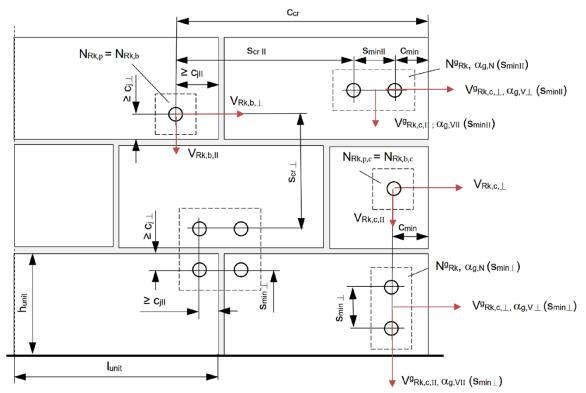
The head must be undamaged and in contact with the fixture.

The head must be undamaged and in contact with the fixture.

Note:

- 1. The screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .
- 2. For further details on screwing in, see brick type-related annexes C2 C21

TOGE concrete screw TSM high performance LT


Intended use

Installation instruction – adjustment

Annex B6

Possible installation positions, the distance c_j must be observed

c_{min} = minimum edge distance to the free edge of the wall

 $c_{j\,\parallel}$ = distance to the vertical joints without influence on resistance of the screw anchor $c_{j\,\perp}$ = distance to the horizontal joints without influence on resistance of the screw anchor

s_{min II} = minimum spacing parallel to horizontal joint

 $s_{min \perp}$ = minimum spacing perpendicular to the horizontal joint

c_{cr} = edge distance for transmission of the characteristic resistance of single screw anchor = 1,5h_{nom}

 $s_{cr \parallel}$ = characteristic spacing parallel to the horizontal joint = 3,0h_{nom} $s_{cr \perp}$ = characteristic spacing perpendicular to the horizontal joint = 3,0h_{nom}

l_{unit} = length of the masonry unit h_{unit} = height of the masonry unit

 $\alpha_{g,N}$ ($s_{min \ II}$) = group factor under tension load for minimum spacing parallel to horizontal joint

 $\alpha_{g,N}(s_{min} \perp)$ = group factor under tension load for minimum spacing perpendicular to the horizontal joint

 $\alpha_{g,V}$ = group factor under shear load parallel to the edge $(\alpha_{g,V} \parallel = \alpha_{g,V} \parallel (s_{min} \parallel) = \alpha_{g,V} \parallel (s_{min} \parallel))$

 $\alpha_{g,V\perp} \qquad = \text{group factor under shear load perpendicular to the edge} \ (\alpha_{g,V\perp} = \alpha_{g,V\perp} (s_{\text{min II}}) = \alpha_{g,V\perp} (s_{\text{min II}}) = \alpha_{g,V\perp} (s_{\text{min II}})$

 $N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$ $V_{Rk, \perp} = V_{Rk,b \perp} = V_{Rk,c \perp}$, $V_{Rk, \perp} = V_{Rk,b \perp} = V_{Rk,c \perp}$

Für $s \ge s_{cr}$: $\alpha_{g,N}(s_{min \parallel}) = \alpha_{g,N}(s_{min \perp}) = \alpha_{g,V \parallel} = \alpha_{g,V \perp} = 2$

 $\begin{aligned} &\text{F\"{u}r } s_{\text{min}} \leq s \leq s_{\text{cr}}: \ \alpha_{\text{g},\text{N}} \left(s_{\text{min II}}\right); \ \alpha_{\text{g},\text{N}} \left(s_{\text{min II}}\right); \ \alpha_{\text{g},\text{V}} \text{ } ; \ \alpha_{\text{g},\text{V}} \text{ } \bot \ \text{ according to installation parameters of brick in Annex C} \\ &N^{g}_{\text{Rk}} \left(s_{\text{min II}}\right) = \alpha_{\text{g},\text{N}} \left(s_{\text{min II}}\right) \times N_{\text{Rk}} \end{aligned} \quad \text{ } \left(\text{group of 2 anchors with minimum spacing parallel to horizontal joint)} \end{aligned}$

 $N_{Rk}(s_{min \perp}) = \alpha_{g,N}(s_{min \perp}) \times N_{Rk}$ (group of 2 anchors with minimum spacing perpendicular to horizontal joint)

 $\begin{array}{ll} V^g_{Rk\,\parallel} = \alpha_{g,V\,\parallel}\,x\,\,V_{Rk,\,\parallel}\,;\,\,V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}\,x\,\,V_{Rk,\,\perp} & \text{(group of 2 anchors)} \\ N^g_{Rk} = \alpha_{g,N}\,\left(s_{\text{min II}}\right)\,x\,\,\alpha_{g,N}\,\left(s_{\text{min L}}\right)\,x\,\,N_{Rk} & \text{(group of 4 anchors)} \\ V^g_{Rk\,\parallel} = \alpha_{g,V\,\parallel}^{\,2}\,x\,\,V_{Rk,\,\parallel}\,;\,\,V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}^{\,2}\,x\,\,V_{Rk,\,\perp} & \text{(group of 4 anchors)} \end{array}$

