

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-24/1053 vom 25. März 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Injektionssystem SWEYTEC IMS für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

Weyland Steiner

Handwerks- & Industriebedarf GmbH & Co. KG Handelszentrum 4

5101 BERGHEIM ÖSTERREICH

Herstellwerk 1

44 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604, Edition 10/2022

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z070277.25

Seite 2 von 44 | 25. März 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z070277.25 8.06.04-242/24

Seite 3 von 44 | 25. März 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem SWEYTEC IMS für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Speed und SWEYTEC IMS Pro High Speed, einer Injektions-Ankerhülse und einer Ankerstange mit Sechskantmutter und Unterlegscheibe oder einer Innengewinde-Ankerstange in den Größen M6 bis M16 besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen	Siehe Anhang B4 bis B6, B13, B14, C1 bis C21
Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Z070277.25 8.06.04-242/24

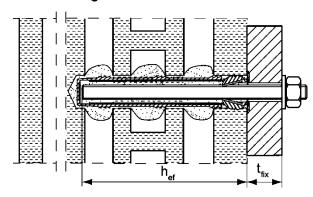
Seite 4 von 44 | 25. März 2025

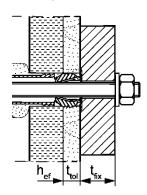
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 25. März 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Z070277.25 8.06.04-242/24


Einbauzustände Teil 1

SWEYTEC Ankerstangen mit Injektions-Ankerhülse SWEYTEC H K; Montage in Hohl-, Loch- und Vollsteinen

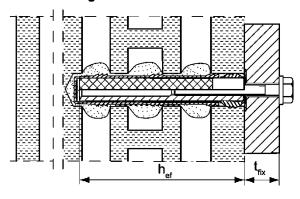
Vorsteckmontage:

Montage mit Putzüberbrückung

Größe der Injektions-Ankerhülse:

SWEYTEC H 12x50 K

SWEYTEC H 12x85 K SWEYTEC H 16x85 K


SWEYTEC H 16x130 K SWEYTEC H 20x85 K SWEYTEC

H 20x130 K

SWEYTEC H 20x200 K

Innengewindeanker SWEYTEC E mit Injektions-Ankerhülse SWEYTEC H K; Montage in Hohl-, Loch- und Vollsteinen

Vorsteckmontage:

Abbildungen nicht maßstäblich

hef = Effektive Verankerungstiefe

ttol = Dicke der nichttragenden Schicht (z.B. Putz)

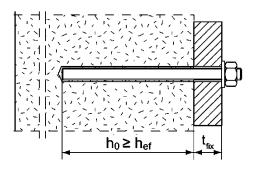
t_{fix} = Dicke des Anbauteils

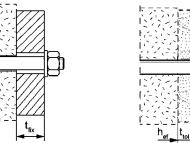
Injektionssystem SWEYTEC IMS für Mauerwerk

Produktbeschreibung

Einbauzustand Teil 1,

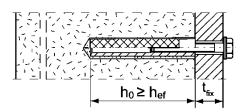
Ankerstange und Innengewindeanker mit Injektions-Ankerhülse

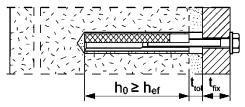

Anhang A1


Einbauzustände Teil 2

Ankerstangen ohne Injektions-Ankerhülse SWEYTEC H K; Montage in Vollsteinen und Porenbeton

Vorsteckmontage:




Montage mit Putzüberbrückung

Innengewindeanker SWEYTEC E ohne Injektions-Ankerhülse SWEYTEC H K; Montage in Vollsteinen und Porenbeton

Vorsteckmontage:

Montage mit Putzüberbrückung

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

ttol = Dicke der nichttragenden Schicht (z.B. Putz)

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

Injektionssystem SWEYTEC IMS für Mauerwerk

Produktbeschreibung

Einbauzustand Teil 2, Ankerstange und Innengewindeanker ohne Injektions-Ankerhülse Anhang A2

Übersicht Systemkomponenten Teil 1 Mörtelkartusche (Shuttlekartusche) mit Verschlusskappe Größen: 360 ml, 825 ml Aufdruck: SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Speed oder SWEYTEC IMS Pro High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Gefahrenhinweise, Kolbenwegskala (optional), Aushärteund Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Mörtelkartusche (Koaxialkartusche) mit Verschlusskappe Größen: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml Aufdruck: SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Speed oder SWEYTEC IMS Pro High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Gefahrenhinweise, Kolbenwegskala (optional), Aushärteund Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Statikmischer SWEYTEC MR Plus für Injektionskartuschen bis 410 ml Statikmischer SWEYTEC JMR für Injektionskartuschen 825 ml Injektionshilfe und Verlängerungsschlauch Ø 9 für Statikmischer SWEYTEC MR Plus; Injektionshilfe und Verlängerungsschlauch Ø 9 oder Ø 15 für Statikmischer SWEYTEC JMR Reinigungsbürste SWEYTEC BS Ausbläser SWEYTEC Druckluft-Reinigungsgerät SWEYTEC Abbildungen nicht maßstäblich Injektionssystem SWEYTEC IMS für Mauerwerk Anhang A3 Produktbeschreibung Übersicht Systemkomponenten Teil 1: Kartusche / Statikmischer / Reinigungszubehör

7092242.25 8.06.04-242/24

Übers	Übersicht Systemkomponenten Teil 2							
	stange SWEYTEC A / SWEYTEC RG M (ndestange)	Ankerstang	e) und handelsübliche Gev	vindestange				
2		Größen:	M6, M8, M10, M12, M16					
Inneng	gewindeanker SWEYTEC E (SWEYTEC I	E)						
5		Größen:	11x85 M6 / M8 15x85 M10 / M12					
Injektio	ons-Ankerhülse SWEYTEC H K (SWEY)	· -						
7		Größen:	SWEYTEC H 12x50 K SWEYTEC H 12x85 K SWEYTEC H 16x85 K SWEYTEC H 20x85 K					
7		Größen:	SWEYTEC H 16x130 K SWEYTEC H 20x130 K SWEYTEC H 20x200 K					
Unterle	egscheibe		П					
3		\bigcirc						
Sechs	kantmutter	_						
4								
			Abbild	ungen nicht maßstäblich				
Injekt	tionssystem SWEYTEC IMS für Ma	uerwerk						
Produ	uktbeschreibung icht Systemkomponenten Teil 2: Stahlteile		nkerhülsen	Anhang A4				

Геil	Bezeichnung		Werkstoffe	
1	Mörtelkartusche		Mörtel, Härter, Füllstoffe	
		Stahl	Nichtrostender Stahl R	Hochkorrosionsbeständige Stahl HCR
		verzinkt	gemäß EN 10088-1:2023 der Korrosionsbeständigkeits- klasse CRC III nach EN 1993-1-4:2006+A1:2015	gemäß EN 10088-1:2023 de Korrosionsbeständigkeits - klasse CRC V nach EN 1993-1-4:2006+A1:201
2	Ankerstange / Gewindestange	Festigkeitsklasse 4.6; 4.8; 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt ≥ 5µm, ISO 4042:2022 oder feuerverzinkt EN ISO 10684:2004+AC:2009 f _{uk} ≤ 1000 N/mm² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2023 f _{uk} ≤ 1000 N/mm² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2020 oder Festigkeitsklasse 70 m f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2023 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ Bruchdehnung
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5µm, ISO 4042:2022 oder feuerverzinkt EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529 EN 10088-1:2023
4	Sechskant- mutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2022 verzinkt ≥ 5µm, ISO 4042:2022 oder feuerverzinkt EN ISO 10684:2004+AC:2009	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 50, 70 ode 80 EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2023
5	Innengewinde- anker SWEYTEC E	Festigkeitsklasse 5.8 EN ISO 898-1:2013 verzinkt ≥ 5µm, ISO 4042:2022	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023
6	Handelsübliche Schraube oder Gewindestange für Innengewinde- anker SWEYTEC E	Festigkeitsklasse 4.6, 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt ≥ 5µm, ISO 4042:2022	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023
7	Injektions- Ankerhülse SWEYTEC H K		PP / PE	
	ktionssystem S duktbeschreibun	SWEYTEC IMS für Mauen	werk	Anhang A5

Spezifizierung Teil1

Spezifizierung des Verwendungszwecks Teil 1 Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien Beanspruchung der Verankerung Injektionssystem SWEYTEC IMS für Mauerwerk Bohrlocherstellung durch Hammerbohren alle Steine Bohrlocherstellung durch Drehgangbohren alle Steine Statische und quasi-statische alle Steine Beanspruchung im Mauerwerk Brandeinwirkung unter Zug- und Keine Leistung bewertet Querbeanspruchung Injektions-Ankerhülse mit Ankerstange oder Innengewindeanker (in Hohl-, Loch- und Vollsteinen) Ankerstange oder Größen: Vorsteck-Innengewindeanker SWEYTEC H 12x50 K montage SWEYTEC H 12x85 K (in Vollstein und Porenbeton) SWEYTEC H 16x85 K Montageart SWEYTEC H 16x130 K SWEYTEC H 20x85 K SWEYTEC H 20x130 K SWEYTEC H 20x200 K Ankerstange; Durchsteck-Anwendung nur im zylindrischen Keine Leistung bewertet Bohrloch (in Vollstein und montage Porenbeton) Bedingung d/d trocken/trocken Nutzungs-Bedingung w/d alle Steine nass/trocken bedingungen Bedingung w/w nass/nass D3 (horizontale und vertikale Montage nach unten) Einbaurichtung $T_{i,min} = -10 \degree C bis T_{i,max} = +40 \degree C$ Einbautemperatur Gebrauchs-Temperatur-(maximale Kurzzeittemperatur +80 °C; -40 °C bis +80 °C temperaturbereiche bereich Tb maximale Langzeittemperatur +50 °C) Injektionssystem SWEYTEC IMS für Mauerwerk **Anhang B1** Verwendungszweck

7092242.25 8.06.04-242/24

Spezifizierung des Verwendungszweck Teil 2

Beanspruchung der Verankerung:

Statische oder quasi-statische Lasten

Verankerungsgrund:

- Mauerwerk aus Vollsteinen (Nutzungskategorie b) und Mauerwerk aus Porenbeton (Nutzungskategorie d), entsprechend Anhang B10.
- Mauerwerk aus Hohlblöcken und Lochsteinen (Nutzungskategorie c), entsprechend Anhang B10
- Für die minimale Bauteildicke gilt hef+30mm
- Mörtel mindestens Druckfestigkeitsklasse M2,5 gemäß EN 998-2:2016
- Für andere Steine in Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche (nicht für Steine unter Brandeinwirkung) nach EOTA Technical Report TR 053:2022-07 unter Berücksichtigung des β-Faktors nach Anhang C21, Tabelle C21.1 ermittelt werden.

