

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/1052 of 25 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection system SWEYTEC IMS
Product family to which the construction product belongs	Bonded fasteners and bonded expansion fasteners for use in concrete
Manufacturer	Weyland Steiner Handwerks- & Industriebedarf GmbH & Co. KG Handelszentrum 4 5101 BERGHEIM ÖSTERREICH
Manufacturing plant	Herstellwerk 1
This European Technical Assessment contains	26 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-02-0601, Edition 12/2023

Page 2 of 26 | 25 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The "Injection system SWEYTEC IMS Pro" is a bonded anchor consisting of a cartridge with injection mortar according to Annex A3 and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B3 to B5, C1 to C6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 to C4
Displacements under short-term and long-term loading	See Annex C7 and C8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

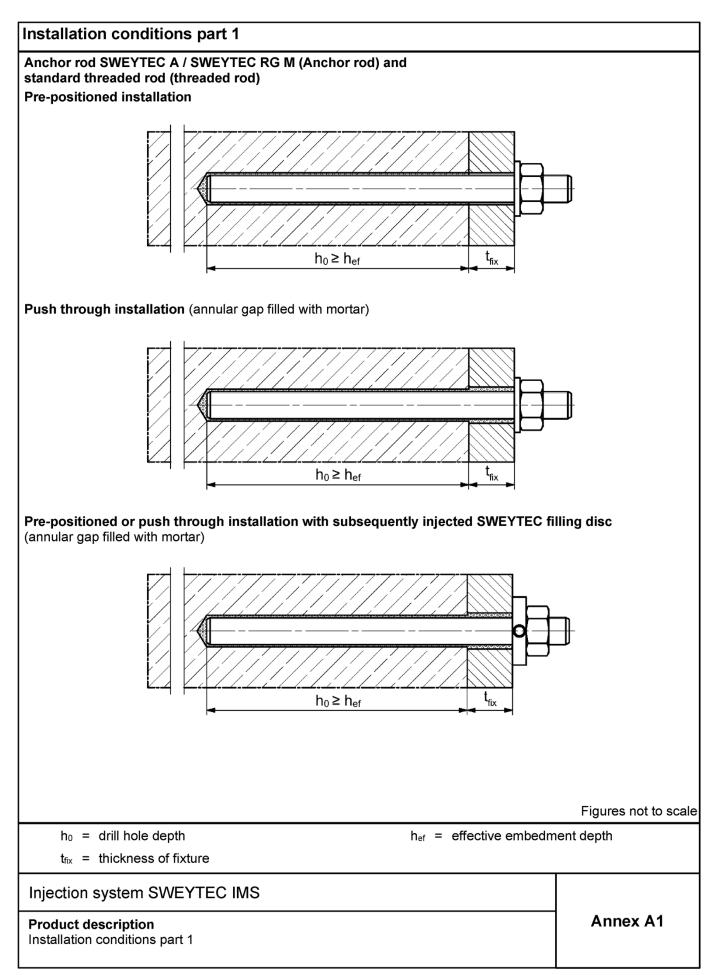
3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

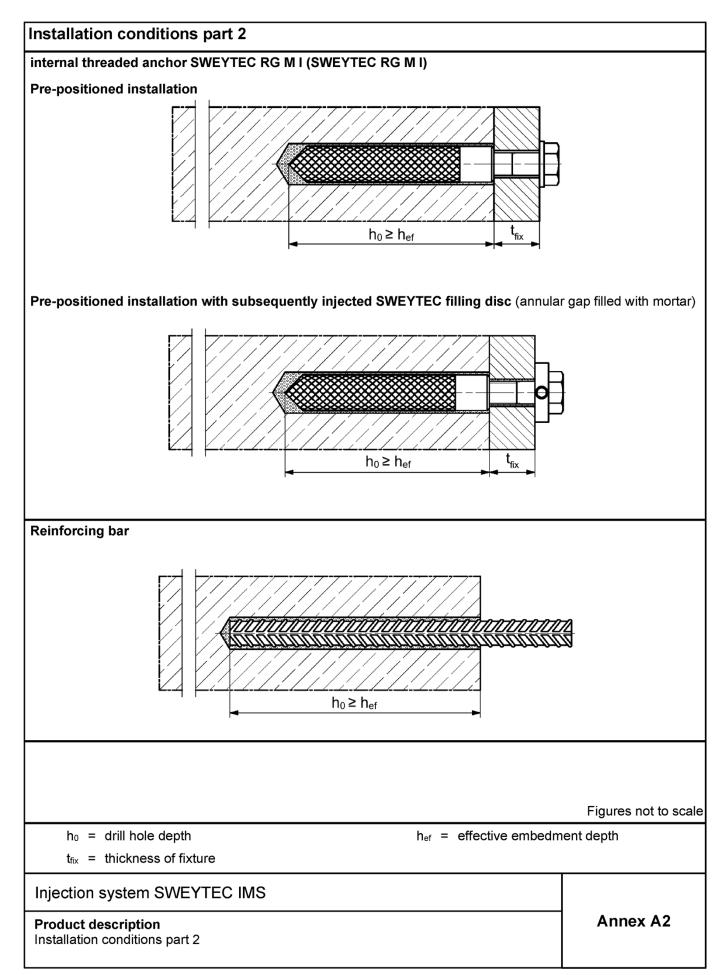
Page 4 of 26 | 25 March 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin 25 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Overview system components part 1	
Injection cartridge (shuttle cartridge) with sealing cap; Sizes: 360 ml, 825 ml	
Imprint: SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Sp SWEYTEC IMS Pro High Speed, processing notes, shelf-life, scale (optional), curing times and processing times (depending temperature), hazard code, size, volume/weight	piston travel
Injection cartridge (coaxial cartridge) with sealing cap; Sizes: 100 ml, 150 ml, 300 ml 410 ml	, 380 ml, 400 ml,
Imprint: SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Sp SWEYTEC IMS Pro High Speed, processing notes, shelf-life scale (optional), curing times and processing times (depending temperature), hazard code, size, volume/weight	, piston travel on
Static mixer SWEYTEC MR Plus for injection cartridges up to 410 ml	7
Static mixer SWEYTEC JMR for injection cartridges with 825 ml	7
Injection adapter and extension tube Ø 9 for static mixer SWEYTEC MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer SWEYTEC JMR	
	∃
Cleaning brush SWEYTEC BS	
Blow-out pump SWEYTEC Compressed-air cleaning too	
	Figures not to scale
Injection system SWEYTEC IMS	
Product description Overview system components part 1; cartridges / static mixer / accessories	Annex A3