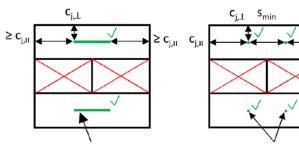
TOGE concrete screw TSM high performance LT

Intended use

Possible installation position

Annex B7

7214343 25 8 06 04-446/25

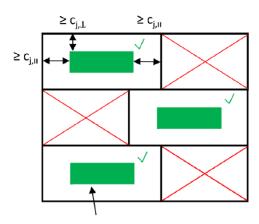


Installations parameter for installation in the reveal site

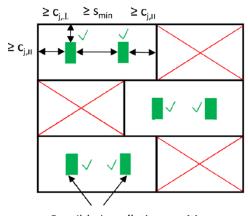
Positioning in reveal in brick types KS NF, MZ NF

Single anchor

Double anchor group

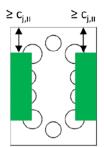

Possible installation position

Possible installation position

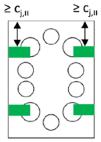

Positioning in reveal in brick type KSL 3DF

Single anchor

Double anchor group



Possible installation position



Possible installation position

Top view

Top view

TOGE concrete screw TSM high performance LT

Intended use

Possible installation in reveal

Annex B8

Table 5: Characteristic resistance to steel failure

TSM LT screw size			6	8	10
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom1}
Norminar embedment depth		[mm]	45	55	75
Steel failure for tension an	d shear	loadin	g		
Characteristic resistance	N _{Rk,s}	[kN]	14,0	27,0	45,0
under tension loading	INRK,S	[KIN]	14,0	27,0	45,0
Partial factor	γ _{Ms,N} 1)	[-]		1,5	
Characteristic resistance	V _{Rk,s}	[kN]	7,0	13,5	34,0
under shear loading	V RK,s	[KIN]	7,0	15,5	34,0
Partial factor	$\gamma_{Ms,V}$ 1)	[-]		1,25	
Ductility factor	k ₇	[-]		0,8	
Characteristic bending	M ⁰ _{Rk,s}	[Nm]	10,9	26,0	56.0
moment	IVI Rk,s	נואווון	10,9	20,0	56,0

¹⁾ In absence of other national regulations

TOGE concrete screw TSM high performance LT	
Performance Characteristic resistance to steel failure	Annex C1

Table 6: Material characteristics solid calcium silicate brick KS

Solid calcium silicate brick KS acc. to EN 771-2:2011+A1:2015					
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]	
KS 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	26,0 ≤ f _{mean} ≤ 38,0	≥ 2,0	240	

Table 7: Installation parameters solid calcium silicate brick KS

Use category (installation)			dry or wet			
TSM LT screw size			6	8	10	
Nominal embedment depth	1	h _{nom}	h _{nom1}	h _{nom1}	h _{nom1}	
		[mm]	45	55	75	
Nominal drill hole diameter	d ₀	[mm]	6	8	10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45	
Drill hole depth	h ₀ ≥	[mm]	55	65	85	
Clearance hole diameter	d _f ≤	[mm]	8	12	14	
Torque for manual installation	max. T _{inst}	[Nm]	11	24	41	
Impact screw driver	T _{imp,max}	[Nm]	Max. torque	according to the ma instructions	anufacturer's	
			185	30	00	

Table 8: Min. edge distance, spacing, group factors

TSM LT screw size			6	8	10
Naminal ambadman	t donth	h _{nom}	h _{nom1}	h _{nom1}	h _{nom1}
Nominal embedmen	t depth	[mm]	45	55	75
Min. edge distance	C _{min}	[mm]		80	
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]		80	
	$\alpha_{g,N}$ ($s_{min \perp}$)	[-]	1,50	1,15	1,65
Croup footors	α _{g,N} (S _{min II})	[-]	1,80	1,15	1,20
Group factors	$\alpha_{g,V,II}(s_{\text{min }\bot})/(s_{\text{min }II})$	[-]	1,55	1,55	1,05
	$\alpha_{g,V,\perp}(s_{\text{min}\perp})/(s_{\text{min}II})$	[-]	1,50	1,75	1,75

TOGE concrete screw TSM high performance LT	
Performance Solid calcium silicate brick KS – material characteristics, installation parameters, min. edge distance and spacing, group	Annex C2

Table 9: Reduction factors depending on the distance to joints

TSM LT screw size			6	8	10
Distance to injusts	C _{j ⊥}	[مم مما	≥35		
Distance to joints	C _{j II}	[mm]		≥80	
Reduction factor	$\alpha_{j, N}$	[-]		1 (full resistance)	
Reduction factor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]		1 (run resistance)	
Distance to injusts	C _{j ⊥}	[mm]		<35	
Distance to joints	C _{j II}			<80	
Reduction factor	$\alpha_{j, N}$	[-]	Sc	rew must not be us	ed