Hinweis (gilt nur für Vollsteine und Porenbeton):

Die charakteristischen Tragfähigkeiten gelten auch für größere Steinformate, größere Druckfestigkeiten und größere Rohdichten der Mauersteine.

Temperaturbereiche:

• Tb: von - 40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl.
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A5, Tabelle A.5.1.

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck
Spezifizierung Teil 2

Anhang B2

Spezifizierung des Verwendungszweck Teil 3 fortgesetzt

Bemessung:

Die Bemessung der Verankerung erfolgt in Übereinstimmung mit

EOTA Technical Report TR 054:2023-12, Bemessungsmethode A unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Planers.

Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$$

Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung N_{Rk,pb} oder das Herausdrücken eines Steines unter Querbeanspruchung V_{Rk,pb} siehe EOTA Technical Report TR 054:2023-12.

N_{Rk,s}, V_{Rk,s} und M⁰_{Rk,s} siehe Anhang C1-C3.

Faktoren für Baustellenversuche und Verschiebungen siehe Anhang C21.

 Unter Berücksichtigung des im Bereich der Verankerung vorhandenen Mauerwerks, den zu verankernden Lasten sowie der Weiterleitung dieser Lasten im Mauerwerk sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben.

Einbau:

- Bedingung d/d: Installation und Verwendung in trockenem Mauerwerk
- Bedingung w/w:- Installation und Verwendung in trockenem und nassem Mauerwerk
- Bedingung w/d: Installation in nassem Mauerwerk und Verwendung in trockenem Mauerwerk
- · Bohrlocherstellung siehe Anhang C (Bohrverfahren)
- · Im Fall von Fehlbohrungen sind diese mit Injektionsmörtel SWEYTEC IMS Pro zu vermörteln.
- Überbrückung von nichttragenden Schichten (z.B. Putz) in Vollsteinmauerwerk und bei zylindrischem Bohrloch möglich. Bei Lochsteinmauerwerk siehe Anhang B6, Tabelle B6.1.
- Einbau des Dübels durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Befestigungsschrauben oder Ankerstangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen für den Innengewindeanker SWEYTEC E entsprechen.
- Aushärtezeiten siehe Anhang B7, Tabelle B7.2.
- Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

Materialabmessungen und mechanische Eigenschaften der Metallteile entsprechend den Angaben aus Anhang A5, Tabelle A5.1.

Bestätigung der Material- und mechanischen Eigenschaften der Metallteile durch ein Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden.

Markierung der Ankerstange mit der vorgesehenen Verankerungstiefe. Dies darf durch den Hersteller oder durch eine Person auf der Baustelle erfolgen.

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck
Spezifizierung Teil 3 fortgesetzt

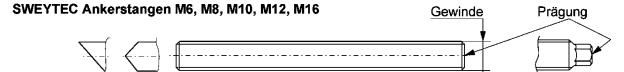

Anhang B3

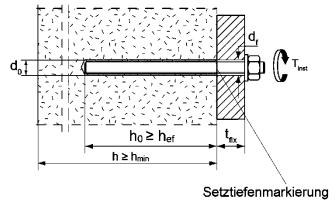
Tabelle B4.1:	Montagekennwerte für Ankerstangen in Vollsteinen und Porenbeton ohne
	Injektions-Ankerhülse SWEYTEC H K

Ankerstange / Gewindesta	nge Gewinde	М6	M8	M10	M12	M16		
Bohrernenndurchmesser	d₀[mm]	8	10	12	14	18		
Effektive Verankerungstiefe hef1) in Porenbeton	h _{0,min} ≥ h _{ef,min} [mm]			100				
(zyl. Bohrloch)	h _{0,max} ≥ h _{ef,max} [mm]	h-30, ≤200						
Effektive Verankerungstiefe	h _{ef,min} [mm]	50						
h _{ef} 1) in Vollziegel (Bohrlochtiefe h₀≥ h _{ef})	h _{ef,max} [mm]	h-30, ≤200						
Durchgangsloch	Vorsteck d _f ≤[mm]	7	9	12	14	18		
im Anbauteil Durchsteck d _f ≤[mm]		9	11	14	16	20		
Durchmesser der Stahlbürste d₀≥[mm] Siehe Tabelle B7.1								
Maximales Montagedrehmor	ment T _{inst} [Nm]		Siel	he Steinkennv	verte			

¹⁾ h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} ist möglich.

Prägung (an beliebiger Stelle) SWEYTEC Ankerstange:

Stahl galvanisch verzinkt FK¹¹ 8.8	• oder +	Stahl feuerverzinkt FK¹¹ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK1) 70	-
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 80	(Nichtrostender Stahl R FK ¹⁾ 50	۲
Nichtrostender Stahl R FK1) 80	*		


Alternativ: Farbmarkierung nach DIN 976-1:2016;

Festigkeitsklasse 4.6 Markierung nach EN ISO 898-1:2013

1) FK = Festigkeitsklasse

Einbauzustände:

Ankerstange im zylindrischen Bohrloch

Abbildungen nicht maßstäblich

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck

Montagekennwerte für Ankerstangen ohne Injektions-Ankerhülse

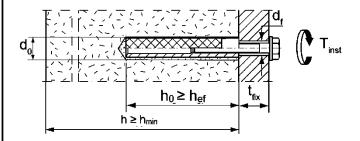
Tabelle B5.1: Montagekennwerte für Innengewindeanker SWEYTEC E in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse SWEYTEC H K

Innengewindeanker SWEYTEC E		11x85 M6	11x85 M8	15x85 M10	15x85 M12	
Ankerdurchmesser	d⊦[mm]	11 15			5	
Bohrernenndurchmesser	d₀[mm]	1	4	1	8	
Ankerlänge	L⊣[mm]		8	35		
Effektive Verankerungstiefe	h₀ ≥ h _{ef} [mm]	85				
Durchmesser der Stahlbürste	d _b ≥[mm]		siehe Ta	belle B7.1		
Maximales Montagedrehmoment	T _{inst} [Nm]		siehe Stei	nkennwerte		
Durchgangsloch im Anbauteil	d _f [mm]	7 9 12 14			14	
- Fine obroubtiofo	I _{E,min} [mm]	6 8		10	12	
Einschraubtiefe	I _{E,max} [mm]	60				

Innengewindeanker SWEYTEC E

SWEYTEC E 11x85 M6, SWEYTEC E 11x85 M8

SWEYTEC E 15x85 M10, SWEYTEC E 15x85 M12



Prägung:

Größe, z.B. M8, nichtrostender Stahl: R, z.B. M8 R, hochkorrosionsbeständiger Stahl: HCR, z.B. M8 HCR

Einbauzustände:

Innengewindeanker im zylindrischen Bohrloch

Abbildungen nicht maßstäblich

Injektionssystem SWEYTEC IMS für Mauerwerk

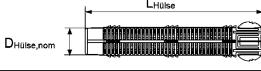
Verwendungszweck

Montagekennwerte für Innengewindeanker SWEYTEC E ohne Injektions-Ankerhülse

Tabelle B6.1: Montagekennwerte für Ankerstangen und Innengewindeanker SWEYTEC E mit Injektions-Ankerhülsen (Vorsteckmontage)

•		` `		<u> </u>				
Injektions-Ankerhülse SWEYTE	CHK	12x50	12x85 ²⁾	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾
Bohrernenndurchmesser d ₀ = D _{Hülse,nom}	d₀[mm]] 12		16		20		
Bohrlochtiefe	h₀[mm]	55	90	90	135	90	135	205
Effect Co. Manual and a section	h _{ef,min} [mm]	50	65	85	110	85	110	180
Effektive Verankerungstiefe	h _{ef,max} [mm]	50	85	85	130	85	130	200
Ankergröße	[-]	M6 ui	nd M8	M8 und M10		M12 und M16		16
Größe des SWEYTEC E		-	-	11x85	-	15x85	-	-
Durchmesser der Stahlbürste ¹⁾	d₀≥[mm]	siehe Tabelle B7.1						
Maximales Montagedrehmoment	T _{inst} [Nm]			siehe	Steinkenn	werte		

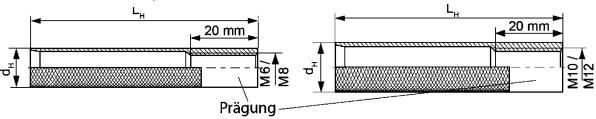
¹⁾ Nur für Vollsteine und massive Bereiche in Lochsteinen.


Injektions-Ankerhülsen

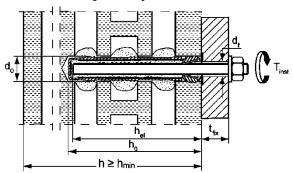
SWEYTEC H 12x50 K; SWEYTEC H 12x85 K; SWEYTEC H 16x85 K; SWEYTEC H 16x130 K; SWEYTEC H 20x85 K; SWEYTEC H 20x130 K; SWEYTEC H 20x200 K

Markierung:

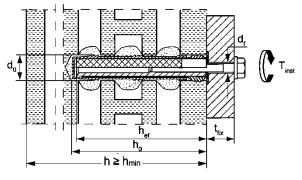
Größe D_{Hülse,nom} x L_{Hülse} (z.B.: 16x85)



Markierung


InnengewindeankerSWEYTEC E

SWEYTEC 11x85 M6, SWEYTEC 11x85 M8


Einbauzustände:

Ankerstange mit Injektions-Ankerhülse

Innengewindeanker mit Injektions-Ankerhülse

SWEYTEC E 15x85 M10, SWEYTEC E 15x85 M12

Abbildungen nicht maßstäblich

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck

Montagekennwerte für Ankerstangen und Innengewindeanker SWEYTEC E mit Injektions-Ankerhülse (Vorsteckmontage)

²⁾ Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei Reduzierung der effektiven Verankerungstiefe h_{ef,min} müssen die Werte der nächst kürzeren Injektions-Ankerhülse des selben Durchmessers verwendet werden. Der kleinere charakteristische Wert ist maßgebend.