Overview system components part 2	
Anchor rod SWEYTEC / Threaded rod	
Size: M6, M8, M10, M12, M16, M20, M24, M27, M30	
SWEYTEC RG M I	
Size: M8, M10, M12, M16, M20	
Screw / Threaded rod / washer / hexagon nut	
SWEYTEC filling disc with injection adapter	
Reinforcing bar	
Nominal diameter: φ8, φ10, φ12, φ14, φ16, φ20	
	Figures not to scale
Injection system SWEYTEC IMS	
Product description Overview system components part 2; metal parts, injection adapter	Annex A4

Page 9 of European Technical Assessment ETA-24/1052 of 25 March 2025

Part	Designation		Material	
1	Injection cartridge		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated (zp, hdg)	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4: 2006+A1:2015	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+ A1:201
2	Anchor rod / Threaded rod	$\begin{array}{l} \mbox{Property class} \\ 4.8, 5.8 \mbox{ or } 8.8; \\ \mbox{EN ISO } 898\mbox{-}1\mbox{-}2013 \\ \mbox{electroplated} \geq 5 \mu m, \\ \mbox{EN ISO } 4042\mbox{:}2022 \\ \mbox{or hot dip galvanised} \geq 40 \mu m \\ \mbox{EN ISO } 10684\mbox{:}2004\mbox{+}AC\mbox{:}2009 \\ \mbox{f}_{uk} \leq 1000 N/mm^2 \\ \mbox{A}_5 > 8\% \mbox{ fracture elongation} \end{array}$	$\begin{array}{l} \mbox{Property class 50, 70 or 80} \\ \mbox{EN ISO 3506-1:2020} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362; \\ 1.4062, 1.4662, 1.4462; \\ \mbox{EN 10088-1:2023} \\ f_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 8\% \mbox{ fracture elongation} \end{array}$	Property class 50, 70 or 80 EN ISO 3506-1:2020 or property class HRC 70 with f_{yk} = 560 N/mm ^{2;} 1.4565; 1.4529; EN 10088-1:2023 f_{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation
3	Washer ISO 7089:2000	electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565; 1.4529; EN 10088-1:2023
4	Hexagon nut	Property class 5 or 8 acc. EN ISO 898-2:2022 electroplated ≥ 5 µm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 µm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 50, 70 or 80 acc. EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2023
5	SWEYTEC RG M I	Property class 5.8 ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2022	Property class 70 EN ISO 3506-1:2020; 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2023
6	Commercial standard screw or threaded rod SWEYTEC RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 electroplated ≥ 5 μm, EN ISO 4042:2022 A₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2023 A ₅ > 8 % fracture elongation
7	SWEYTEC filling disc	electroplated ≥ 5 μm, EN ISO 4042:2022 or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529; EN 10088-1:2023
8	Reinforcing bar	EN 1992-1-1:2004 and AC:2010, Bars and de-coiled rods, class B according EN 1992-1-1:2004/NA;	or C with fyk and k according to	NDP or NCI
8	Reinforcing bar	Bars and de-coiled rods, class B	or C with fyk and k according to	NDP or NCI
Inje	ction system S	WEYTEC IMS		

Specification	s of	intended	use part 1					
Table B1.1:	0	verview use	e and perfor	mance cat	egories			
				Inje		SWEYTEC	MS with	
			Anchor Threade			YTEC MI	Reinford	ing bar
Hammer drilling with standard dri bit	•				all s	izes		
Hammer drilling with hollow drill b	- oit	Ī						
(fischer "FHD", H Expert"; Bosch " Hilti "TE-CD, TE- DreBo "D-Plus",	Spee ∙YD",	d Clean";		N		it diameter (do o 35 mm))	
Static and quasi		uncracked concrete	all sizes	Tables: C1.1 C4.1	all sizes	Tables: C2.1	all sizes	Tables: C3.1
static loading, in		cracked concrete	M8 to M20	C4.1 C5.1 C7.1	_1)	C4.1 C6.1 C7.2	φ 10 to φ 20	C4.1 C6.2 C8.1
Seismic performance	_	C1			-	1)		
category		C2						
Use	11	dry or wet concrete			all s	izes		
category	12	water filled hole ²⁾	M 12 to	M 30	all s	izes	_1)
Installation direct	tion		D3 (down	ward and ho	rizontal and ι	ipwards (e.g.	overhead) ins	tallation)
Installation temp	eratu	ire	for			o T _{i,max} = +40 ° temperature a	°C after installatio	n
Service	T	emperature range l	-40 °C t	o +80 °C			erature +80 °C rature +50 °C)	
temperature	Т	emperature range II	-40 °C to	o +120 °C			erature +120 ° ature +72 °C)	
¹⁾ Performance ²⁾ Valid for shu			n 360 ml, 825 r	nl and coaxi	al cartridges v	with 380 ml, 4	00 ml, 410 ml	
Injection syste	em	SWEYTEC	IMS					F (
Intended use Specifications p	art 1						Ann	ex B1

Specifications of intended use part 2

Base materials:

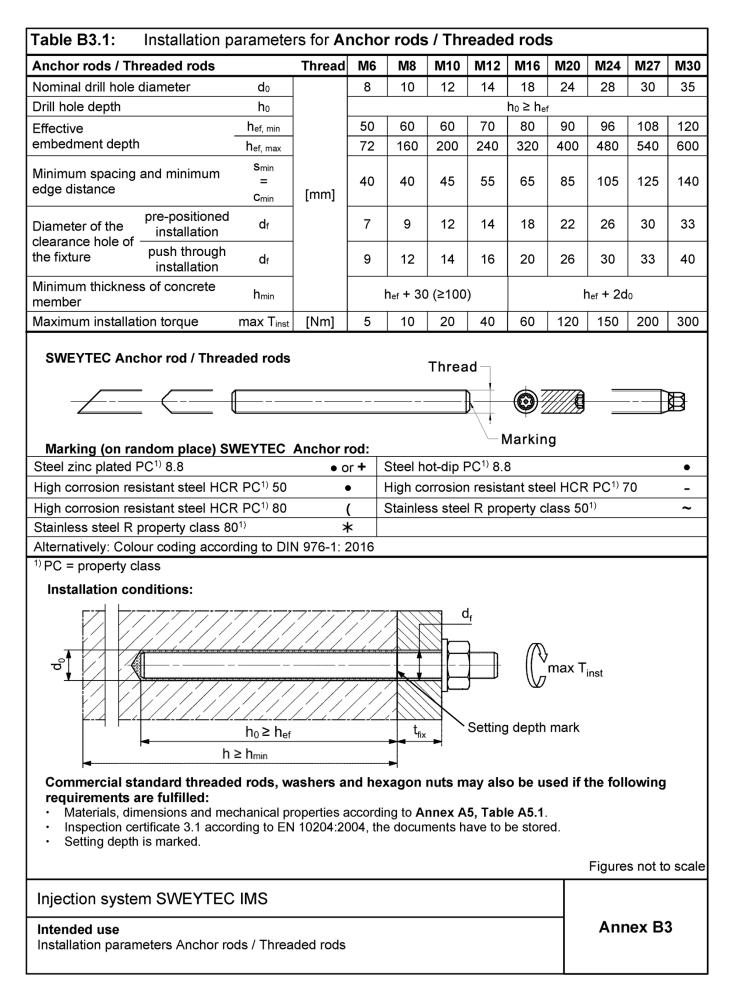
Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