TOGE concrete screw TSM high performance LT

Performance
Solid calcium silicate brick KS – installation parameters close to the joints

Annex C3

Tabelle 10: Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Lisa satagam, /installation)				dry or wet		
Use category (installation)				dry or wet	4.0	
TSM LT screw size	TSIVI LT screw size			8	10	
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h_{nom1}	
		[mm]	45	55	75	
Compressive strength f _{mean}	[N/m	nm²]		≥ 26,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	2,5	4,1	4,5	
Characteristic resistance to	$V_{Rk,II}$	[kN]	5	,3	7,7	
shear load	$V_{Rk,\perp}$	[kN]	2,8	2,	1	
Compressive strength f _{mean}	[N/m	nm²]		≥ 30,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	2,7	4,4	4,8	
Characteristic resistance to	$V_{Rk,II}$	[kN]	5	,7	8,3	
shear load	$V_{Rk,\perp}$	[kN]	3,0	2,	3	
Compressive strength f _{mean}	[N/m	nm²]		≥ 35,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	3,0	4,8	5,2	
Characteristic resistance to	$V_{Rk,II}$	[kN]	6	,1	8,9	
shear load	$V_{Rk,\perp}$	[kN]	3,2	2,	5	
Compressive strength f _{mean}	[N/mm²]			≥ 38,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	3,1	5,0	5,4	
Characteristic resistance to	$V_{Rk,II}$	[kN]	6	,4	9,3	
shear load	$V_{Rk,\perp}$	[kN]	3,4	2,	6	

TOGE concrete screw TSM high performance LT	
Performance Solid calcium silicate brick KS – characteristic resistances	Annex C4

Table 11: Displacements

Use category (installation)				dry or wet	
TSM LT screw size			6 8		10
Naminal and advant dants		h _{nom}	h_{nom1}	h_{nom1}	h _{nom1}
Nominal embedment depth		[mm]	45	55	75
Tension load	F _N	[kN]	0,6	1,1	1,1
Displacement in tension	δ_{NO}	[mm]		0,01	
direction	$\delta_{N\varpi}$	[mm]	0,02		
Shear load parallel to the edge	F _{V,II}	[kN]	1,	2,2	
Displacement in shear	$\delta_{V0,II}$	[mm]	0,	0,37	
direction parallel to the edge	δνω,ιι	[mm]	1,:	14	0,57
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,8	.6	
Displacement in shear δ		[mm]	0,57	0,31	0,01
direction perpendicular to the edge	$\delta_{V\varpi,\perp}$	[mm]	0,85	0,47	0,02

Table 12: Performance under fire exposure for anchor groups- resistance to fire

TSM LT screw size			6	8	10	
Nominal embedment dep	oth h _{nom} [mm]			45	55	75
Characteristic resistance to local brick failure of groups under fire exposure						
NE - factory NE	[kN]	R30-R90		0,12 · N ^g _{Rk}	0,14 · N ^g _{Rk}	0,24 · N ^g _{Rk}
$N_{Rk,fi}^g$ = factor x N_{Rk}^g		R120		0,10 · N ^g _{Rk}	$0,11\cdotN^{g}_{Rk}$	$0.19 \cdot N^g_{Rk}$
Min. edge distance and	[mm]	$C_{min,fi} = C_{j,fi}$		2 x h _{nom} 1)		
spacing	[HIIII]	S _m	in,fi	4 x h _{nom}		

¹⁾ At least the distances set out in Table 13 shall be observed

TOGE concrete screw TSM high performance LT	
Performance Solid calcium silicate brick KS – displacements and performance under fire exposure for anchor groups	Annex C5

TSM LT screw siz	ze			6	8	10
Nominal embedm	ont donth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom1}
Nominal embedii	ient depth		[mm]	45	55	75
Steel failure for	tension and	d shear load				
	N _{Rk,s,fi30}	[kN]	1,30		3,40	
	R60	N _{Rk,s,fi60}	[kN]		1,00	2,70
	R90	N _{Rk,s,fi90}	[kN]	(0,60	2,00
	R120	N _{Rk,s,fi120}	[kN]	(0,50	1,70
	R30	V _{Rk,s,fi30}	[kN]		1,30	3,40
Characteristic	R60	V _{Rk,s,fi60}	[kN]		1,00	2,70
resistance	R90	V _{Rk,s,fi90}	[kN]		0,60	2,00
	R120	V _{Rk,s,fi120}	[kN]		0,50	1,70
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	1,10	1,50	4,90
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,80	1,10	4,00
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,50	0,80	3,00
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,40	0,60	2,50
Pull-out failure						
	R30	N _{Rk,p,fi30}	[kN]	-	1,30	3,40
Characteristic	R60	N _{Rk,p,fi60}	[kN]	1,00		2,70
resistance	R90	N _{Rk,p,fi90}	[kN]	0,60		2,00
	R120	N _{Rk,p,fi120}	[kN]	0,50		1,70
Breakout failure		,				-
breakout failure	R30	N	[LN]		1.20	2.40
		N _{Rk,b,fi30}	[kN]	1,30		3,40
Characteristic resistance	R60	N _{Rk,b,fi60}	[kN]		1,00	2,70
resistance	R90	N _{Rk,b,fi90}	[kN]		0,60	2,00
	R120	N _{Rk,b,fi120}	[kN]	(0,50	1,70
Edge and joint d	istance					
		c _{min,fi} =	[mm]		120	
R30 - R120		Cj,fi,II	[,,,,,,		120	
		Cj,fi,⊥	[mm]		35	
Spacing						
R30 - R120		S _{min,fi}	[mm]		$4 \times h_{nom}$	
TOGE cond	rete screv	v TSM high	perform	ance LT		