Tabelle B7.1: Kennwerte der Reinigungsbürste BS (Stahlbürste mit Stahlborsten)								
Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser								
Bohrdurchmesser d₀ [mm] 8 10 12 14 16 18 20								
Bürstendurchmesser	d₅ [mm]	9	11	14	16	20	20	25

Nur für Vollsteine und Porenbeton oder massive Bereiche bei Lochziegel und Hohlblocksteinen

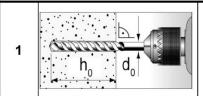
Tabelle B7.2: Maximale Verarbeitungszeiten und minimale Aushärtezeiten (Die Temperatur im Mauerwerk darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Temperatur im	Maxima	ile Verarbeitun t _{work}	gszeit ²⁾	Minimale Aushärtezeit ^{1), 2)} t _{cure}		
Verankerungsgrund [°C]	SWEYTEC IMS Pro High Speed	SWEYTEC IMS Pro	SWEYTEC IMS Pro Low Speed	SWEYTEC IMS Pro High Speed	SWEYTEC IMS Pro	SWEYTEC IMS Pro Low Speed
-10 bis -5	>5 min	-	-	12 h	-	-
> -5 bis 0	5 min	>13 min	-	3 h	24 h	-
> 0 bis 5	5 min	13 min	>20 min	3 h	3 h	6 h
> 5 bis 10	3 min	9 min	20 min	50 min	90 min	3 h
> 10 bis 20	1 min	5 min	10 min	30 min	60 min	2 h
> 20 bis 30	-	4 min	6 min	-	45 min	60 min
> 30 bis 40	-	2 min	4 min	-	35 min	30 min

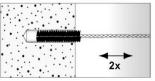
¹⁾ In nassen Steinen muss die Aushärtezeit verdoppelt werden.

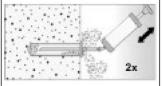
Abbildungen nicht maßstäblich

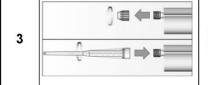
Injektionssystem SWEYTEC IMS für Mauerwerk


Verwendungszweck
Reinigungsbürste (Stahlbürste)
Maximale Verarbeitungszeiten und minimale Aushärtezeiten

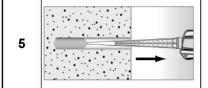
²⁾ Minimale Kartuschentemperatur +5°C.

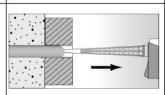

Montageanleitung Teil 1

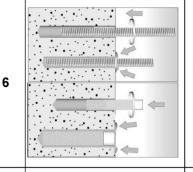

Montage in Vollsteinen und Porenbeton (ohne Injektions-Ankerhülsen)


Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines) Bohrlochtiefe \mathbf{h}_0 und Bohrdurchmesser \mathbf{d}_0 siehe **Tabelle B4.1**; **B5.1**.

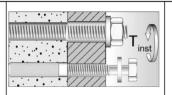
Bohrloch zweimal ausblasen, zweimal ausbürsten, und nochmal zweimal ausblasen.


Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Ca. 2/3 des Bohrlochs vom Grund her mit Mörtel verfüllen ¹⁾. Lufteinschlüsse vermeiden.


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen.

Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker SWEYTEC E von Hand unter leichten Drehbewegungen einschieben. Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund austreten.

Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B7.2**.

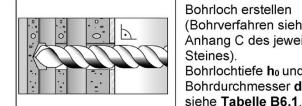
Montage des Anbauteils, T_{inst} siehe Steinkennwerte in Anhang C.

Injektionssystem SWEYTEC IMS für Mauerwerk

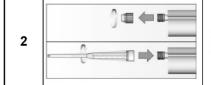
Verwendungszweck

Montageanleitung (ohne Injektions-Ankerhülsen) Teil 1

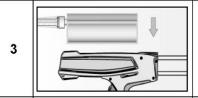
Anhang B8


7

¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers.

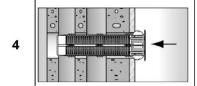

Montageanweisung Teil 2

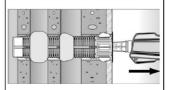
Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse (Vorsteckmontage)

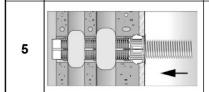


Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines). Bohrlochtiefe ho und Bohrdurchmesser do


Bei der Montage von Injektions-Ankerhülsen in Vollsteinen oder massiven Bereichen von Lochsteinen ist das Bohrloch durch Ausblasen und Bürsten zu reinigen.

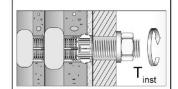

Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Die Injektions-Ankerhülse bündig mit der Oberfläche des Mauerwerks oder Putzes in das Bohrloch stecken.

Die Injektions-Ankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen¹⁾.



Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker SWEYTEC E von Hand unter leichten Drehbewegungen bis zum Erreichen der Setztiefenmarkierung (Ankerstange) bzw. oberflächenbündig (Innengewindeanker) einschieben.

6

Nicht berühren. Minimale Aushärtezeit siehe Tabelle B7.2.

Montage des Anbauteils. max Tinst siehe Steinkennwerte Anhang C.

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck

Montageanleitung (mit Injektions-Ankerhülsen) Teil 2

Anhang B9

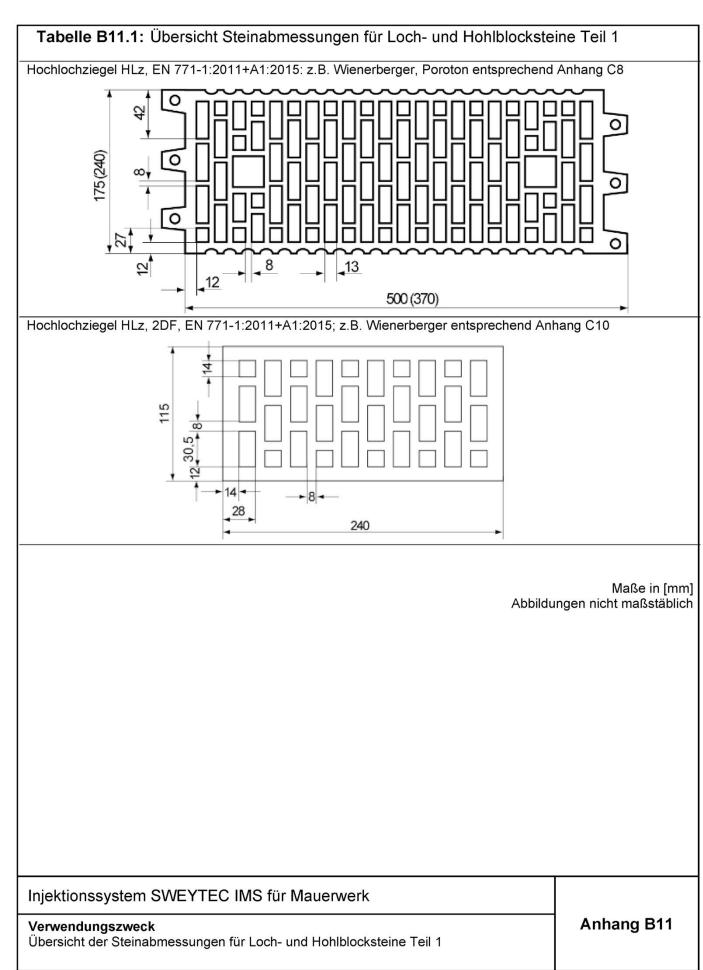
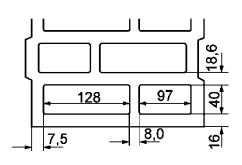
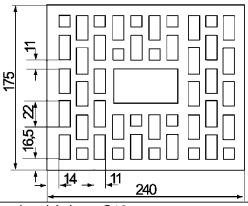
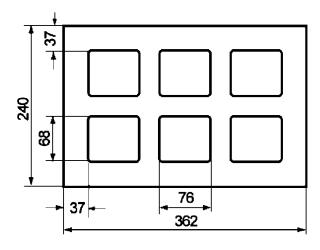

¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers.

Tabelle B10.1: Übersicht der geregelten Steine											
Steinart / Bezeichnung	Stei	Steinabmessung [mm] Mittlere Druck-festigkeit [N/mm²]			Rohdichte ρ [kg/dm³]	Anhang					
Vollziegel Mz											
Vollziegel Mz	NF	≥240x115x71	15 / 25 / 35	Deutschland	≥1,8	C4 – C7					
Hochlochziegel HLz											
		370x240x237	5 / 7,5 / 10 / 12,5 / 15	Deutschland	≥1,0	C8 / C9					
		500x175x237	5 / 7,5 / 10 / 12,5 / 15	Deutschland	≥1,0	C8 / C9					
Hochlochziegel HLz	2DF	240x115x113	7,5 / 12,5 / 20 / 25 / 35	Deutschland	≥1,4	C10 / C11					
	2DF	365x248x245	10	Österreich	≥0,6	C12 / C13					
		240x175x113	12,5	Deutschland	≥0,9	C14 / C15					
		Hohlblo	ck aus Leichtbeton Hb	I							
Hohlblock aus Leichtbeton Hbl		362x240x240	2,5 / 5	Deutschland	≥1,0	C16 / C17					
			Porenbeton		· · · · · · · · · · · · · · · · · · ·						
PP2 / AAC		-	2,5	Deutschland	0,35	C18 - C20					

Injektionssystem SWEYTEC IMS für Mauerwerk	
Verwendungszweck Übersicht der geregelten Steine	Anhang B10