Use conditions (Environmental conditions):

- · Fastener intended for use in structures subject to dry internal conditions (all materials).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and EOTA TR 082, Edition June 2023.


Installation:

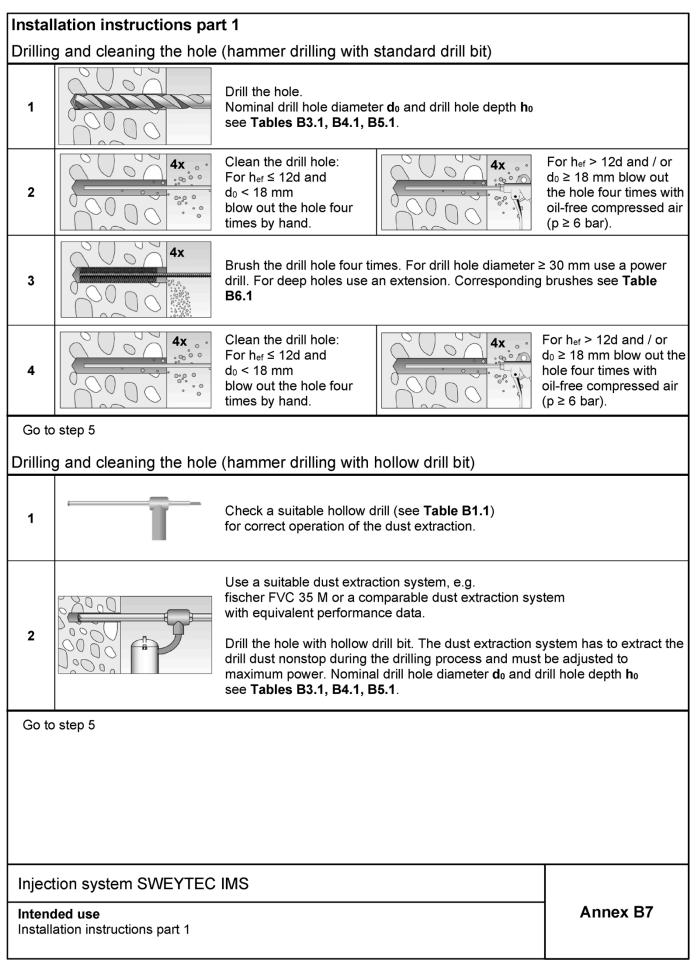
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening depth should be marked and adhered to installation.
- · Overhead installation is allowed (necessary equipment see installation instruction).

Injection system SWEYTEC IMS

Intended use Specifications part 2 Annex B2

SWEYTEC RG M I	Th	nread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	do		14	18	20	24	32
Drill hole depth	h ₀				$h_0 \ge h_{ef} = L_H$		
Effective embedment depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min} [t	mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	$I_{E,max}$		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst} [l	[Nm]	10	20	40	80	120
Marking: Anchor size e Stainless ste High corrosic Retaining bolt or threaded r	el → additiona on resistant sto rods (including	teel → a	dditional H			opriate materi	al and
Marking: Anchor size of Stainless ster High corrosic Retaining bolt or threaded r strength class of Annex A5, Installation conditions:	e.g.: M10 el → additiona on resistant ste rods (including	g nut an	dditional H			opriate materi	al and
Marking: Anchor size of Stainless ster High corrosic Retaining bolt or threaded r strength class of Annex A5, Installation conditions:	e. g.: M10 el → additiona on resistant sto rods (including , Table A5.1 $h_0 \ge h_{ef}$ h_{min}	g nut an	dditional H		with the appro		al and

Nominal diameter of the bar		φ	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20
Nominal drill hole diameter	d ₀		10 12	12 14	14 16	18	20	25
Drill hole depth	h₀				h ₀ 2	≥ h _{ef}		
Effective embedment depth	h ef,min		60	60	70	75	80	90
	$\mathbf{h}_{\text{ef,max}}$		160	200	240	280	320	400
Minimum spacing and minimum edge distance	S _{min} [mm] = C _{min}		40	45	55	60	65	85
Minimum thickness of concrete member	\mathbf{h}_{min}			n _{ef} + 30 (≥ 100)		h	l_{ef} + 2d ₀	
 The minimum value of rest The rib height must be w (φ = Nominal diameter o Installation conditions: 	elated rib vithin the	area f _{R,} range: (h _{rib} = rit	min must ful $0,05 \cdot \phi \le h_{i}$ 0 height). 1000000000000000000000000000000000000		TUDDUU	EN 1992-1		2:2010
			nın	b	ļ			
			nın				Figures r	not to sca
Injection system SWEYT	EC IMS		nın				Figures r	not to sca