Table 14: Material characteristics Silka XL solid calcium silicate brick KS 12DF

Silka XL solid calcium silicate brick KS 12DF acc. to EN 771-2:2011+A1:2015						
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]		
KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 B: ≥ 175 H: ≥ 248	14,0 ≤ f _{mean} ≤ 38,0	≥ 1,8	175		

Table 15: Installation parameters Silka XL solid calcium silicate brick KS 12DF

Use category (installation)			dry or wet				
TSM LT screw size			6	8	10		
Nominal embedment depth		h_{nom}	h_{nom1}	h_{nom1}	h _{nom1}		
Normal embedment depth		[mm]	45	55	75		
Nominal drill hole diameter	d ₀	[mm]	6	8	10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45		
Drill hole depth	h ₀ ≥	[mm]	55	65	85		
Clearance hole diameter	d _f ≤	[mm]	8	12	14		
Torque for manual installation	max. T _{inst}	[Nm]	11	25	41		
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	10	No performance assessed			
Impact corous driver	Т	[NIma]	Max. torque accord	ing to the manufac	turer's instructions		
Impact screw driver	$T_{imp,max}$	[Nm]	185	30	00		

TOGE concrete screw TSM high performance LT	
Performance	Annex C7
Silka XL solid calcium silicate brick KS 12DF – material characteristics, installation parameters	

Table 16: Min edge distance, spacing, group factors

TSM LT screw size		6	8	10	
Nominal ambadment denth			h _{nom1}	h _{nom1}	h _{nom1}
Nominal embedine	Nominal embedment depth		45	55	75
Min. edge distance	C _{min}	[mm]	80		
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]	80		
	α _{g,N} (S _{min ⊥})	[-]	1,65	1,55	1,60
Croup factors	α _{g,N} (S _{min II})	[-]	1,30	1,80	1,40
Group factors	$\alpha_{g,V,II} (s_{min \perp})/(s_{min \mid I})$	[-]	2,00		1,90
	$\alpha_{g,V,\perp}(s_{\text{min}\perp})/(s_{\text{min}II})$	[-]	2,	00	1,40

Table 17: Reduction factors depending on the distance to joints

TSM LT screw size	6	8	10			
Distance to injusts	[mm]	≥40				
Distance to joints	C _{j II}	[mm]	≥80			
Reduction factor	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 (full resistance)			
Reduction factor						
Distance to injust	C _{j ⊥}	[mm]	n] <40			
Distance to joints	C _{j II}		<80			
Reduction factor	$\alpha_{j, N}$	[-]	Screw must not be used			

TOGE concrete screw TSM high performance LT
Performance Silka XL solid calcium silicate brick KS 12DF – min. edge distance and spacing, group factors group factors and installation parameters close to the joints

Annex C8

Table 18: Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Use category (installation)			dry or wet			
TSM LT screw size			6	8	10	
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom1}	
Normal embedment depth	[mm]	45	55	75		
Compressive strength f _{mean}	[N/n	nm²]	≥ 14,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	2,3	7,1	6,4	
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,2		12,8	
shear load	$V_{Rk,\perp}$	[kN]	3,	5,9		
Compressive strength f _{mean}	[N/mm²]					
Characteristic resistance to tension load	N _{Rk}	[kN]	2,4	7,4	6,9	
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,	13,3		
shear load	$V_{Rk,\perp}$	[kN]	3,7		6,1	
Compressive strength f _{mean}	[N/n	nm²]		≥ 20,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	2,8 8,5		8,0	
Characteristic resistance to	V _{Rk,II}	[kN]	3,	,8	15,3	
shear load	$V_{Rk,\perp}$	[kN]	4,	7,0		

TOGE concrete screw TSM high performance LT	
Performance Silka XL solid calcium silicate brick KS 12DF – characteristic resistances	Annex C9