Tabelle B12.1: Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 2

Hochlochziegel HLz; Mineralwolle gefüllt, EN 771-1:2011+A1:2015; entsprechend Anhang C12 Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Wienerberger entsprechend Anhang C14

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015; entsprechend Anhang C16

Maße in [mm] Abbildungen nicht maßstäblich

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck

Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 2

Rand- und Achsabstände Teil 1 S_{cr} II C_{min} C_{min}

s_{min} II = Minimaler Achsabstand parallel zur horizontalen Lagerfuge

 s_{min} = Minimaler Achsabstand senkrecht zur horizontalen Lagerfuge

s_{cr} II = Charakteristischer Achsabstand parallel zur horizontalen Lagerfuge

 s_{cr} = Charakteristischer Achsabstand senkrecht zur horizontalen Lagerfuge

 $c_{cr} = c_{min}$ = Randabstand

 $\alpha_{g,N}$ (s_{min} II) = Gruppenfaktor bei Zuglast, Dübelanordnung parallel zur horizontalen Lagerfuge

 $\alpha_{g,V}(s_{min} | II)$ = Gruppenfaktor bei Querlast, Dübelanordnung parallel zur horizontalen Lagerfuge

 $\alpha_{g,N}(s_{min}^{\perp})$ = Gruppenfaktor bei Zuglast, Dübelanordnung senkrecht zur horizontalen Lagerfuge

 $\alpha_{g,V}(s_{min} \perp)$ = Gruppenfaktor bei Querlast, Dübelanordnung senkrecht zur horizontalen Lagerfuge

Abbildungen nicht maßstäblich

Injektionssystem SWEYTEC IMS für Mauerwerk	
Verwendungszweck Rand- und Achsabstände Teil 1	Anhang B13

Rand- und Achsabstände, Teil 2

Für
$$s \ge s_{cr}$$
 $\alpha_g = 2$

Für $s_{min} \le s < s_{cr}$ α_g entsprechend Montagekennwerte der Steine gemäß Anhang C

Gruppe von 2 Ankern

$$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
; $V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$

Gruppe von 4 Ankern

$$N^{g}_{Rk} = \alpha_{g,N} (s_{min}II) \cdot \alpha_{g,N} (s_{min}I) \cdot N_{Rk}$$
;

$$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} (s_{min}II) \cdot \alpha_{g,V} (s_{min}\perp) \cdot V_{Rk}$$

mit N_{Rk} und $\alpha_{g,N}$ in Abhängigkeit von s_{min}II oder s_{min} \perp gemäß Anhang C

mit V_{Rk} und α_{g,V} in Abhängigkeit von s_{min}II oder s_{min}⊥ gemäß Anhang C

Injektionssystem SWEYTEC IMS für Mauerwerk

Verwendungszweck

Rand- und Achsabstände; Teil 2

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von Ankerstangen und Standard-Gewindestangen

Anke	rstange				M6	M8 ³⁾	M10 ³⁾	M12	M16		
Char	akteristischer Wid	derstand geg	jen St	ahlve	ersagen unt	er Zugbeansp	oruchung				
			4.6		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8		
and	Ctobl vominist		4.8		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8		
ırsta	Stahl verzinkt		5.8		10,0	18,3(16,6)	29,0(26,8)	42,1	78,5		
. Widerstand N _{Rk,s}		Festigkeits-	8.8	FL. N.13	16,0	29,2(26,5)	46,4(42,8)	67,4	125,6		
Ř. Σ.ς	Nichtrostender Stahl R und	klasse	50 [kN]	[KIN]	10,0	18,3	29,0	42,1	78,5		
Charakt.	Hochkorrosions-		70		14,0	25,6	40,6	59,0	109,9		
O	beständiger Stahl HCR		80		16,0	29,2	46,4	67,4	125,6		
Teilsi	cherheitsbeiwert	e ¹⁾				•			,		
			4.6				2,00				
Ver	Otalal variable		4.8		1,50						
bei	Stahl verzinkt		5.8		1,50						
sis sis		Festigkeits-	8.8	.,			1,50				
Teilsicherheitsbeiwert Yms, N	Nichtrostender Stahl R und	50	[-]	2,86							
eilsic	Hochkorrosions-						1,502) / 1,87				
Ĕ	beständiger Stahl HCR		80				1,60				

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

Injektionssystem SWEYTEC IMS für Mauerwerk

Leistung
Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von SWEYTEC Ankerstangen und Standard-Gewindestangen

²⁾ Nur für SWEYTEC A / SWEYTEC RG M aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1: Charakteristischer **Widerstand** gegen **Stahlversagen** unter Querbeanspruchung von **Ankerstangen** und **Gewindestangen**

Anke	rstange / Gewind	estangen			M6	M8 ³⁾	M10 ³⁾	M12	M16
	akteristischer Wid		ien S	tahlve		10.00 m.			, c. c. f. f. f.
	Hebelarm	acrotana gog	, o	.com/vc	noagon and	or Q aoriboanc	pruomang		
		4.6		4,8	8,7(7,9)	13,9(12,8)	20,2	37,6	
pu	Charakt. Widerstand Nichtrostender Stahl R und Hochkorrosions- beständiger		4.8		4,8	8,7(7,9)	13,9(12,8)	20,2	37,6
rsta			5.8		6,0	10,9(9,9)	17,4(16,0)	25,2	47,1
Wide Rk,s		Festigkeits-	8.8		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8
kt. ×	Nichtrostender Stahl R und	klasse	50	[kN]	5,0	9,1	14,5	21,0	39,2
hara	Hochkorrosions-		70		7,0	12,8	20,3	29,5	54,9
O	beständiger Stahl HCR		80		8,0	14,6	23,2	33,7	62,8
mit H	ebelarm								~
NAME OF THE OWNER OWNER OWNER OF THE OWNER OWNE		4.6		6,1	14,9(12,9)	29,9(26,5)	52,3	132,9	
and	Stahl verzinkt Nigerstand Nichtrostender Stahl R und Hochkorrosions- beständiger		4.8	[Nm]	6,1	14,9(12,9)	29,9(26,5)	52,3	132,9
erst			5.8		7,6	18,7(16,1)	37,3(33,2)	65,4	166,2
t. Wide M ⁰ Rk,s		Festigkeits- klasse	8.8		12,2	29,9(25,9)	59,8(53,1)	104,6	265,9
kt. ∨ M°	Nichtrostender Stahl R und		50		7,6	18,7	37,3	65,4	166,2
hara	Hochkorrosions-		70		10,6	26,2	52,3	91,5	232,6
O	beständiger Stahl HCR		80		12,2	29,9	59,8	104,6	265,9
Teils	icherheitsbeiwert	e ¹⁾							
+			4.6				1,67		
wer	Stahl verzinkt		4.8				1,25		
pei	Starii verzirikt		5.8				1,25		
rheits Yms,v		Festigkeits-	8.8	r,			1,25		
Teilsicherheitsbeiwert ‱v	Nichtrostender Stahl R und	klasse	50	[-]			2,38		
eilsic	Hochkorrosions-		70				1,25 ²⁾ / 1,56		
Ĕ	beständiger Stahl HCR		80				1,33		

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung von	Anhang C2
SWEYTEC Ankerstangen und Gewindestangen	

²⁾ Nur für SWEYTEC A / SWEYTEC RG M aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C3.1: Ch an					Stahlversager s SWEYTEC I		g- und Querbe-		
Innengewindeanker	SWEYTEC E			M6	M8	M10	M12		
Charakteristischer V des SWEYTEC E mit				agen unter Z	ugbeanspruchi	ıng; resultie	nde Widerständ		
	Festigkeits- klasse	4.6		8,0	14,6	23,2	33,7		
Charakteristischer Widerstand N _F	Festigkeits- klasse	5.8	[kN]	10,0	18,3	29,0	42,1		
	Festigkeits- klasse 70	R HCR		14,0 14,0	25,6 25,6	40,6 40,6	59,0 59,0		
Teilsicherheitsbeiwe	ert 1)			,	,				
	Festigkeits- klasse	4.6			2,	00			
Teilsicherheits- beiwerte γ ^Μ	Festigkeits- s,N klasse	5.8	[-]		1,	50			
	Festigkeits-	R			1,	87			
	klasse 70	HCR			1,	87			
Charakteristischer V				agen unter C	uerbeanspruch	ung; resulti	ende Widerstän		
des SWEYTEC E mit ohne Hebelarm	Schraube / Ar	ıkersı	ange						
оппе нерегатті	Continuoita								
kla	Festigkeits- klasse	4.6		4,8	8,7	13,9	20,2		
	Festigkeits- klasse	5.8	[kN]	6,0	10,9	15,0	21,0		
	Festigkeits- klasse 70	R HCR		7,0	12,8	20,3	29,5		
mit Hebelarm	Nasse 10	нск		7,0	12,8	20,3	29,5		
mit Hebelami	Festigkeits- klasse	4.6		6,1	14,9	29,9	52,3		
Charakteristi- scher M ⁰ R	Festigkeits- k,s klasse	5.8	[Nm]	7,6	18,7	37,3	65,4		
Widerstand	Festigkeits-	R		10,6	26,2	52,3	91,5		
	klasse 70	HCR		10,6	26,2	52,3	91,5		
Teilsicherheitsbeiwe	ert 1)								
	Festigkeits- klasse	4.6			1,	67			
Teilsicherheits- beiwert γ _{Ms,} ν	Festigkeits- klasse	5.8	[-]	1,25					
	Festigkeits- klasse 70	R HCR		1,56 1,56					
1) Falls keine abweid	chenden nationa	alen R	egelung	en existieren					
Injektionssystem	SWEYTEC II	MS fi	ir Mau	erwerk					

Z092242.25 8.06.04-242/24

spruchung des Innengewindeankers SWEYTEC E

Vollziegel Mz, NF, EN 771-1:2011+A1:2015 Hersteller z.B. Wienerberger Länge L | Breite B | Höhe H Nennmaße [mm] ≥ 240 ≥ 115 ≥ 71 Rohdichte p ≥ 1,8 [kg/dm³] mittlere Druckfestigkeit / 15 / 12 oder 25 / 20 oder $[N/mm^2]$ Mindestdruckfestigkeit Einzelstein 1) 35 / 28Norm oder Anhang EN 771-1:2011+A1:2015