Nominal drill hole diameter	do		8	10 12	14	16	18	20	24	25	28	30	35
Steel brush diameter BS	d⊳	[mm]	9	11 14	16	6 2	0	25	26	27	30	4	0
Table B6.2 Maximum processing time of the mortar and minimum curing time													
Table B6.2	Maxi (Duri	mum p	curing	time of	the m	nortar the	e con				-		I
Table B6.2	Maxi (Duri belov	mum p	curing sted n	time of ninimum	the m temp	nortar the erature)	e con		empe	erature	may	not fal	I
Table B6.2 Temperature anchoring bas [°C]	Maxi (Duri belov	mum p	curing sted m Maxim TEC Pro	time of ninimum	the m temp ssing	nortar the erature)			empe Minir EC o	erature	ring tim	not fal	/TEC Pro
Temperature anchoring bas [°C]	Maxi (Duri belov	imum p ing the d w the lis SWEY IMS F	curing sted n Maxin TEC Pro peed	time of ninimum num proce twork	the m temp ssing	nortar the erature) time SWEYTE IMS Pro		SWEYT	empe Minir EC o	num cur t _{cure}	ring tim	not fal	/TEC Pro
Temperature anchoring bas [°C]	Maxi (Duri belov at se	mum p ng the o w the lis SWEY IMS F High Sj	curing sted n Maxin TEC Pro peed nin	g time of ninimum num proce twork SWEYT IMS Pr	the m temp ssing	nortar the erature) time SWEYTE IMS Pro		SWEYT IMS Pr High Spe	empe Minir EC o	num cur t _{cure} SWEY	ring tim TEC Pro	not fal ne ¹⁾ SWEN IMS Low S	/TEC Pro
Temperature anchoring bas [°C] -10 to	Maxi (Duri belov at se	mum p ng the d w the lis SWEY IMS F High S S n > 5 n	curing sted n Maxin TEC Pro peed nin	g time of ninimum num proce twork SWEYT IMS Pr	the m temp ssing · EC p	nortar the erature) time SWEYTE IMS Pro		SWEYT IMS Pr High Spe 12 h	empe Minir EC o	num cur t _{cure} SWEY IMS F	ring tim TEC Pro	not fal ne ¹⁾ SWEN IMS Low S	/TE(Pro
Temperature anchoring bas [°C] -10 to > -5 to > 0 to	Maxi (Duri belov at se -5 ²⁾ 0 ²⁾	mum p ng the c w the lis SWEY IMS F High S > 5 m	curing sted n Maxin TEC Pro peed nin in	y time of ninimum num proce twork SWEYT IMS Pr - - > 13 m	the m temp ssing · EC p	nortar the erature) time SWEYTE IMS Pro Low Spee - -	e con	SWEYT IMS Pr High Spe 12 h 3 h	empe Minir EC o eed	num cur tcure SWEY IMS F	ring tim TEC Pro	not fal ne ¹⁾ SWEN IMS Low S -	/TEC Pro peed
Temperature anchoring bas [°C] -10 to > -5 to > 0 to > 5 to 1	Maxi (Duri belov at se -5 ²⁾ 0 ²⁾ 5 ²⁾	mum p ng the o w the lis SWEY IMS F High S > 5 m 5 mi	curing sted n Maxin TEC Pro peed nin in in	g time of ninimum num proce twork SWEYT IMS Pr - > 13 min 13 min	the m temp ssing · EC p	time SWEYTE IMS Pro Low Spee - - > 20 mir	e con	SWEYT IMS Pr High Spe 12 h 3 h 3 h	empe Minir EC o eed	num cur t _{cure} SWEY IMS F - 24 I 3 h	ring tim TEC Pro	not fal ne ¹⁾ IMS Low S - - 6	/TE(Pro peed h
Temperature anchoring bas [°C] -10 to > -5 to > 0 to > 5 to 1 > 10 to 2 > 20 to 3	Maxi (Duri belov at se -5 ²⁾ 0 ²⁾ 5 ²⁾ 10	mum p ng the c w the lis SWEY IMS F High S 5 m 5 m 3 m	curing sted n Maxin TEC Pro peed nin in in	y time of ninimum num proce twork SWEYT IMS Pr - > 13 min 9 min	the m temp ssing • EC p	time SWEYTE IMS Pro Low Spee - - 20 min 20 min	e con	SWEYT IMS Pr High Spe 12 h 3 h 3 h 50 mir	empe Minir EC o eed	num cur tcure SWEY IMS F 	ring tim TEC Pro h in in in	not fal ne ¹⁾ SWEN IMS Low S - - 6 3	TEC Pro peec h h h h

Injection system SWEYTEC IMS

Intended use Cleaning brush (steel brush) Processing time and curing time Annex B6

Instal	lation instructions par	rt 2					
Prepa	ring the cartridge						
5		Mark the setting depth.					
		Remove the sealing cap.					
6		Screw on the static mixer (the spiral in the static mixer must be clearly visible).					
7		dge into the	dispenser.				
8	X	×		nly grey in c	em of material out until colour. Do not use grey.		
Go to	step 9						
Injecti	on of the mortar						
9	For $h_0 = h_{ef}$ fill approximatel the drill hole with mortar. For $h_0 > h_{ef}$ more mortar is need Always begin from the botto the hole and avoid bubbles.	ded. bm of For drill hole dep use an extension	th ≥ 150 mm tube.		ead installation, deep > 250 mm) use an adapter.		
Go to	step 10						
Inject	tion system SWEYTEC	IMS					
Intend	led use ation instructions part 2				Annex B8		

Instal	ation instructions part 3				
	ation of anchor rods or SW	EYTEC RG M I			
10			Push t down while o After in be em	to the bottom of the h doing so. nserting the metal par erged around the and	metal parts. /EYTEC RG M I anchor lole, turning it slightly rts, excess mortar must chor element. If not, pull tely and reinject mortar.
		nstallations support with wedges (e.g. ges).			For push through installation fill the annular gap with mortar
11	Wait for the sp t _{cure} see Table B6 .	ecified curing time 2 .	12		Tables B3.1 and B4.1.
Option	fixtu Con	er the minimum curing ure (annular clearance mpressive strength ≥ 5 TENTION: By using fill) may be 0 N/mm	e filled with mortar via ² (e.g. SWEYTEC IM	a the filling disc. IS Pro).
Install	ation reinforcing bars				
40	the Red	ly use clean and oil-fre setting depth mark int commendation: tation back and forth of	o the fille	ed hole up to the sett	
10	fror	en the setting depth m n the mouth of the drill nject mortar.			ar must be emerged al part immediately and
11	Wait for the spec	cified curing time t _{cure} s	ee Tabl	e B6.2.	
Inject	ion system SWEYTEC IMS	6			
	led use ation instructions part 3				Annex B9
978 25					8 06 01-241/24

