

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/1053 of 25 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system SWEYTEC IMS for masonry

Metal Injection anchors for use in masonry

Weyland Steiner

Handwerks- & Industriebedarf GmbH & Co. KG Handelszentrum 4

5101 BERGHEIM ÖSTERREICH

Herstellwerk 1

44 pages including 3 annexes which form an integral part of this assessment

EAD 330076-01-0604, Edition 10/2022

European Technical Assessment ETA-24/1053

English translation prepared by DIBt

Page 2 of 44 | 25 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z070278.25 8.06.04-242/24

Page 3 of 44 | 25 March 2025

Specific Part

1 Technical description of the product

The Injection system SWEYTEC IMS for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Speed and SWEYTEC IMS Pro High Speed, a perforated sieve sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod in the range of M6 to M16. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annexes B4 to B6, B13, B14, C1 to C21
Characteristic resistance and displacements for seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm. Minimum edge distances and spacing	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

Z070278.25 8.06.04-242/24

European Technical Assessment ETA-24/1053

English translation prepared by DIBt

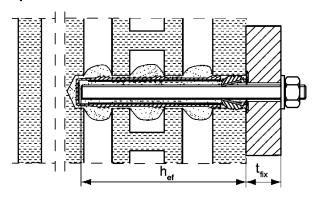
Page 4 of 44 | 25 March 2025

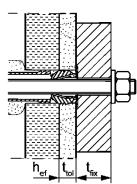
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 25 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z070278.25 8.06.04-242/24

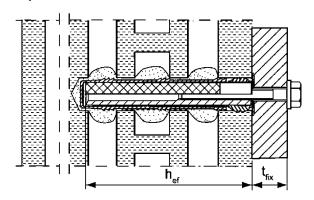

Installation conditions part 1

SWEYTEC Anchor rods with perforated sleeve SWEYTEC H K; Installation in perforated and solid brick masonry

Pre-positioned installation:

Installation with render bridge

Size of the perforated sleeve:


SWEYTEC H 12x50 K SWEYTEC H 12x85 K SWEYTEC H 16x85 K SWEYTEC H

16x130 K

SWEYTEC H 20x85 K SWEYTEC H 20x130 K SWEYTEC H 20x200 K

Internal threaded anchor SWEYTEC E with perforated sleeve SWEYTEC H K; Installation in perforated and solid brick masonry

Pre-positioned installation:

Figures not to scale

hef = effective anchorage depth

ttol = thickness of unbearing layer (e.g. plaster)

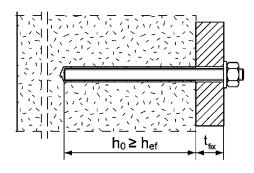
t_{fix} = thickness of fixture

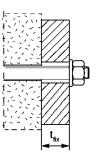
Injection system SWEYTEC IMS for masonry

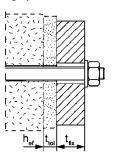
Product description

Installation conditions part 1,

Anchor rods and internal threaded anchor with perforated sleeve

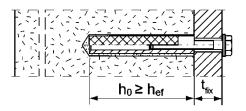

Annex A1

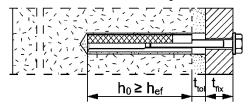

Installation conditions part 2


SWEYTEC Anchor rods without perforated sleeve SWEYTEC H K; installation in solid brick masonry and autoclaved aerated concrete

Pre-positioned installation:

Push through installation: Annular gap filled with mortar




Installation with render bridge

Internal threaded anchors SWEYTEC E without perforated sleeve SWEYTEC H K; installation in solid brick masonry and autoclaved aerated concrete

Pre-positioned installation:

Installation with render bridge

Figures not to scale

 h_0 = depth of drill hole

ttol = thickness of unbearing layer (e.g. plaster)

hef = effective anchorage depth

 t_{fix} = thickness of fixture

Injection system SWEYTEC IMS for masonry

Product description

Installation conditions part 2, Anchor rods and internal threaded anchor without perforated sleeve