Tabelle C4.1: Installationsparameter für Randabstand c=100mm

Ankerstange		M6	M8	M10	M12	_			-				
Innengewindeanker SWEYTEC E		_		_	20	_	M6 N	/18	M10	M12			
		_	-	-	-	-	11x8	5	15)	k 85			
Ankerstangen	und Innengewindea	nker SWEYTE	C E ohne Inj	ektions-Ar	nkerhülse								
Egg-Lii			50	50	50	50							
Effektive Verankerungsti	iefe h _{ef}	[mm]	80	80	80	80			85				
Vorankorangot	1010		200	200	200	200							
Max. Montage- drehmoment				4		10							
Allgemeine In	stallationsparamete												
Randabstand	$c_{min} = c_{c}$	r		100									
Randabstand h	n _{ef} =200 c _{min} = c _c	ř		1	50				_2)				
	s _{min} II	N			60								
	h _{ef} =200 s _{min} II	N [mm]		2	40		_2)						
Achs- abstand	S _{min} II	V	240					240					
abotaria	Scr	II		240						240			
	s _{cr} ⊥ = s _{min}	T		8	75		75						

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C4.2: Gruppenfaktoren

Ankerstange	M6	M8	-	-						
Innengewind	eanker SWEYTEC E	-	-	-	-	M6 M8	M10 M12 15x85			
Randabstand	Cmin	[mm]				100				
	α _{g,N} (s _{min} II)					1,5				
	αg,ν (Smin II)		2,0							
	h_{ef} =200 $\alpha_{g,N}$ (s_{min} II)	[-]	1,5							
Gruppen-	h_{ef} =200 $\alpha_{g,V}$ (s_{min} II)		2,0							
faktoren	α _{g,N} (S _{min} ⊥)		2,0							
	αg,ν (Smin ⊥)		2,0							
	h _{ef} =200 α _{g,N} (S _{min} ⊥)		2,0							
	h _{ef} =200 α _{g,V} (S _{min} ⊥)					2,0				

Injektionssystem SWEYTEC IMS für Mauerwerk

Leistung

Vollziegel Mz NF, Abmessungen, Installationsparameter für Randabstand c=100mm, Gruppenfaktoren

Anhang C4

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

²⁾ Leistung nicht bewertet.

8,0

Vollziegel Mz, NF, EN 771-1:211+A1:2015

d/d

5,5

Tabelle C5.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung für Randabstand c=100mm

Ankerstange			М6	M8		M10			M12		-		-	
Innengewindeanker			_	_		_			-		М6	M8	M10	M12
SWEYTEC E			57520			VET		N 200			11x85		15:	k 85
N _{Rk} = N _{Rk,p} = N _{Rk,b,c} = N _{Rk,b,c} [kN]; Temperaturbereich 50/80°C														
Mittlere Druckfestigkeit /	<u>z</u> -		Effektive Verankerungstiefe hef [mm]											
Mindestdruckfestigkeit Einzelstein 1)	ungs- bedin- gung		≥50	≥50	50	80	200	50	80	200		:	85	
45 / 40 N/mam²	w/w	w/d	2,5	2,5	2,0	3,0	7,5	2,0	3,5	5,0	3,5			
15 / 12 N/mm²	d	/d	4,0	4,0	3,5	5,0	12,0	3,0	5,5	8,0	5		5,5	
05 / 00 N/m2	w/w	w/d	3,5	3,5	3,0	4,5	11,0	3,0	5,0	7,0	5,0			
25 / 20 N/mm ²		/ 4	E E	E E	ΕΛ	7.0	120	A E	0 0	11 E		-	2.0	

7,0

12,0

4,5

0,8

11,5

5,0

Tabelle C5.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung für Randabstand c=100mm

5,5

Ankerstange		M6	M8	M	10	M	12	-		(-	
Innengewindeanker		_			•			М6	M8	M10	M12
SWEYTEC E	YTEC E					11x85		15>	(85		
V _{Rk} = V _{Rk,b} = V _{Rk,c,II} = V _{Rk,c,⊥} [kN]; Temperaturbereich 50/80°C											
Mittlere Druckfestigkeit /	Nutz-	Effektive Verankerungstiefe hef [mm]									
Mindestdruckfestigkeit Einzelstein 1)	ungs- bedin- gung	≥50	≥50	≥50	200	≥50	200	85			
15 / 12 N/mm²	w/w w/d d/d	2,5	2,5	4,0	8,5	4,0	11,5	2,5		5	
25 / 20 N/mm²	w/w w/d d/d	4,0	4,0	6,0	12,0	5,5	12,0		4,	0	

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Vollziegel Mz NF, Charakteristischer Widerstand unter Zugbeanspruchung und Querbeanspruchung, Randabstand c=100mm	Anhang C5

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Innengewindeank Ankerstangen un Effektive Verankerungstiefe Max. Montage-			M6	M8	M10	M12	M16	-	E.		-
Effektive Verankerungstiefe Max. Montage-	nd Innengewinde			-		1-1	-	M6 11x	7200 2020	M10	M12 x85
Effektive Verankerungstiefe Max. Montage-		anker SWE	YTEC E o	hne Inie	ktions-An	kerhülse)	111	.05	15.	X09
Verankerungstiefe Max. Montage-			50	50	50	50	50				
Max. Montage-	h _{ef}	[mm]	100	100	100	100	100	1		85	
	,		200	200	200	200	200				
drehmoment	max T _{inst}	[Nm]	4		10			4		10	
Allgemeine Instal	llationsparamete	er	T T				,				
Randabstand	C _{min} = C _{cr}					60					
Randabstand hef=2						60					
1-	S _{min} II, _N					80					
2000 No.	h _{ef} =200 s _{min} II, _N	[mm]				80 80					
Achs- abstand	S _{min} II,v					3x h _{ef}					
	Scr II					80					
2	S _{min} ⊥		-			3x h _{ef}					
Bohrverfahren	S cr⊥					JA Her					
Hammerbohren m Tabelle C6.2: Ankerstange			M6	M8	M10	M12	M16	-	_		-
Tabelle C6.2:	Gruppenfakto	ren	M6 -	M8 -	M10 -	M12 -	M16 -	-	M8	-	- M12 x85
Tabelle C6.2:	Gruppenfakto	ren	M6 -		M10 -			М6	M8	-	
Tabelle C6.2: Ankerstange Innengewindeank	Gruppenfakto	ren	M6 -		M10 -	-		М6	M8	-	- M12 x85
Tabelle C6.2: Ankerstange Innengewindeank	Gruppenfakto ker SWEYTEC E cmin = ccr	ren	M6 -		M10 -	- 60		М6	M8	-	
Tabelle C6.2: Ankerstange Innengewindeank	Gruppenfakto ker SWEYTEC E c _{min} = c _{cr} α _{g,N} (s _{min} II)	ren	M6 -		M10 -	- 60 0,6		М6	M8	-	
Tabelle C6.2: Ankerstange Innengewindeank Randabstand here	Gruppenfakto ker SWEYTEC E c _{min} = c _{cr} α _{g,N} (s _{min} II) α _{g,V} (s _{min} II)	ren [mm]	M6 -		M10 -	- 60 0,6 1,3		М6	M8	-	
Tabelle C6.2: Ankerstange Innengewindeank Randabstand	Gruppenfakto ker SWEYTEC E Cmin = Ccr αg,N (Smin II) αg,V (Smin II) π=200 αg,N (Smin II)	ren	M6 -		M10 -	- 60 0,6 1,3 1,4 1,5 0,3		М6	M8	-	
Tabelle C6.2: Ankerstange Innengewindeank Randabstand	Gruppenfakto ker SWEYTEC E $c_{min} = c_{cr}$ $\alpha_{g,N} \text{ (Smin II)}$ $\alpha_{g,V} \text{ (Smin II)}$ $\alpha_{g,V} \text{ (Smin II)}$ $\alpha_{g,N} \text{ (Smin II)}$ $\alpha_{g,N} \text{ (Smin II)}$ $\alpha_{g,N} \text{ (Smin II)}$	ren [mm]	M6 -		M10 -	- 60 0,6 1,3 1,4 1,5 0,3 1,3		М6	M8	-	
Tabelle C6.2: Ankerstange Innengewindeank Randabstand Gruppen- faktoren heft	Gruppenfakto ker SWEYTEC E Cmin = Ccr αg,N (Smin II) αg,V (Smin II) r=200 αg,N (Smin II) r=200 αg,N (Smin II) αg,N (Smin II)	ren [mm]	M6 -		M10 -	- 60 0,6 1,3 1,4 1,5 0,3		М6	M8	-	

_2)

Vollziegel Mz, NF, EN 771-1:2011+A1:2015

Tabelle C7.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung für Randabstand c=60mm

Ankerstange	M6	M8	M10	M12	M16		-		-
Innengewindeanker SWEYTEC E	-	-	-	-	-	M6		M10	M12 x85
						112	.00	13/	.05

																-	
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,b}$	Rk,p,c	= N _{Rk}	,b,c [k	N]; 1	emp	erat	urbe	reich	50/8	30°C							
Mittlere							Е	ffekt	ive V	eran	kerur	ngstie	efe h	f [mn	ո]		
Druckfestigkeit / Mindestdruckfestig- keit Einzelstein 1)	Nutzu		50	100	50	100	50	100	200	50	100	200	50	100	200	8:	5
15 / 12 N/mm ²	w/w	w/d	1	,5	2,0	2,0	2,0	2,5	_2)	2,0	2,5	_2)	2,0	5,5	_2)	_2	2)
15 / 12 N/MM-	d	/d	2	,5	3,0	4,0	3,0	4,0	9,5	3,0	4,0	9,5	3,0	8,5	9,5	_2	2)
25 / 20 N/mm ²	w/w	w/d	2	,0	2,5	3,0	2,5	3,5	_2)	3,0	3,5	_2)	3,0	7,5	_2)	_2	2)
25 / 20 N/MM ⁻	d,	/d	3	,5	4,5	5,5	4,5	5,5	12	4,5	5,5	12	4,5	12	12	_2	2)
35 / 28 N/mm ²	w/w	w/d	2	,5	3,0	4,0	3,0	4,0	_2)	3,5	4,0	_2)	3,5	9,0	_2)	_2	2)
35 / 20 N/IIIII	d	/d	4	,0	5,5	6,5	5,5	6,5	12	5,5	6,5	12	5,5	12	12	_2	2)