Anch	or rod / Threaded rod				M6	M8	M10	M12	M16	M20	M24	M27	M30
Chara	acteristic resistance t	:0 S	teel f	failure	unde	r tension lo	ading ¹⁾						
c) of		6	4.8		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8	98,0	141,2	183,6	224,4
Characteristic esistance N _{Rks}	Steel zinc plated	class	5.8		10,1	18,3(16,6)	29,0(26,8)	42,1	78,5	122,5	176,5	229,5	280,5
ce ce			8.8	[LNI]	16,1	29,2(26,5)	46,4(42,8)	67,4	125,6	196,0	282,4	367,2	448,8
aracter stance	Stainless steel R	Ser	50	[kN]	10,1	18,3	29,0	42,1	78,5	122,5	176,5	229,5	280,5
Cha esis	and high corrosion	Property	70		14,1	25,6	40,6	59,0		171,5		321,3	392,7
2		1	80		16,1	29,2	46,4	67,4	125,6	196,0	282,4	367,2	448,8
Partia	al factors ²⁾												
<u>ـ</u>		S	4.8					1,5					
g	Steel zinc plated	class	5.8					1,5					
ial fa γ _{Ms,N}		₽	8.8	[-]				1,5					
Partial factor Y ^{Ms,N}		Property	50					2,8					
ц С	and high corrosion	P _Z	70				1,87 / S\			R: 1,50)		
	resistant steel HCR		80					1,6	0				
	acteristic resistance t	:0 S	teel	failure	unde	r shear load	ding "						
	out lever arm		4.8		4,8	8,7(7,9)	13,9(12,8)	20,2	37,6	58,8	84,7	110,1	134,6
'istic V ⁰ _{Rk,s}	Steel zinc plated	SS	5.8		6,0	10,9(9,9)	17,4(16,0)	25,2	47,1	73,5	105,9	137,7	168,3
		class	8.8		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8	98,0	141,2	183,6	224,4
actei ance	Ctainland ateal D	Property	50	[kN]	5,0	9,1	14,5	21,0	39,2	61,2	88,2	114,7	140,2
Chara sista	Stainless steel R and high corrosion	ð	70		7,0	12,8	20,3	29,5	54,9	85,7	123,5	160,6	196,3
ပန္စ	resistant steel HCR	٦	80		8,0	14,6	23,2	33,7	62,8		141,2	183,6	224,4
Ductili	ty factor	I	k 7	[-]	-,-	,	,	1,0		,	,	,	,
	ever arm							- ,	-				
k,s		6	4.8		6,1	14,9(12,9)	29,9(26,5)	52,3	132,9	259,6	448,8	665,7	899,5
ct. M ⁰ _{Rk,s}	Steel zinc plated	class	5.8		7,6	18,7(16,1)	37,3(33,2)			324,6		832,2	1124,4
Charact. stance N		с С	8.8	[Nm]	12,2	29,9(25,9)	59,8(53,1)				897,6	1331,5	1799,0
Charad stance	Stainless steel R	Property	50		7,6	18,7	37,3				561,0		1124,4
sis.	and high corrosion	<u> </u> <u></u>	70		10,7	26,2	52,3					1165,0	
Ð	resistant steel HCR		80		12,2	29,9	59,8	104,6	265,9	519,3	897,6	1331,5	1799,0
	al factors ²⁾												
ct. M ⁰ _{Rk,s}	o	s	4.8					1,2					
<u>ح</u> ۲	Steel zinc plated	class	5.8					1,2					
Charact. stance M		₽	8.8 50	[-]				1,2					
Chara sistance	Stainless steel R	Property					1 56 / 6\4	2,3		0.4.05	3)		
resi	and high corrosion resistant steel HCR	٦	70 80				1,56 / SV	1,3		(, 1,25	•)		
T ²⁾ Ir	alues in brackets are v hreaded rods accordin absence of other nationaly admissible for high	g to ona	for u EN regu	ISO 10 ulations	684:2 s.	004+AC:200	09.	r stres	s area			-	

Injection system SWEYTEC IMS

Performances

Characteristic resistance to steel failure under tension / shear loading of Anchor rods and Threaded rods

Annex C1

	ЛІ			Correst		N/10	8440	M40	MAG	Mag
SWEYTEC RG N		00 to oto 1	RG M I	Screw		M8	M10	M12	M16	M20
Characteristic r	esistan		failure un	der tension loadin	lg	10.0	00.0	40.4	70.0	100.1
		Property	5.8	5.8		18,3	29,0	42,1	78,3	122,4
Characteristic	NI	class		8.8	TLAN 1	29,2	46,4	67,4	106,7	180,2
resistance with screw	N _{Rk,s}	Property class	R-70 / HCR-70	R-70 / commercial standard	[kN]	25,6	40,6	59,0	109,6	171,3
		01400		HCR-70		25,6	40,6	59,0	109,6	171,3
Partial factors ¹)									
		Property	5.8	5.8				1,50		
		class	0.0	8.8				1,50		
Partial factors	γMs,N	Property class	R-70 / HCR-70	R-70 / commercial standard	[-]			1,87		
		Class		HCR-70				1,50		
Characteristic r	esistan	ce to steel	failure un	der shear loading						
Without lever a	rm									
		Property	5.0	5.8		10,9	17,4	25,2	47,1	73,5
Characteristic		class	5.8	8.8	1 [14,6	23,2	33,7	62,8	98,0
resistance with screw	V ⁰ Rk,s	Property	R-70/	R-70 / commercial standard	[kN]	12,8	20,3	29,5	54,9	85,7
		class	HCR-70	HCR-70		12,8	20,3	29,5	54,9	85,7
Ductility factor				k 7	[-]	,	,	1,0	,	,
With lever arm								-,-		
		Property		5.8		18,7	37,3	65,4	166,2	324,6
Characteristic		class	5.8	8.8		29,9	59,8	104,6	265,9	519,3
resistance with screw	M ⁰ Rk,s	Property	R-70/	R-70 / commercial standard	[Nm]	26,2	52,3	91,5	232,6	454,4
		class	HCR-70	HCR-70		26,2	52,3	91,5	232,6	454,4
Partial factors ¹)		1			-				
		Property		5.8				1,25		
		class	5.8	8.8				1,25		
Partial factors	γMs,∨	Property	R-70 /	R-70 / commercial standard	[-]			1,56		
		class	HCR-70	HCR-70				1,25		
¹⁾ In absence c	of other r	national reg	ulations.							
Injection sys		VEYTEC	IMS						Annex (