Annex A2

Overview system components part 1 Mortar cartridge (shuttle cartridge) with sealing cap Size: 360 ml, 825 ml Imprint: SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Speed or SWEYTEC IMS Pro High Speed, processing notes, shelf-life, hazard code, piston travel scale (optional), curing time and processing time (depending on temperature), size, volume Mortar cartridge (coaxial cartridge) with sealing cap Size: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml 1 Imprint: SWEYTEC IMS Pro, SWEYTEC IMS Pro Low Speed or SWEYTEC IMS Pro High Speed, processing notes, shelf-life, hazard code, piston travel scale (optional), curing time and processing time (depending on temperature), size, volume Static mixer SWEYTEC MR Plus for injection cartridges up to 410 ml Static mixer SWEYTEC JMR for injection cartridges with 825 ml Injection adapter and extension tube Ø 9 for static mixer SWEYTEC MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer SWEYTEC JMR Cleaning brush SWEYTEC BS **Blow-out pump SWEYTEC** compressed-air cleaning tool SWEYTEC Figures not to scale Injection system SWEYTEC IMS for masonry Annex A3 **Product description** Overview system components part 1: cartridge / static mixer / cleaning tools

Overview system components part 2							
Anchor rod SWEYTEC A / SWEYTEC RG M (Anchor rod) and standard Threaded rod (Threaded rod)							
2		Size:	M6, M8, M10, M12, M16				
Interna	al threaded anchor SWEYTEC E (SWEYT	EC E)					
5		Size:	11x85 M6 / M8 15x85 M10 / M12				
Perfora	ated sleeve SWEYTEC H K (SWEYTEC H	•					
7		Size:	SWEYTEC H 12x50 K SWEYTEC H 12x85 K SWEYTEC H 16x85 K SWEYTEC H 20x85 K				
7		Size:	SWEYTEC H 16x130 K SWEYTEC H 20x130 K SWEYTEC H 20x200 K				
Washe	or (
3							
Hexag	on nut						
4							
				_			
				Figures not to scale			
Inject	tion system SWEYTEC IMS for mas	onry					
	ict description iew system components part 2: steel parts	/ perforate	d sleeve	Annex A4			

Part	Designation		Material			
1	Mortar cartridge Mortar, hardener; filler					
		Steel	Stainless steel R	High corrosion resistant ste HCR		
		zinc plated	acc. to EN 10088-1:2023 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 10088-1:2023 Corrosion resistance class CRC V acc. to EN 1993-1-4:2006+A1:201		
2	Anchor rod	Property class 4.6; 4.8; 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, ISO 4042:2022 or hot-dip galvanised EN ISO 10684:2004+AC:2009 fuk ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2023 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2023 f_{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation		
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, ISO 4042:2022 or hot-dip galvanised EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529 EN 10088-1:2023		
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2022 zinc plated ≥ 5µm, ISO 4042:2022 or hot-dip galvanised EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2023		
	Internal threaded anchor SWEYTEC E	Property class 5.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:2022	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023		
6	Commercial standard screw or threaded rod for internal threaded anchor SWEYTEC E	Property class 4.6, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:2022	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023		
7	Perforated sleeve SWEYTEC H K		PP / PE			
	ction system SV	VEYTEC IMS for masonry	,	Annex A5		

Specifications of intended use part 1 Table B1.1: Overview use and performance categories Anchorages subject to injection system SWEYTEC IMS for masonry Hole drilling with hammer drill mode all bricks Hole drilling with rotary drill mode all bricks Static and quasi static load, all bricks in masonry Resistance to fire under tension and No performance assessed shear loading Perforated sleeve with anchor rod or internal threaded anchor (in perforated and solid brick masonry) Size: Anchor rod or SWEYTEC H 12x50 K Pre-positioned internal threaded anchor SWEYTEC H 12x85 K anchorage (in solid brick masonry and SWEYTEC H 16x85 K autoclaved aerated concrete) Installation SWEYTEC H 16x130 K SWEYTEC H 20x85 K SWEYTEC H 20x130 K SWEYTEC H 20x200 K Anchor rod; Push through use only in cylindrical drill hole No performance assessed (in solid brick masonry and anchorage autoclaved aerated concrete) conditions d/d (dry/dry) conditions w/d Installation and all bricks use conditions (wet/dry) conditions w/w (wet/wet) D3 (downward and horizontal installation) Installation direction $T_{i,min}$ = -10 °C to $T_{i,max}$ = +40 °C Installation temperature (max. short term temperature +80 °C Temperature In-service -40 °C to +80 °C max. long term temperature +50 °C) temperature range Tb Injection system SWEYTEC IMS for masonry Annex B1 Intended Use Specifications part 1

Specifications of intended use part 2

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Solid brick masonry (base material group b) and autoclaved aerated concrete (base material group d),
 acc. to Annex B10.
- · Hollow brick masonry (base material group c), according to Annex B10.
- For minimum thickness of masonry member is hef+30mm.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2016.
- For other bricks in solid masonry, hollow or perforated masonry and autoclaved aerated concrete, the characteristic resistance of the anchor may be determined by job site tests (not for bricks under fire exposure) according to EOTA Technical Report TR 053:2022-07, Annex B under consideration of the β-factor according to Annex C21, Table C21.1.