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C7.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung für Randabstand c=60mm

Ankerstange	M6	M8	M10	M12	M16	-		23.	•
Innengewindeanker					0.00	M6	M8	M10	M12
SWEYTEC E	_	-	-	-	-	11x	85	15>	(85

																21.02.00.00.00.00.00.00.00.00
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} =$	V _{Rk,c,⊥} [kN]	j; Te	mper	atur	bere	ich 5	0/80°	Č								
Mittlere			1	i e		E	ffekti	ve V	eranl	kerun	gstie	fe h	f [mr	ון]		
	Nutzungs- bedingung		100	50	100	50	100	200	50	100	200	50	100	200	85	
15 / 12 N/mm²	w/w	1,2	2,5	1,2	3,0	2,0	3,0	1,5	1,5	3,0	3,0	0,6	3,0	4,5	_2)	
25 / 20 N/mm ²	w/d	1.5	3.5	1.5	4.5	3.0	4.5	2.5	20	4.5	4.5	0.9	4.5	6.0	_2)	

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

3,5

5,0

3,0

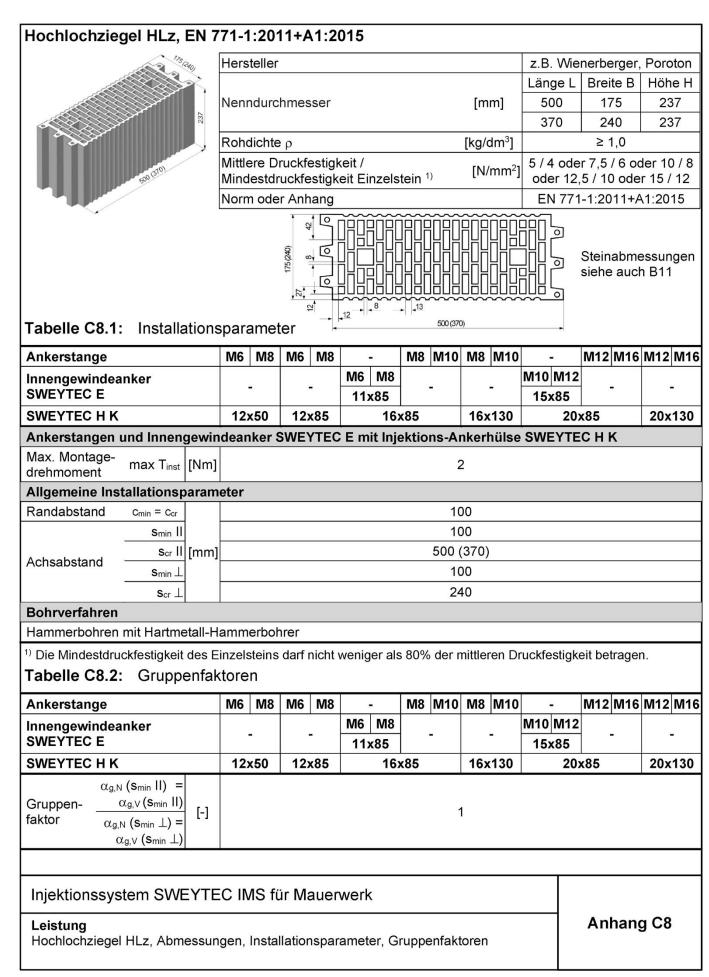
2,5

2,0 5,0

35 / 28 N/mm²

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

4,0


d/d

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Vollziegel Mz NF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung, Randabstand c=60mm	Anhang C7

²⁾ Leistung nicht bewertet.

²⁾ Leistung nicht bewertet.

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Tabelle C9.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

Ankerstange	M6	M8	M6	M8		M8	M10	M8	M10	-0	M12	M16	M12	M16
Innengewindeanker SWEYTEC E	-	ı (•	M6 M8 11x85		-		-	M12 x85		•		-
Injektions-Ankerhülse SWEYTEC	12x	50	12	k 85	16	3x85		16x	130	202	x85		20x	130
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$	k N] ;	Tem	pera	turb	ereich 5	0/80	°C							

mjokaono / mkomanoo				IZAGO	1000	102100	LUXUU	LOXIO
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p}$	o,c = NF	Rk,b,c [kN]; Tem	peraturb	ereich 50/80°C			
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutzu							
5 / 4 N/mm²	w/w	w/d	0,0	30		0,90		1,20
5 / 4 N/IIIII	d/	d	0,4	40		0,90		1,20
7,5 / 6 N/mm ²	w/w	w/d	0,	50		1,50		2,00
7,57 6 N/IIIII	d/	d	0,6	30		1,50		2,00
10 / 8 N/mm²	w/w	w/d	0,7	75		2,00		2,50
10 / 6 N/IIIII	d/	d	0,7	75		2,00		2,50
12,5 / 10 N/mm ²	w/w	w/d	0.9	90		2.50		3.00
12,5 / 10 10/111111	d/	d	0,9	90		2,50		3,50
15 / 12 N/mm²	w/w	w/d	0,9	90		3,00		3,50
15 / 12 N/MM-	d/	d	1,2	20		3,00		4,00

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C9.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

Ankerstange		М6	M8	M6	M8	-	M8	M10	M8	M10	-	M12	M16	M12	M16
Innengewindeanker SV	VEYTEC E				-	M6 M8 11x85		-		- 9	M10 M12 15x85	-	*		-
Injektions-Ankerhülse	SWEYTEC	12>	(50	12	x85	10	3x85		16x	130	20:	x85		20x	130
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c}$	_{k,b} = V _{Rk,c,II} = V _{Rk,c,⊥} [kN]; Temperaturbereich 50/80°C														
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutzungs- bedingung		iporatarisoronom conoc c												
5 / 4 N/mm ²					0,	50			0,	60	0,	50		0,6	60
7,5 / 6 N/mm ²	w/w				0,	75			0,	90	0,	75		0,9	90
10 / 8 N/mm ²	w/d	0,90 1,20 0,90 1,20													
12,5 / 10 N/mm ²	d/d				1,	20			1,	50	1,	20		1,	50
15 / 12 N/mm ²		1,50 2,00 1,50 2,00											00		

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querbean- spruchung	Anhang C9

7092242.25 8.06.04-242/24

113	Nennma	aße						1 5		D	D 11	
113	Same and was are	1130					[mm	ı La	nge L	Breite	R H	öhe F
		10							240	115		113
	Rohdich						[kg/dn			≥ 1,4		
	Mittlere Mindest	druckfe	stigkei		lstein 1)	1	[N/m	^{m-j} /1	6 oder	er 12,5 25 / 20	oder 3	35 / 2
240	Norm oc	der Anh	ang						EN 771	-1:2011	+A1:2	2015
abelle C10.1: Installation	nsparar	meter	12,30.5	14 - 28 -		240		-	si	teinabm ehe aud nhang E	ch	ngen
Ankerstange	M6	M8	M6	M8	-		M8	M10			M12	M16
nnengewindeanker				_	М6	M8		-	M10	M12		_
SWEYTEC E					11x	(A-1700)-1			15>	(A. E. (A. E.)		-//
SWEYTEC H K		x50		x85		16>				20x	85	
Ankerstangen und Innengewi	indeank	er SWI	EYTEC	E mit	Injektio	ons-Ar	nkerhü	lse SV	VEYTE	СНК		
Max. Montage- drehmoment max T _{inst} [Nm						2	2					
Allgemeine Installationsparar	neter											
Randabstand c _{min} = c _{cr}						8						
Achs- $\frac{s_{cr} I = s_{min} I }{s_{cr} \perp = s_{min} \perp}$ [mm]	יי					24 11						
Bohrverfahren						5.0.						
Hammerbohren mit Hartmetall-	Hammer	bohrer										
Die Mindestdruckfestigkeit des abelle C10.2: Gruppenfa	ktoren	eins dar			r als 80%	% der n			festigke	eit betra		
Ankerstange	M6	M8	M6	M8	-		M8	M10			M12	M1
nnengewindeanker SWEYTEC E				-	M6	M8		-	M10	M12		- 12
SWEYTEC H K	125	x50	12	x85	11x	85 16>	,Q.E		15>	(85 20x	Q.E.	
Gruppen-aktoren $ \frac{\alpha_{g,N} (s_{min} II)}{\alpha_{g,V} (s_{min} II)} \\ \underline{\alpha_{g,V} (s_{min} \bot)} \\ \underline{\alpha_{g,V} (s_{min} \bot)} $ [-]		.50	12	X00		2				201	<u> </u>	
Injektionssystem SWEYT	EC IMS	S für N	/lauer	werk								

Hochlochziegel HLz; 2DF, EN 771-1:2011+A1:2015

Tabelle C11.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

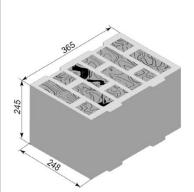
Ankerstange	M6	M8	M6	M8			M8	M10			M12	M16
Innengewindeanker SWEYTEC E	-			•	M6	M8		•	M10 M12			•
					112	x85			15)	(85		
Injektions-Ankerhülse SWEYTEC H K	12x	50	12)	(85		16	x85			20>	c 85	

	The second second					
$\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk,p,c}$	N _{Rk,b,c}	[kN];	Temperatu	bereich 5	0/80°C	
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)		ungs- gung				
7,5 / 6 N/mm ²	w/w	w/d	0,75	0,90	0,75	0,90
7,576 14/11111	d,	⁄d	0,75	1,20	0,75	0,90
12,5 / 10 N/mm ²	w/w	w/d	1,20	1.50	1,20	1,50
12,57 10 14/111111	d/d		1,20	2,00	1,20	1,50
20 / 16 N/mm ²	w/w	w/d	2,00	2,50	2,00	2,00
207 10 14/11/11	d,	⁄d	2,00	3,00	2,00	2,50
25 / 20 N/mm ²	w/w	w/d	2,50	3,50	2,50	3,00
25 / 20 14/111111	d,	⁄d	2,50	4,00	2,50	3,00
35 / 28 N/mm²	w/w	w/d	3,00	5,00	3,50	4,00
35 / 26 N/IIIII	d,	/d	3,50	5,50	3,50	4,50