Table 19: Displacements

Use category (installation)			dry or wet			
TSM LT screw size			6	8	10	
Nominal embedment depth		h _{nom}	h_{nom1}	h_{nom1}	h _{nom1}	
Nominal embedment depth		[mm]	45	55	75	
Tension load	F _N	[kN]	0,7	2,2	1,8	
Displacement in tension	δ_{N0}	[mm]	0,01	0,02	0,01	
direction	$\delta_{N\infty}$	[mm]	0,02	0,04	0,02	
Shear load parallel to the edge	F _V , _{II}	[kN]	0,9		3,7	
Displacement in shear	δ _{V0,II}	[mm]	0,37		1,70	
direction parallel to the edge	$\delta_{V\varpi,II}$	[mm]	0,55		2,55	
Shear load perpendicular to the edge	F _{V,1}	[kN]	1,0		1,7	
Displacement in shear	$\delta_{V0,\perp}$	[mm]	0,40		1,50	
direction perpendicular to the edge	δνω,⊥	[mm]	0,0	50	2,25	

Table 20: Performance under fire exposure for anchor groups - resistance to fire

			•	
TSM LT screw size			6	
Nominal embedment depth h _{nom} [mm]			45	
Characteristic resistance to local brick failure of				groups under fire exposure
Ng - factory Ng	[kN]	R30-R90		0,12 · N ^g _{Rk}
$N^{g}_{Rk,fi}$ = factor x N^{g}_{Rk}		R120		0,10 · N ^g _{Rk}
Min. edge distance and	[mm]	mm] $\frac{c_{\min,fi} = c_{j,fi}}{s_{\min,fi}}$		2 x h _{nom} 1)
spacing	[!!!!!!] 			4 x h _{nom}

¹⁾ At least the distances set out in Table 21 shall be observed

TOGE concrete screw TSM high performance LT	
Performance Silka XL solid calcium silicate brick KS 12DF – displacements and performance under fire exposure for anchor groups	Annex C10

Table 21: Fire exposure – resistance

TSM LT screw size Nominal embedment d Steel failure for tension				6
		,	h _{nom}	h _{nom1}
Steel failure for tension			[mm]	45
	n and	shear load		
F	30	N _{Rk,s,fi30}	[kN]	1,50
<u> </u>	R60	N _{Rk,s,fi60}	[kN]	1,10
<u> </u>	R90	N _{Rk,s,fi90}	[kN]	0,60
R	120	N _{Rk,s,fi120}	[kN]	0,40
 	R30	V _{Rk,s,fi30}	[kN]	1,50
Characteristic F	R60	V _{Rk,s,fi60}	[kN]	1,10
	R90	V _{Rk,s,fi90}	[kN]	0,60
R	120	V _{Rk,s,fi120}	[kN]	0,40
F	R30	M ⁰ _{Rk,s,fi30}	[Nm]	1,20
F	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,90
F	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,50
	120	M ⁰ _{Rk,s,fi120}	[Nm]	0,30
Pull-out failure				
F	R30	N _{Rk,p,fi30}	[kN]	0,40
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,40
resistance	R90	N _{Rk,p,fi90}	[kN]	0,40
R	120	N _{Rk,p,fi120}	[kN]	0,32
Breakout failure				
F	30	N _{Rk,b,fi30}	[kN]	0,28
Characteristic F	R60	N _{Rk,b,fi60}	[kN]	0,28
	R90	N _{Rk,b,fi90}	[kN]	0,28
R	120	N _{Rk,b,fi120}	[kN]	0,23
Edge and joint distance	ce			
R30 - R120		C _{min,fi} =	[mm]	120
		C _{j,fi,⊥}	[mm]	35
Spacing				
R30 - R120		S _{min,fi}	[mm]	4 x h _{nom}

Annex C11

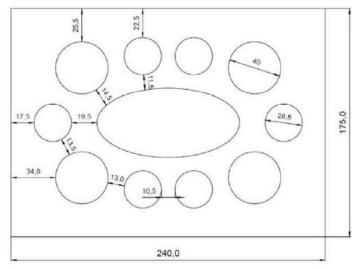
Table 22: Material characteristics perforated calcium silicate brick KSL 3DF

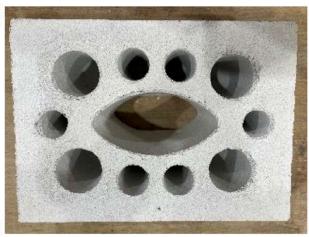
Perforated calcium silicate brick KSL 3DF acc. to EN 771- 2:2011+A1:2015							
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]			
SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 B: ≥ 175 H: ≥ 113	17,0 ≤ f _{mean} ≤ 29,0	≥ 1,5	175			

Table 23: Installation parameters perforated calcium silicate brick KSL 3DF

Use category (installation)		dry or wet			
TSM LT screw size			6	8	10
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom1}
Nonlinar embedment depth		[mm]	45	55	75
Nominal drill hole diameter	d ₀	[mm]	6	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45
Drill hole depth	h ₀ ≥	[mm]	55	65	85
Clearance hole diameter	d _f ≤	[mm]	8	12	14
Torque for manual	max.	[Nm]	2	5	7
installation	T _{inst}	נואוון	2	5	,
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	8	9	
			Max. torque according to the manufacturer's instruction		turer's instructions
Impact screw driver	T _{imp,max}	[Nm]	no performance assessed	200	