8.06.01-241/24

Table C3.1: Characteristic reinforcing I		e to stee	el failure ι	under tens	sion / she	ar loadin	g of
Nominal diameter of the bar	φ	8	10	12	14	16	20
Characteristic resistance to stee	l failure unde	er tension	loading	-	-	-	•
Characteristic resistance	N _{Rk,s} [kN]			A _s ·	f uk ¹⁾		
Characteristic resistance to stee	l failure unde	er shear lo	oading				
Without lever arm							
Characteristic resistance	V ⁰ _{Rk,s} [kN]			$\mathbf{k}_{6}^{2)} \cdot \mathbf{A}$	$A_{s} \cdot f_{uk}^{(1)}$		
Ductility factor	k 7 [-]			1	,0		
With lever arm							
Characteristic resistance	M ⁰ Rk,s [Nm]			1,2 · V	$V_{el} \cdot f_{uk^{1)}}$		
 ¹⁾ f_{uk} respectively must be taker ²⁾ In accordance with EN 1992- k₆ = 0,6 for fasteners made = 0,5 for fasteners made = 0,5 for fasteners made 	4:2018 sectio of carbon ste of carbon ste of stainless s	n 7.2.2.3.1 el with f _{uk} : el with 500	l. ≤ 500 N/mm	1 ² .			
Injection system SWEYTEC	IMS						

Performances

Characteristic resistance to steel failure under tension / shear loading of reinforcing bars

Annex C3

Table C4.1: Characte	ristic resis	tance	to co	ncret	e failu	re und	er ten	sion	shear	r Ioad	ing
Size							All size	s			
Characteristic resistance to	concrete fa	ilure u	inder te	ension	loading	g					
Installation factor	γinst	[-]				See a	nnex C	5 to C6			
Factors for the compressive	•		rete > (C20/25	5						
	C25/30						1,05				
Increasing factor ψ_c for	C30/37						1,10				
cracked or uncracked	C35/45						1,15				
concrete	C40/50	[-]					1,19				
$\tau_{Rk(X,Y)} = \psi_{c} \cdot \tau_{Rk(C20/25)}$	C45/55						1,22				
	C50/60						1,26				
Splitting failure											
h / h _{ef} ≥	≥ 2,0						1,0 h _{ef}				
Edge 2,0 > h / h _{e f} >	> 1,3 C _{cr,sp}	[mm]				4,6	5 h _{ef} - 1,	8 h			
h / h _{ef} ≤	≦ 1,3	[]					2,26 h _e	f			
Spacing	Scr,sp						2 c _{cr,sp}				
Concrete failure											
Uncracked concrete	k ucr,N	[-]					11,0				
Cracked concrete	k cr,N						7,7				
Edge distance	C cr,N	[mm]					1,5 h _{ef}				
Spacing	Scr,N	LJ					2 c _{cr,N}				
Factors for sustained tensio	n loading										
Temperature range				50 °	C / 80 °	С		7	2 °C / 1	20 °C	
Factor	ψ^{0} sus	[-]			0,74				0,87	7	
Characteristic resistance to	concrete fa	ilure u	ınder s	hear lo	oading						
Installation factor	γinst	[-]					1,0				
Concrete pry-out failure											
Factor for pry-out failure	k ₈	[-]					2,0				
Concrete edge failure											
Effective length of fastener in shear loading	lf	[mm]			n≤ 24 mi n> 24 mi				0 mm)		
Calculation diameters										•	
Size			M6	M8	M10	M12	M16	M20	M24	M27	M30
Anchor rods and Threaded rods	d_{nom}	[mm]	6	8	10	12	16	20	24	27	30
SWEYTEC RG M I	d _{nom}		_1)	12	16	18	22	28	_1)	_1)	_1)
Size (nominal diameter of the	bar) φ	[mm]	8		10	12		14	16		20
Reinforcing bar	d _{nom}	[]	8		10	12		14	16		20
¹⁾ Anchor type not part of this	assessmer	ıt.									
Injection system SWEYT	EC IMS										
Performances Characteristic resistance to c	oncrete failu	re und	er tensi	ion / sh	iear load	ding			An	nex C	4

Table C5.1:	Characte Anchor r uncracke	ods ar	nd Threa	aded r	r <mark>ods</mark> ir	•				e failu	re for	
Anchor rod / Th	readed rod			M6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pull-	out and cond	rete co	ne failure	•	<u>.</u>	<u>.</u>						
Calculation diam	neter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked con	crete			_	4	4	-	L	-	<u>.</u>	-	
Characteristic k	oond resistar	ice in u	ncracked	concr	ete C20	/25						
Hammer-drilling	with standard	drill bit	or hollow	drill bit	(dry or v	wet con	crete)					
	О° С / 80 °С			9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature ——— range II: 72	2 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling	with standard	drill bit	or hollow	,	,	,	,	_,_	_,_	, -	,	, -
) °C / 80 °C			_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature	2 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
range II: 72							7,5	7,0	0,0	0,0	0,0	0,0
Dry or wet concr								1,0				
Water filled hole		γinst	[-]	_2)	_2)	_2)		1,0	1.2	2 ¹⁾		
Cracked concre	-			_					- ,-	_		
Characteristic b	oond resistar	ice in c	racked co	oncrete	C20/2	5						
Hammer-drilling	with standard	drill bit	or hollow	drill bit	(dry or v	wet con	crete)					
	0 °C / 80 °C			_2)	5,5	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature II: 72	2 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	_2)	_2)	_2)
Hammer-drilling v	with standard	drill bit c	br hollow c	Irill bit (water fi	lled hole	∟ ∋)					
	0 °C / 80 °C			_2)	_2)	_2)	5,0	5,0	4,5	_2)	_2)	_2)
perature —— range II: 72	2 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installation fact	ors						,	,	,			
Dry or wet concre				_2)			1,0			_2)	_2)	_2)
Water filled hole		γinst	[-]	_2)	_2)	_2)	,	1,2 ¹⁾		_2)	_2)	_2)
	nuttle cartridge ce not assess		60 ml, 82	5 ml an	d coaxi	al cartri	dges wi	ith 380	ml, 400	ml, 410	ml.	