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C11.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

Ankerstange		M6	M8	M6	M8	-	•	M8	M10		•	M12	M16	
Innengewindeanker SWEYT	Innengewindeanker SWEYTEC E						M8 (85		•)	M10 M12 15x85			-	
Injektions-Ankerhülse SWE	YTEC H K	12:	x50	12x85 16x85 20x8						(85				
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [4]	kN]; Temper	aturb	ereicl	n 50/8	30°C	at .								
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutzungs- bedingung													
7,5 / 6 N/mm ²		1,2	1,5	1,2	2,0	1,2		1,5			2	,5		
12,5 / 10 N/mm ²	w/w	w/w	w/w	w/w	w/w	w/w	2,0	2,5 2,0 4,0 2,0 2,5				4	·,5	
20 / 16 N/mm ²	w/d	3,0	3,5	3,0	6,0	3,0		3,5			7	,0		
25 / 20 N/mm ²	d/d	4,0	4,5	4,0	7,5	4,0		4,5			8	3,5		
35 / 28 N/mm ²		5,0	6,5	5,0	9,5	5,0		6,5			12	2,0		


¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

	W.
Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Hochlochziegel HLz, 2DF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C11

7092242.25 8.06.04-242/24

Hochlochziegel HLz, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Hersteller	z.B. Wienerberger					
Nennmaße	[mm]	Länge L	Höhe H			
	[mm]	≥ 365	≥ 365 ≥ 248			
Rohdichte ρ	[kg/dm ³]		0,6			
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	[N/mm²]		10 / 8			
Norm oder Anhang		EN 771	-1:2011+/	41:2015		

128 97 Q⁴ 7,5 38,0 9

Steinabmessungen siehe auch Anhang B12

Tabelle C12.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse SWEYTEC H K)

Ankerstange	M6	M8	-		M8	M10	M8	M10	-		M12	M16	M12	M16
Innengewindeanker SWEYTEC E		-	M6 M8 11x85				-		M10 M12 15x85		-			•
Injektions-Ankerhülse SWEYTEC H K	12:	x85		16:	x85		16x130		20x85				20x130	

Ankerstange und Innengewindeanker SWEYTEC E mit Injektions-Ankerhülse SWEYTEC H K

Max. Montagedrehmoment max T_{inst} [Nm] 2

Allgemeine Installationsparameter

i mgemente mee	amatro no panan	
Randabstand	c _{min} = c _{cr}	100
Achs-	s _{min} II s _{cr} II [mm]	250
Achs- abstand	s _{min} ⊥ s _{cr} ⊥	245

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C12.2: Gruppenfaktoren

Ankerstange	M8	M8	M10	M8	M10	M12	M16	M12	M16		
Injektions-Ankerhülse SWEYTEC H K	12:	x85	162	k85	16x	130	20:	x85	20x130		
Gruppen- faktoren $ \begin{array}{c} \alpha_{g,N} (s_{min} II) = \\ \alpha_{g,V} (s_{min} II) \\ \alpha_{g,N} (s_{min} \bot) = \\ \alpha_{g,V} (s_{min} \bot) \end{array} $ [-]					:	2					

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Hochlochziegel HLz; Mineralwolle gefüllt, Abmessungen, Installationsparameter, Gruppenfaktoren	Anhang C12

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Hochlochziegel HLz, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C13.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

Ankerstange	M6	M8	-		M8	M10	M8 M10		-		M12	M16	M12	M16	M12	M16
Innengewindeanker SWEYTEC E		•	M6 112	M8 (85	-		-		M10 M12			• 4		-)		-
Injektions-Ankerhülse SWEYTEC H K	12	(85	16x		85		16x130		20x85		85		20x130		20x	200

$\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{I}$	N _{Rk,b,c} [kN	l]; Tempe	eraturber	eich 50/80°C	A:		
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutz- ungs- bedin- gung						
10 / 8 N/mm ²	w/w	2,0	1,5	2,5	2,0	2,0	3,0
10 / 0 14/111111	d/d	2,0	2,0	3,0	2,0	2,0	3,0

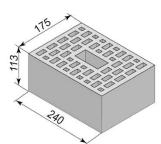
¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Tabelle C13.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	M6 M8			-	M8 M10		M8	M10			M12 M1	6 M12	M16	M12	M16
Innengewindeanker SWEYTEC E	-		M6	M8 k85	-		-		M10 M12		· ·		-	-	
Injektions-Ankerhülse SWEYTEC H K	123	k 85	16x		k 85		16x130		20x8		85	20x	130	20x	200

$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$	[kN]; Ten	npera	iturb	ereich 50/80°C					
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutz- ungs- bedin- gung								
10 / 8 N/mm ²	w/w	2,5	3,0	3,0	3,0	1,5	1,5	1,5	1,5
10 / 8 N/IIIII-	d/d	2,5	3,0	3,0	3,0	1,5	1,5	1,5	1,5


Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Initial this manuscript CNA/EVITE CINAC film National and	
Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Hochlochziegel HLz, Mineralwolle gefüllt, Charakteristischer Widerstand unter Querbeanspruchung	Anhang C13

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Hersteller		z.B.	Wienerbe	erger
Nennmaße	[mm]	Länge L	Breite B	Höhe H
Nemmaise	[mm]	≥ 240	≥ 175	≥ 113
Rohdichte ρ	[kg/dm ³]		0,9	
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	[N/mm²]		12,5 / 10	
Norm oder Anhang		EN 771	-1:2011+	1:2015

Steinabmessungen siehe auch Anhang B12

Tabelle C14.1: Installationsparameter

(Vorsteck-Montage mit Injektions-Ankerhülse SWEYTEC H K)

Ankerstange	M6	M8	-		M8	M10	M8 M10		M10 -		M12	M16	M12	M16	
Innengewindeanker SWEYTEC E		-	M6	M8		-		-	M10 M12		,	-	,	-	
SWEYTEC H K	12	x85	3 12	11x85 16x			16x	130	15%	00000	x85		20x	130	

Ankerstange und Innengewindeanker SWEYTEC E mit Injektions-Ankerhülse SWEYTEC H K

Max. Montagedrehmoment max T_{inst} [Nm] 2

Allgemeine Installationsparameter

Randabstand	$c_{min} = c_{cr}$	100
Achs-	s _{min} II s _{cr} II [mm]	240
Achs- abstand	S _{min} ⊥ S _{cr} ⊥	115

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C14.2: Gruppenfaktoren

Ankerstange	M6	M6 M8 I		M10	M8 M10		M12 M16		M12	M16				
Injektions-Ankerhülse SWEYTEC H K	12:	12x85		x85	16x	130	20:	x85	20x130					
Gruppen- faktoren $ \begin{array}{c} \alpha_{g,N} \ (s_{min} \ II) = \\ \alpha_{g,V} \ (s_{min} \ II) \\ \hline \alpha_{g,N} \ (s_{min} \ \bot) = \\ \alpha_{g,V} \ (s_{min} \ \bot) \end{array} $:	2								

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Hochlochziegel HLz, Abmessungen, Installationsparameter, Gruppenfaktoren	Anhang C14

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Tabelle C15.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

Ankerstange		M6	M8	-		M8	M10	M8	M10	<u> </u>		M12	M16	M12	M16
nnengewindeanker SWEYTEC E			-	M6 I			-	9	-		M12 x85		-	-	
Injektions-Ankerhülse SWEYTEC H K		12:	x85	TIAC		6x85		16x	130			x85		20x	130
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$	= N _{Rk,b,c} [k	N];	Temp	eratu	rbe	reich	50/80	°C						5	
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Nutz-ungs-bedin-															

w/w 3,5 4,0 4,5 4,5 4,0 12,5 / 10 N/mm² d/d 4.0 4,5 5,0 5,0 4.0 ¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

gung

Tabelle C15.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	M6	M8	-		M8	M10	M8	M10	-		M12	M16	M12	M16
Innengewindeanker SWEYTEC E			M6 M8		-		-		M10 M12 15x85				-	
Injektions-Ankerhülse SWEYTEC H K	12	(85			x85		16x130			20:	x85		20x	130

$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c}$,⊥ [kN]; T	empe	ratu	rbere	ich 5	0/80°	С								
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutz- ungs- bedin- gung														
12,5 / 10 N/mm ²	w/w	4,0	5,5	4,0	5,5	5,5	7,0	5,5	7,0	7,0	6,0	6,0	8,0	6,0	8,0
12,57 10 14/11111	d/d	4,0	5,5	4,0	5,5	5,5	7,0	5,5	7,0	7,0	6,0	6,0	8,0	6,0	8,0

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Inje	ektionssystem SWEYTEC IMS für Mauerwerk	
	stung chlochziegel HLz, Charakteristischer Widerstand unter Quer-beanspruchung	Anhang C15