TOGE concrete screw TSM high performance LT	
Performance Perforated calcium silicate brick KSL 3DF- material characteristics, installation parameters	Annex C12




Table 24: Min. edge distance, spacing, group factors

TSM LT screw size		6	8	10	
Naminal amhadmant danth			h _{nom1}	h _{nom1}	h _{nom1}
Nominal embedment depth		[mm]	45	55	75
Min. edge distance	C _{min}	[mm]	80		
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]	80		
Group factors	α _{g,N} (S _{min ⊥})	[-]	2,00	1,55	1,95
	α _{g,N} (S _{min II})	[-]	2,00	1,55	1,45
	$\alpha_{g,V,II}(s_{\text{min }\bot})/(s_{\text{min }II})$	[-]	2,00		
	$\alpha_{g,V,\perp}(s_{min \perp})/(s_{min \parallel})$	[-]	1,	1,30	

Table 25: Reduction factors depending on the distance to joints

TSM LT screw size	6	8	10		
Distance to injust	C _{j ⊥}	[≥35		
Distance to joints	Сј п	[mm]	≥58		
Dadwation footon	α _{j, N}	r 1	1 (full resistance)		
Reduction factor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]			
Distance to injust	C _{j ⊥}	[mm]	<35		
Distance to joints	C _{j II}		<58		
Reduction factor	α _{j, N}	[-]	[-] Screw must not be use		

TOGE con	crete screw TSI	VI high performa	ance LT

Performance

Perforated calcium silicate brick KSL 3DF – min. edge distance and spacing, group factors and installation parameters close to the

Annex C13

Table 26: Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Use category (installation)			dry or wet			
TSM LT screw size	TSM LT screw size			8	10	
Nominal embedment depth	Nominal embedment depth $\frac{ \mathbf{r} }{[\mathbf{r}]}$		h _{nom1} 45	h _{nom1} 55	h _{nom1} 75	
Compressive strength f _{mean}	[N/m	nm²]		≥ 17,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	0,9	1,6	2,2	
Characteristic resistance to	V _{Rk,II}	[kN]		3,4		
shear load	V _{Rk,⊥}	[kN]	1	,6	2,2	
Compressive strength f _{mean}	[N/mm²]		≥ 20,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	0,9	1,8	2,5	
Characteristic resistance to	$V_{Rk,II}$	[kN]		3,8		
shear load	V _{Rk,⊥}	[kN]	1	,8	2,5	
Compressive strength f _{mean}	[N/m	nm²]		≥ 25,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	1,1	2,2	2,9	
Characteristic resistance to	$V_{Rk,II}$	[kN]	4	,5	4,6	
shear load	$V_{Rk,\perp}$	[kN]	2	2,1 2,9		
Interaction	X	[-]	1,0			

Annex C14

Table 27: Displacements

Use category (Installation)			dry or wet			
TSM LT screw size	TSM LT screw size			8	10	
Nominal embedment depth		h_{nom}	h_{nom1}	h _{nom1}	h _{nom1}	
Nominal embedment depth		[mm]	45	55	75	
Tension load	F _N	[kN]	0,3	0,5	0,6	
Displacement in tension	Displacement in tension δ_{N0}			0,01		
direction δ		[mm]	0,02			
Shear load parallel to the edge	F _V , _{II}	[kN]	1,0			
Displacement in shear	δ _{V0,II}	[mm]	0,68 0,29		0,29	
direction parallel to the edge	$\delta_{V\varpi,II}$	[mm]	1,0	1,02		
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,5		0,6	
Displacement in shear	$\delta_{V0,\perp}$	[mm]	0,01			
direction perpendicular to the edge	δ _{V∞,⊥}	[mm]		0,01		

Table 28: Performance under fire exposure for anchor groups - resistance to fire

TSM LT screw size			6			
Nominelle Einschraubtiefe		h _{nom} [mm]		45		
Characteristic resistance to local brick failure of g				oups under fire exposure		
Ng footon. Ng	[LAN]	R30-R90		0,12 · N ^g _{Rk}		
$N^{g}_{Rk,fi} = factor x N^{g}_{Rk}$	[kN]	R120		0,10 · N ^g _{Rk}		
Min. edge distance and	[mama]	$C_{min,fi} = C_{j,fi}$		$C_{min,fi} = C_{j,fi}$		2 x h _{nom} 1)
spacing	[mm]	S _m	S _{min,fi} 4 x h _{nom}			

¹⁾ At least the distances set out in Table 29 shall be observed

TOGE concrete screw TSM high performance LT	
Performance	Annex C15
Perforated calcium silicate brick KSL 3DF – displacements and	
performance under fire exposure for anchor groups	