Injection system SWEYTEC IMS

Performances

Characteristic resistance to combined pull-out and concrete failure for Anchor rod and Threaded rods

Annex C5

Table C6.1: Characteristic r SWEYTEC RG							for
SWEYTEC RG M I		M8	M10	M	12	M16	M20
Combined pull-out and concrete co	one failure	•					
Calculation diameter d	[mm]	12	16	1	8	22	28
Uncracked concrete					-		
Characteristic bond resistance in u	uncracked	concrete (C20/25				
Hammer-drilling with standard drill bit	or hollow	drill bit (dry	or wet con	<u>crete)</u>			
Tem- I: 50 °C / 80 °C	EN 1 (10,5	10,0	9	,5	9,0	8,5
perature τ _{Rk,ucr} τ _{Rk,ucr} τ _{Rk,ucr}	[N/mm ²]	9,0	8,0	8	,0	7,5	7,0
Hammer-drilling with standard drill bit	or hollow	drill bit (wat	er filled hol	<u>e)</u>		I	
Tem- I: 50 °C / 80 °C		10,0	9,0	9	,0	8,5	8,0
perature τ _{Rk,ucr} τ _{Rk,ucr} τ _{Rk,ucr}	[N/mm ²]	7,5	6,5	6	,5	6,0	6,0
Installation factors		-) -			, -	-,-	- , -
Dry or wet concrete				1	,0		
Water filled hole γ ^{inst}	[-]				2 ¹⁾		
¹⁾ Valid for shuttle cartridges with 3	60 ml, 825	ml and coa	xial cartrid	ges with 38	0 ml, 400) ml, 410 ml	
Table C6.2: Characteristic	esistance	e to com t	pined pul	I-out and	concr	ete failure	for
reinforcing ba			•				
Nominal diameter of the bar	ф	8	10	12	14	16	20
Combined pull-out and concrete c	one failure	•		-			1
Calculation diameter d	[mm]	8	10	12	14	16	20
Uncracked concrete	-	-		-		•	-
Characteristic bond resistance in u	uncracked	concrete (C20/25				
Hammer-drilling with standard drill bit	or hollow	<u>drill bit (dry</u>	or wet con	<u>crete)</u>			
Tem- I: 50 °C / 80 °C	EN 1 /	11,0	11,0	11,0	10,0	10,0	9,5
perature Transe II: 72 °C / 120 °C T _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0
Installation factor							
Dry or wet concrete γ _{inst}	[-]			1	,0		
Cracked concrete		1					
Characteristic bond resistance in o	cracked co	oncrete C2	0/25				
Hammer-drilling with standard drill bit	or hollow	drill bit (dry	or wet con	<u>crete)</u>			
Tem- I: 50 °C / 80 °C	EN 1 /	_1)	3,0	5,0	5,0	5,0	4,5
range II: 72 °C / 120 °C	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0
Installation factor							1
Dry or wet concrete γ _{inst}	[-]	_1)			1,0		
¹⁾ Performance not assessed							
						1	
Injection system SWEYTEC IN	/IS						
Performances Characteristic resistance to combine Threaded RG M I and reinforcing ba		and concret	e failure fo	r SWEYTE	C	Anne	x C6

Anchor Threade	[,] rods / ed rods	M6	M8	M10	M12	M16	M20	M24	M27	M30
	ement-Factors	for tensi	on loadin	g ¹⁾						-
Uncraci	ked concrete;	Temperat	ure range	 ,						
SN0-Factor	[0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
N∞-Factor	[mm/(N/mm ²)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	d concrete; Te	mperatur	e range I,	II						
N0-Factor	[_3)	0,12	0,12	0,12	0,13	0,13	_3)	_3)	_3)
N0-Factor	[mm/(N/mm ²)]	_3)	0,25	0,27	0,30	0,30	0,30	_3)	_3)	_3)
Displac	ement-Factors	for shea	r loading ²)						
Incrac	ked or cracked	concrete	; Temper	ature rang	je I, II					
V0-Factor		0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
V∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09
¹⁾ Calcı	ulation of effecti	ve displac	ement:		²⁾ Calo	ulation of	effective of	lisplaceme	ent:	
	· · ·					2				
ðno =	$\delta_{ ext{N0-Factor}} \cdot au$				δvo	= δ_{V0} -Factor	·V			
	⁻ δN0-Factor · τ = δ _{N∞-Factor} · τ					= ð∨0-Factor = δ∨∞-Factor				
δ _{N∞} =		rength und	der tensior	n loading	δv∞		·V]		
δ _{N∞} = τ =	= δ _{N∞-Factor} · τ = acting bond st rmance not ass	essed		n loading SWEYTE	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she	·V]		
δ _{N∞} = τ = ³⁾ Perfo ⁻able (= δ _{N∞-Factor} · τ = acting bond st rmance not ass	essed	ents for S	-	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she	·V	9 M16	N	120
δ _№ = τ = ³⁾ Perfo ⁻able (= δ _{N∞-Factor} · τ = acting bond st rmance not ass C7.2: Dis	essed placeme Ma	ents for \$	SWEYTE M10	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she	·V		N	120
δ _{N∞} = τ = ³⁾ Perfo Γable (SWEYT Displac	⁼ δ _{N∞-Factor} · τ ⁼ acting bond st ormance not ass C7.2: Dis EC RG M I	essed placeme Ma for tensi	ents for S 3 on loading	SWEYTE <u>M10</u> g ¹⁾	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she	·V		N	120
δ _{N∞} = τ = ³⁾ Perfo able (SWEYT Displac Jncracl	= δ _{N∞-Factor} · τ = acting bond st ormance not ass C7.2: Dis EC RG M I = ement-Factors ked concrete;	essed placeme Ma for tensi	ents for S 3 on loading ure range	SWEYTE <u>M10</u> g ¹⁾	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she	·V			1/20
$δ_{N∞} =$ τ = ³⁾ Perfo able (SWEYT Displac Jncracl i N0-Factor	= $\delta_{N\infty-Factor}$ · τ = acting bond st armance not ass C7.2: Dis EC RG M I = cement-Factors ked concrete; - [mm/(N/mm ²)]	essed placeme Ma for tensi Temperat	ents for S on loading ure range	SWEYTE <u>M10</u> g ¹⁾ I, II	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she I M12	·V	M16	0	
$δ_{N∞} =$ τ = ³⁾ Perfo able (SWEYT Displac Jncracl Incracl N∞-Factor	= $\delta_{N\infty-Factor}$ · τ = acting bond st armance not ass C7.2: Dis EC RG M I = cement-Factors ked concrete; - [mm/(N/mm ²)]	essed placeme Ma for tensi Temperat 0,1 0,1	ents for S on loading ure range 0 3	SWEYTE <u>M10</u> g ¹⁾ I, II 0,11 0,14	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she I <u>0,12</u>	·V	M16 0,13	0	,14
$δ_{N\infty} =$ τ = ³⁾ Perfo Table (SWEYT Displac Jncracl $\delta_{N0-Factor}$ $\delta_{N\infty-Factor}$ Displac	= $\delta_{N\infty-Factor}$ · τ = acting bond st ormance not ass C7.2: Dis EC RG M I = [mm/(N/mm ²)]	essed placeme for tensi Temperat 0,1 0,1	ents for \$ on loading ure range 0 3 r loading ²	SWEYTE <u>M10</u> g ¹⁾ I, II 0,11 0,14	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she I <u>0,12</u>	·V	M16 0,13	0	,14
δ _{N∞} = τ = ³⁾ Perfo Γable (SWEYT Displac Jncracl δ _{N0-Factor} Displac	= $\delta_{N\infty-Factor}$ · τ = acting bond st ormance not ass C7.2: Dis EC RG M I = [mm/(N/mm ²)] = ement-Factors ked concrete; [mm/(N/mm ²)]	essed placeme for tensi Temperat 0,1 0,1	ents for S on loading ure range 0 3 r loading ² ure range	SWEYTE <u>M10</u> g ¹⁾ I, II 0,11 0,14	δ∨∞ ∨ =	= δ _{V∞-Factor} acting she I <u>0,12</u>	·V	M16 0,13	0	,14