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015 Hersteller Länge L Breite B Höhe H Nennmaße [mm] 362 240 240 Rohdichte p [kg/dm³] ≥ 1,0 Mittlere Druckfestigkeit / 240 2.5 / 2 oder 5 / 4 [N/mm²]Mindestdruckfestigkeit Einzelstein 1) Norm oder Anhang EN 771-3:2011+A1:2015 37 Steinabmessungen siehe 240 auch Anhang B12 88 76 37 -Tabelle C16.1: Installationsparameter 362 (Vorsteck-Montage mit Injektions-Ankerhülse SWEYTEC H K) M6 M8 M8 M10 M8 M10 M12 M16 M12 M16 M12 M16 Ankerstange M6 | M8 M6 | M8 M10 M12 Innengewindeanker **SWEYTEC E** 11x85 15x85 **SWEYTEC H K** 12x50 12x85 20x130 20x200 16x85 16x130 20x85 Ankerstangen und Innengewindeanker SWEYTEC E mit Injektions-Ankerhülse SWEYTEC H K Max. Montagemax T_{inst} [Nm] 2 drehmoment Allgemeine Installationsparameter Randabstand Cmin = Ccr 60 100 $s_{\text{min}} \, II$ [mm] Achsscr II 362 abstand 240 $s_{min} \perp = s_{cr} \perp$ **Bohrverfahren** Hammerbohren mit Hartmetall-Hammerbohrer 1) Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Tabelle C16.2: Gruppenfaktoren M8 M10 M8 M10 M12 M16 M12 M16 M12 M16 Ankerstange M6 **M8** M6 M8 M10 M12 M6 | M8 Innengewindeanker **SWEYTEC E** 11x85 15x85 SWEYTEC H K 12x50 12x85 16x85 16x130 20x85 20x130 20x200 1,2 αg,N (Smin II) 1,1 $\alpha_{g,V}$ (s_{min} II) Gruppen-[-] faktoren $\alpha_{g,N}$ (Smin \perp) 2,0 $\alpha_{g,V}$ (Smin \perp) Injektionssystem SWEYTEC IMS für Mauerwerk Anhang C16 Leistuna Hohlblock aus Leichtbeton Hbl, Abmessungen, Installationsparameter, Gruppenfaktoren

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015

Tabelle C17.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

Ankerstange			M6	M8	М6	M8	,		М8	M10	M8	M10	-	M12	M16	M12	M16	M12 M
Innengewindeanker SWEYTEC E				•		-		M8 (85		-		-	M12 x85	I	-	2.	•	-
Injektions-Ankerhülse SWEYTEC H K			12>	<50	12:	x85		16>	85		162	c130	202	x85		20x	130	20x20
$\mathbf{N}_{Rk} = \mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p,c} = \mathbf{I}$	N Rk,b,c	[kN]	; Te	mpe	rati	urbe	ereic	h 5	0/80)°C								
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	un be	itz- gs- din- ing																
2,5 / 2 N/mm ²	w/w	w/d	1,	,2								1,5						2,5
2,57 2 19/111111	d	/d	1,	,2								1,5						2,5
5 / 4 N/mm ²	w/w	w/d	2	,0								3,0						5,0
3,414/11111	d	/d	2	5								3,0						5,5

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Tabelle C17.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	M6	M8	М6	M8	-		M8	M10	M8	M10		•	M12	M16	M12	M16	M12	M16
Innengewindeanker SWEYTEC E		-	į	-	M6 11x			-		-	M10	M12 <85		-		•	,	•
Injektions-Ankerhülse SWEYTEC H K	12:	x50	12:	x85		16x	85		16x	130		202	ĸ85		20x	130	20x	200
Ver = Ver = Ver all = Ver all [kN]. Tel	nnerat	urbe	rei	ch 5	0/80	°C												

$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [kN]; Temperaturbereich 50/80°C										
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutz- ungs- bedin- gung										
2,5 / 2 N/mm²	w/w w/d d/d	0,9									
5 / 4 N/mm²	w/w w/d d/d	2,0									

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen. Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C17

7092242.25 8.06.04-242/24

Porenbeton (zylindrisches Bohrloch), EN 771-4:2011+A1:2015

Hersteller		z.B. Ytong
Rohdichte ρ	[kg/dm ³]	0,35
mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	[N/mm²]	2,5 / 2
Norm oder Anhang		EN 771-4:2011+A1:2015

Tabelle C18.1: Installationsparameter

Ankerstange	M6	M8	M10	M12	M16	- 27	-		-			
Innengewindeanker						M6	M8	M10	M12			
SWEYTEC E		-			.	112	k 85	15:	x85			
Ankerstangen und Innengewin	Ankerstangen und Innengewindeanker SWEYTEC E ohne Injektions-Ankerhülse											

Ankerstanger	Ankerstangen und Innengewindeanker SWEYTEC E ohne Injektions-Ankerhülse													
Effektive Verankerungst	tiefe h _{ef}	[mm]	100	200	100	200	100	200	100	200	100	200	8	5
Max. Montage drehmoment	max T _{inst}	[Nm]	1	4	1	8	2	12	2	16	2	20	1	2

Allgemeine Installationsparameter

	1.72		
Randabsta	and $c_{min} = c_{cr}$		100
	$s_{cr} \parallel = s_{min} \parallel$		250
	h _{ef} =200mm		80
	S _{min} II		00
	h _{ef} =200mm		3x h _{ef}
Achs-	S _{cr} II	[mm]	OX TIEI
abstand	$s_{cr} \perp = s_{min} \perp$		250
	h _{ef} =200mm		80
	Smin⊥		80
	h _{ef} =200mm		3x h _{ef}
	${f s}_{\sf cr} oldsymbol{ol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol{oldsymbol{ol}}}}}}}}}}}$		SX Her

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Injektionssystem SWEYTEC IMS für Mauerwerk

Leistung
Porenbeton (zylindrisches Bohrloch), Abmessungen, Installationsparameter

Anhang C18

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C19.1: Gruppenfaktoren für Porenbeton (Mindestdruckfestigkeit des Einzelstein = 2 N/mm²)

Anker	stange	M6 M8 M10 M12 M16					-	-			
Innengewindeanker		-	_	_	_	_	M6 N	18 M10 M12			
SWEY	TEC E	-	_	_	•	-	11x85	15x85			
_	h _{ef} =200 $lpha_{g,N}$ (s _{min} II)			_1)	_1)						
Gruppenfaktoren	h _{ef} =200 α _{g,V} (s _{min} II)			_1)	_1)						
[akt	$\alpha_{g,N} \mid I, \alpha_{g,V} (s_{min} \mid I)$				2,0						
E E	$\frac{\frac{\text{dist}(S_{\text{min}})}{\text{hef}}}{\text{hef}} = 200 \alpha_{\text{g,N}} (S_{\text{min}} \perp)$			_1)	_1)						
ᅙ	h _{ef} =200 $\alpha_{g,V}$ ($\mathbf{s}_{min} \perp$)		0,8								
ပြ	$\alpha_{g,N} \perp, \alpha_{g,V} (s_{min} \perp)$				2,0						

Leistung nicht bewertet.

Injektionssystem SWEYTEC IMS für Mauerwerk

Leistung
Porenbeton (zylindrisches Bohrloch), Gruppenfaktoren

Anhang C19

Porenbeton (zylindrisches Bohrloch), EN 771-4:2011+A1:2015

Tabelle C20.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

Ankerstange		1	VI6		M8		M10		M12	I	/116		- 7		-11
Innengewindeanker SWEYTEC E			-		-		-		-		-		M8 (85		
$I_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; Temperaturbereich 50/80°C															
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	Nutz- ungs- bedin- gung	100	200	100	200	Effel	ktive V 200	erank 100	erung 200	stiefe 100	h _{ef} [mn	n] 85			
2,5 / 2 N/mm²	w/w w/d	1,2	1,2	1,5	2,0	1,5	3,0	1,5	3,0	2,0	3,0	1,	,5	1	,5
	d/d	1,5	3,0	1,5	3,0	1,5	3,5	2,0	4,0	2,0	4,0	1,	,5	1	,5

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C20.2: Charakteristischer Widerstand gegen lokales Steinversagen oder Steinkantenbruch eines Einzelankers unter Querbeanspruchung

Ankerstange		M	16	IV	18	M	10	M	12	M	16		-		-1
Innengewindeanker		_		_			_			-		M6	M8		M12
SWEYTEC E		1731										11x85		15x85	
V _{Rk} = V _{Rk,b} = V _{Rk,c,II} = V _{Rk,c,⊥} [kN]; Temperaturbereich 50/80°C															
Mittlere Druckfestigkeit /	Nutz-	Effektive Verankerungstiefe hef [mm]													
Mittlere Druckfestigkeit / Mindestdruckfestigkeit Einzelstein 1)	ungs- bedin- gung	100	200	100	200	100	200	100	200	100	200		8	5	
2,5 / 2 N/mm²	w/w w/d d/d	1,2	1,2	1,2	1,2	1,2	1,2	1,5	1,2	1,2	1,2		1,2		1,5

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C21.

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung Porenbeton (zylindrisches Bohrloch), Chrakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C20

β-Faktoren für Baustellenversuche; Verschiebungen

Tabelle C21.1: β-Faktoren für Baustellenversuche

Nutzungskategorie		w/w und w/d	d/d		
Temperaturbereich		50/80	50/80		
Material	Größe	β- Fa	aktor		
	M6	0,55			
	M8	0,57			
	M10	0,59			
Vollsteine	M12 SWEYTEC E 11x85	0,60	0,96		
	M16 SWEYTEC E 15x85	0,62			
	SWEYTEC H 16x85 K	0,55			
Lochsteine	Alle Größen	0,86	0,96		
Porenbeton, zyl. Bohrloch	Alle Größen	0,73	0,81		

Tabelle C21.2: Verschiebungen

Material	N [kN]	δN₀ [mm]	δ N ∞ [mm]	V [k N]	δ V 0 [mm]	δV∞ [mm]
Vollsteine und Porenbeton h _{ef} =100mm	N _{Rk} 1,4 * γ _{Mm}	0,03	0,06	V _{Rk} 1,4 * γ _{Mm}	0,82	0,88
Lochsteine	N _{Rk} 1,4 * γ _{Mm}	0,48	0,06	V _{Rk} 1,4 * γ _{Mm}	1,71	2,56
Vollstein Mz NF Anhang C4 - C7	N _{Rk} 1,4 * γ _{Mm}	0,74	1,48	V _{Rk} 1,4 * γ _{Mm}	1,23	1,85
AAC h _{ef} =200 mm Anhang C18 - C20	N _{Rk} 1,4 * γ _{Mm}	1,03	2,06	V _{Rk} 1,4 * γ мm	1,25	1,88

Für Verankerung in Porenbeton (AAC) ist der Teilsicherheitsbeiwert γ_{MAAC} anstelle von γ_{Mm} zu verwenden.

Injektionssystem SWEYTEC IMS für Mauerwerk	
Leistung β-Faktoren für Baustellenversuche; Verschiebungen	Anhang C21