Table 29: Fire ex	posure –	resistance	to fire	
TSM LT screw size	e			6
Nominal embedm	ent denth		h _{nom}	h_{nom1}
Nominal embedin	ent depth		[mm]	45
Steel failure for t	ension and	shear load		
	R30	N _{Rk,s,fi30}	[kN]	1,0
	R60	N _{Rk,s,fi60}	[kN]	0,8
	R90	N _{Rk,s,fi90}	[kN]	0,5
	R120	N _{Rk,s,fi120}	[kN]	0,4
	R30	V _{Rk,s,fi30}	[kN]	1,0
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,8
resistance	R90	V _{Rk,s,fi90}	[kN]	0,5
	R120	V _{Rk,s,fi120}	[kN]	0,4
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,8
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,6
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,4
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,3
Pull-out failure				
	R30	N _{Rk,p,fi30}	[kN]	0,60
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,40
resistance	R90	N _{Rk,p,fi90}	[kN]	0,30
	R120	N _{Rk,p,fi120}	[kN]	0,20
Breakout failure	<u> </u>			
	R30	N _{Rk,b,fi30}	[kN]	0,60
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,40
resistance	R90	N _{Rk,b,fi90}	[kN]	0,30
	R120	N _{Rk,b,fi120}	[kN]	0,20
Edge and joint di	stance			
R30 - R120		C _{min,fi} =	[mm]	101
		Cj,fi,⊥	[mm]	56
Spacing				
R30 - R120		S _{min,fi}	[mm]	4 x h _{nom}

TOGE concrete screw TSM high performance LT	
Performance	Annex C16
Perforated calcium silicate brick KSL 3DF – resistance to fire	
Tonorates saratan cineate short need of the	

Table 30: Material characteristic solid clay brick MZ

Solid clay brick MZ acc. to EN 771-1:2011+A1:2015								
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]				
MZ 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	21,0 ≤ f _{mean} ≤ 31,0	≥ 2,1	240				

Table 31: Installation parameters solid clay brick MZ

Use category (installation)		dry or wet				
TSM LT screw size	TSM LT screw size			8	10	
Nominal embedment depth		h_{nom}	h_{nom1}	h _{nom1}	h_{nom1}	
Nominal embedment depth		[mm]	45	55	75	
Nominal drill hole diameter	d ₀	[mm]	6	8	10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45	
Drill hole depth	h₀ ≥	[mm]	55	65	85	
Clearance hole diameter	d _f ≤	[mm]	8	12	14	
Torque for manual installation	max. T _{inst}	[Nm]	0,3	12	26	
Torque for rotary screwdriver installation	T _{imp,max}	[Nm]	6	10	No performance assessed	
Impact cerous driver	т.	[Mm]	Max. torque accord	Max. torque according to the manufacturer's instructions		
Impact screw driver	$T_{imp,max}$	[Nm]	no performar	155		

	TOGE concrete screw TSM high performance LT	
ſ	Performance Solid clay brick MZ – material characteristic, installation	Annex C17
-1	parameters	

Table 32: Min. edge distance, spacing, group factors

TSM LT screw size		6	8	10	
Naminal ambadment denth		h _{nom}	h _{nom1}	h _{nom1}	
Nominal embedine	Nominal embedment depth		45	55	75
Min. edge distance	C _{min}	[mm]	80		
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]		80	
	α _{g,N} (S _{min ⊥})	[-]	1,60	1,00	1,70
Croup factors	$\alpha_{g,N}$ (Smin II)	[-]	1,75	1,15	1,45
Group factors	$\alpha_{g,V,II}(s_{\text{min }\bot})/(s_{\text{min }II})$	[-]	1,	45	2,00
	$\alpha_{g,V,\perp}(s_{min \perp})/(s_{min \parallel})$	[-]	1,70		1,50

Table 33: Reduction factors depending on the distance to joints

TSM LT screw size	6	8	10		
Distance to injust	C _{j ⊥}	[≥35		
Distance to joints	Cj II	c _{j II} [mm] ≥80			
Reduction factor	$\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (full resistance)		
Distance to injust	C _{j ⊥}	[mm]	<35		
Distance to joints	C _{j II}			<80	
Reduction factor	$\alpha_{j, N}$	[-]	Screw must not be used		

TOGE concrete screw TSM high performance LT	
Performance	Annex C18
Solid clay brick MZ – min. edge distance, spacing,	
group factors and installation parameters close to the joints	

Table 34: Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Use category (installation)			dry or wet			
TSM LT screw size			6	8	10	
Nominal embedment debth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom1}	
		[mm]	45	55	75	
Compressive strength f _{mean}	[N/mm²]		≥ 21,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,4	2,2	2,8	
Characteristic resistance to	$V_{Rk,II}$	[kN]	2	.,5	2,6	
shear load	$V_{Rk,\perp}$	[kN]	1	.,9	2,1	
Compressive strength f _{mean}	[N/n	nm²]		≥ 25,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	1,6	2,4	3,1	
Characteristic resistance to	V _{Rk,II} [kN]		2,7		2,8	
shear load	$V_{Rk,\perp}$	[kN]	2,0		2,3	
Compressive strength f _{mean}	[N/mm²]		≥ 30,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,7	2,7	3,4	
Characteristic resistance to	$V_{Rk,II}$	[kN]	2	.,9	3,1	
shear load	$V_{Rk,\perp}$	[kN]	N] 2,2		2,5	
Compressive strength f _{mean}	[N/mm ²]		≥ 31,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,8	2,7	3,4	
Characteristic resistance to	$V_{Rk,II}$	[kN]	3	,0	3,2	
shear load	V _{Rk,⊥}	[kN]	2,3		2,6	