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-}\mathsf{Factor}}\,\cdot\,\tau$

 τ = acting bond strength under tension loading

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$ $\delta_{V\!\infty} = \delta_{V\!\infty\text{-Factor}} \cdot V$

V = acting shear loading

Injection system SWEYTEC IMS

Performances

Displacements for Anchor rods / Threaded rods and SWEYTEC RG M I

Annex C7

SN∞-Factor [mm/(N/mm²)] 0,10 0,10 0,12 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,30 0,30 0,30 0,30 <th></th> <th>þ 8</th> <th>10</th> <th>12</th> <th>14</th> <th>16</th> <th>20</th>		þ 8	10	12	14	16	20
$\frac{N_0 + Factor}{N_{N-Factor}} \frac{[mm/(N/mm^2)]}{0,10} = \frac{0,09}{0,10} = 0,09 = 0,10 =$	Displacement-Facto	rs for tension le	bading ¹⁾	-		-	-
$\frac{[mm/(N/mm^2)]}{N_{0}-Factor} = \frac{0, 10}{2} 0, 12 0, 12 0, 12 0, 12 0, 12 0, 12 0, 12 0, 12 0, 13 0$	Incracked concrete	; Temperature	range I, II				
$\frac{0,10}{2},\frac{0,12}{2},\frac{0,13}{2$	N0-Factor	0,09	0,09	0,10	0,10	0,10	0,10
$\frac{ nm/(N/nm^2) }{ nm/(N/nm^2) } = \frac{-3}{-3} 0,12 0,13 0,13 0,13 0,13 0,13 0,13 0,13 0,13$	Imm/(IN/mm² N∞-Factor	0,10	0,10	0,12	0,12	0,12	0,12
$\begin{array}{ c $	racked concrete; T	emperature rar	nge I, II	•			•
Nuc-Factor * 0,2/ 0,30	N0-Factor	_3)	0,12	0,13	0,13	0,13	0,13
Jncracked or cracked concrete; Temperature range I, II Vore-Factor Imm/kNI 0,11 0,11 0,10 0,10 0,10 0,00 $Vore-Factor Imm/kNI 0,12 0,12 0,11 0,11 0,11 0,10 0,00 Vore-Factor T 2 Calculation of effective displacement: \delta vore = \delta vore-Factor \cdot V \delta vore = \delta vore-Factor \cdot V \delta vore = \delta vore-Factor \cdot V \delta bloe = \delta bloe-Factor \cdot T \delta vore = \delta vore-Factor \cdot V \delta vore = \delta vore-Factor \cdot V \delta vore = \delta vore-Factor \cdot V \tau = acting bond strength under tension loading V = acting shear loading V = acting shear loading \vartheta) Performance not assessed. \vartheta \vartheta \vartheta \vartheta $	N∞-Factor	/] _ ³⁾	0,27	0,30	0,30	0,30	0,30
$\overline{Vuc-Factor}$ $[mm/kN]$ $0,11$ $0,11$ $0,10$ $0,10$ $0,06$ $\overline{Vuc-Factor}$ $0,12$ $0,11$)isplacement-Facto	rs for shear loa	ding ²⁾		-		-
Imm/kNJ 0,12 0,12 0,11 0,11 0,11 0,11 0,11 0 Calculation of effective displacement: 0 Mue = 0 Mue + Factor · T 0 Calculation of effective displacement: 0 Vue = 0 Mue + Factor · V 0 Mue = 0 Mue + Factor · T 0 Vue = 0 Mue + Factor · V 0 Vue = 0 Mue + Factor · V 1 T = acting bond strength under tension loading 1 = acting shear loading 3 Performance not assessed. 1 Performance not assessed.	Incracked or cracke	ed concrete; Te	mperature ran	ge I, II			
$\nabla_{Ver-Factor}$ 0,12 0,12 0,11 0,	V0-Factor	0,11	0,11	0,10	0,10	0,10	0,09
$ \begin{split} \delta N0 &= \delta N0 - Factor \cdot \tau & \delta v_0 = \delta v_0 - Factor \cdot V \\ \delta N_{vc} &= \delta N_{vc} - Factor \cdot V \\ \tau &= acting bond strength under tension loading & V = acting shear loading \\ $	V∞-Factor	0,12	0,12	0,11	0,11	0,11	0,10
$\delta_{Nec} = \delta_{Nec+Factor} \cdot \tau$ $\tau = acting bond strength under tension loading 3 Performance not assessed.$	¹⁾ Calculation of effect	ctive displaceme	nt:	²⁾ Calculati	on of effective of	lisplacement:	
$\delta_{Noc} = \delta_{NocFactor} \cdot \tau$ $\tau = acting bond strength under tension loading 3 Performance not assessed.\delta_{Noc} = \delta_{NocFactor} \cdot V\tau = acting shear loading 5 Performance not assessed.$	$\delta_{N0} = \delta_{N0-Factor} \cdot \tau$			$\delta_{V0} = \delta_{V0}$	-Factor · V		
τ = acting bond strength under tension loading V = acting shear loading *) Performance not assessed.	$\delta_{N\infty} = \delta_{N\infty-Factor} \cdot \tau$			$\delta_{V\infty} = \delta_{V\infty}$	⊳- _{Factor} · V		
^a Performance not assessed.				$\lambda = a a t i a$		_	
Injection system SWEYTEC IMS							
Injection system SWEYTEC IMS							
Injection system SWEYTEC IMS							
njection system SWEYTEC IMS							
Injection system SWEYTEC IMS							
njection system SWEYTEC IMS							
Injection system SWEYTEC IMS							