TOGE concrete screw TSM high performance LT	
Performance Solid clay brick MZ – characteristic resistances	Annex C19

Table 35: Displacements

Use category (installation)			dry or wet			
TSM LT screw size			6	8	10	
Nominal embedment depth		h _{nom}	h_{nom1}	h_{nom1}	h _{nom1}	
Nominal embedment depth		[mm]	45	55	75	
Tension load	F _N	[kN]	0,4	0,6	0,8	
Displacement in tension	Displacement in tension δ_{N0}		0,01			
direction $\delta_{N\omega}$		[mm]	0,02			
Shear load parallel to the edge	F _{V,II}	[kN]	0,	0,7		
Displacement in shear	δ _{V0,II}	[mm]	0,:	0,14		
direction parallel to the edge [[mm]	0,2	0,20		
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,5		0,6	
Displacement in shear	$\delta_{V0,\perp}$	[mm]	0,34		0,33	
direction perpendicular to the edge	$\delta_{V\varpi,L}$	[mm]	0,5		0,5	

Table 36: Performance under fire exposure for anchor groups - resistance to fire

TSM LT screw size		6	8	10		
Nominal embedment de	Nominal embedment depth h _{nom} [mm]		[mm]	45	55	75
Characteristic resistance local brick failure of gro			e of gro	ups under fire ex	cposure	
Ng - footory Ng		R30-R90		0,12 · N ^g _{Rk}	0,14 · N ^g _{Rk}	0,24 · N ^g _{Rk}
$N^{g}_{Rk,fi} = factor x N^{g}_{Rk}$	[kN]	R1	.20	0,10 · N ^g _{Rk}	0,11 · N ^g _{Rk}	0,19 · N ^g _{Rk}
Min. edge distance and	[mm]	$C_{min,fi} = C_{j,fi}$			2 x h _{nom} 1)	
spacing	[!!!!!!] 	S _{min,fi}		4 x h _{nom}		

¹⁾ At least the distances set out in Table 37 shall be observed

TOGE concrete screw TSM high performance LT	
Performance Solid clay brick MZ – displacements and performance under fire exposure for anchor groups	Annex C20

SM LT screw siz	ze			6	8	10
Naminal amb advant doubt			h _{nom}	h _{nom1}	h _{nom1}	h _{nom1}
Nominal embedment depth			[mm]	45	55	75
Steel failure for	tension and	d shear load				
	R30	N _{Rk,s,fi30}	[kN]	1,	.30	1,70
	R60	N _{Rk,s,fi60}	[kN]	1,	.00	1,60
	R90	N _{Rk,s,fi90}	[kN]	0,	.60	1,60
	R120	N _{Rk,s,fi120}	[kN]	0,	.50	1,50
	R30	V _{Rk,s,fi30}	[kN]	1,	.30	1,70
Characteristic	R60	V _{Rk,s,fi60}	[kN]	1,	.00	1,60
resistance	R90	V _{Rk,s,fi90}	[kN]	0,	.60	1,60
	R120	V _{Rk,s,fi120}	[kN]	0,	.50	1,50
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	1,10	1,50	2,50
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,80	1,10	2,40
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,50	0,80	2,30
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,40	0,60	2,20
Pull-out failure						
	R30	N _{Rk,p,fi30}	[kN]	1,30		1,70
Characteristic	R60	N _{Rk,p,fi60}	[kN]	1,00 0,60		1,60
resistance	R90	N _{Rk,p,fi90}	[kN]			1,60
	R120	N _{Rk,p,fi120}	[kN]	0,	.50	1,50
Breakout failure	•					
	R30	N _{Rk,b,fi30}	[kN]	1.	.30	1,70
Characteristic	R60	N _{Rk,b,fi60}	[kN]		.00	1,60
resistance	R90	N _{Rk,b,fi90}	[kN]		.60	1,60
R120		N _{Rk,b,fi120}	[kN]	0,50		1,50
Edge and joint d	istance		•			
		C _{min,fi} =	[120	
R30 - R120		Cj,fi,II	[mm]	120		
		C _j ,fi,⊥	[mm]	35		
Spacing			,			
R30 - R120		S _{min,fi}	[mm]	4 x h _{nom}		
		<u> </u>				

TOGE concrete screw TSM high performance LT	
Performance	Annex C21
Solid clay brick MZ – resistance to fire	