Note (only applies to solid bricks and autoclaved aerated concrete):

The characteristic resistance is also valid for larger brick sizes, higher compressive strength and higher raw density of the masonry unit.

Temperature Range:

• **Tb:** From - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A5, Table A5.1.

Injection system SWEYTEC IMS for masonry	
Intended Use Specifications part 2	Annex B2

Specifications of intended use part 3 continued Design:

 The anchorages have to be designed in accordance with EOTA Technical Report TR 054:2023-12 (included the dimensioning for fire exposure), Design method A under the responsibility of a designer experienced in anchorages and masonry work.

Applies to all bricks, if no other values are specified:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,l} = V_{Rk,c,l}$$

For the calculation of pulling out a brick under tension loading **N**_{Rk,pb} or pushing out a brick under shear loading **V**_{Rk,pb} see EOTA Technical Report TR 054:2023-12.

N_{Rk,s}, V_{Rk,s} and M⁰_{Rk,s} see annexes C1-C3.

Factors for job site tests and displacements see annex C21.

 Verifiable calculation notes and drawings have to be prepared taking into account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is to be indicated on the design drawings.

Installation:

- Conditions d/d: Installation and use in dry structures.
- Conditions w/w:- Installation and use in dry and wet structures.
- Conditions w/d: Installation in wet structures and use in dry structures.
- Hole drilling see Annex C (drilling method).
- In case of aborted hole: The hole shall be filled with injection mortar SWEYTEC IMS Pro.
- Bridging of unbearing layer (e.g., plaster) is permitted for masonry with solid bricks and cylindrical drill hole. At perforated brick masonry see Annex B6, Table B6.1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or anchor rods (including nut and washer) must comply with the appropriate material and property class of the internal threaded anchor SWEYTEC E mentioned in Annex A5, Table A5.1.
- Minimum curing time see Annex B7, Table B7.2.
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A5, Table A5.1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored.

Marking of the anchor rod with the envisage embedment depth. This may be done by the manufacturer of the rod or by a person on job site.

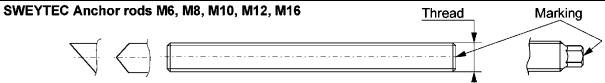

Injection system SWEYTEC IMS for masonry	
Intended Use Specifications part 3 continued	Annex B3

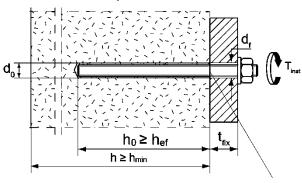
Table B4.1:	Installation parameters for anchor rods in solid bricks and autoclaved
	aerated concrete without perforated sleeves

Anchor rod / Threaded	rod	Thread	М6	M8	M10	M12	M16	
Nominal drill hole diameter d ₀ [mm		d₀[mm]	8	10	12	14	18	
		h _{0,min} ≥ h _{ef,min} [mm]	100					
		h _{0,max} ≥h _{ef,max} [mm]	h-30, ≤200					
in solid brick		h _{ef,min} [mm]	50					
		h _{ef,max} [mm]	h-30, ≤200					
		ositioning d _f ≤[mm]	7	9	12	14	18	
		h through d₁≤[mm]	9 11 14 16 20					
Diameter of cleaning bru	neter of cleaning brush d₅≥[mm]			see Table B7.1				
Maximum installation tor	que	T _{inst} [Nm]	see parameters of brick					

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

Marking (on random place) SWEYTEC Anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip galvanised PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		


Alternatively: Colour coding according to DIN 976-1: 2016;

property class 4.6 marking according to EN ISO 898-1:2013

1) PC = property class

Installation conditions:

Anchor rod in cylindrical drill hole

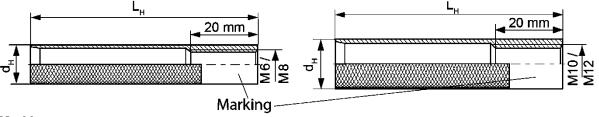
Setting depth mark

Figures not to scale

Injection system SWEYTEC IMS for masonry

Intended Use
Installation parameters for anchor rods without perforated sleeve

Annex B4

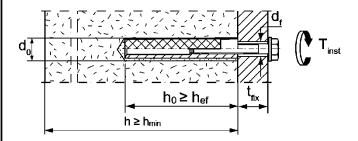

Table B5.1: Installation parameters for internal threaded anchors SWEYTEC E in solid bricks and autoclaved aerated concrete without perforated sleeves SWEYTEC H K

Internal threaded anchor SWE	11x85 M6	11x85 M8	15x85 M10	15x85 M12		
Diameter of anchor	d _H [mm]	1	1	15		
Nominal drill hole diameter	d₀[mm]	14 18				
Length of anchor	L _H [mm]	85				
Effective anchorage depth	h₀ ≥ h _{ef} [mm]	85				
Diameter of cleaning brush	d _b ≥[mm]	see Table B7.1				
Maximum installation torque	T _{inst} [Nm]	see parameters of brick				
Diameter of clearance hole in the fixture	d _f [mm]	9 12 1				
Screw-in depth	I _{E,min} [mm]	6 8		10	12	
Screw-in depth	I _{E,max} [mm]	60				

Internal threaded anchor SWEYTEC E

SWEYTEC E 11x85 M6, SWEYTEC E 11x85 M8

SWEYTEC E 15x85 M10, SWEYTEC E 15x85 M12



Marking:

Size, e.g. M8, Stainless steel: R, e.g. M8 R, High corrosion resistant steel: HCR, e.g. M8 HCR

Installation conditions:

Internal threaded anchor in cylindrical drill hole

Figures not to scale

Injection system SWEYTEC IMS for masonry

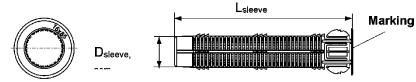
Intended Use
Installation parameters for internal threaded rods SWEYTEC E without perforated sleeve

Annex B5

Table B6.1: Installation parameters for anchor rods and internal threaded anchors SWEYTEC E with perforated sleeves (pre-positioned anchorage)

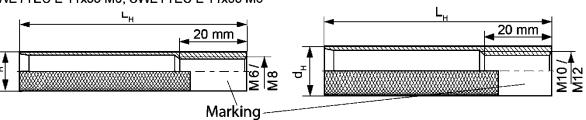
perforated sleeve SWEYTEC H	12x50	12x85 ²⁾	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾	
Nominal drill hole diameter d ₀ = D _{sleeve,nom}	d₀[mm]	12		16		20		
Depth of drill hole	ho[mm]	55	90	90	135	90	135	205
Effective anchorage depth	h _{ef,min} [mm]	50	65	85	110	85	110	180
	h _{ef.max} [mm]	50	85	85	130	85	130	200
Size of threaded rod	[-]	M6 aı	M6 and M8		M8 and M10		M12 and M16	
Size of internal threaded anchor	SWEYTEC	ı	-	11x85	-	15x85	-	ı
Diameter of cleaning brush ¹⁾	d _b ≥[mm]	nm] see Table B7.1						
Maximum installation torque	T _{inst} [Nm]	see parameters of brick			·			

¹⁾ Only for solid areas in hollow bricks and solid bricks.

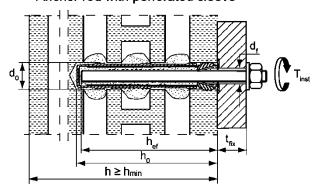

Perforated sleeve

SWEYTEC H 12x50 K; SWEYTEC H 12x85 K; SWEYTEC H 16x85 K; SWEYTEC H 16x130 K; SWEYTEC H 20x85 K; SWEYTEC H 20x130 K; SWEYTEC H 20x200 K

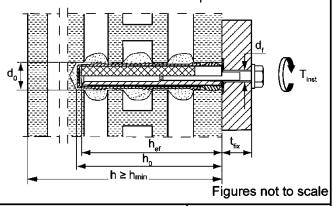
Marking:


Size D_{sleeve, nom} x L_{sleeve}

(e.g.: 16x85)


Internal threaded anchor SWEYTEC E

SWEYTEC E 11x85 M6, SWEYTEC E 11x85 M8


Installation conditions:

Anchor rod with perforated sleeve

Internal threaded anchor with perforated sleeve

SWEYTEC E 15x85 M10, SWEYTEC E 15x85 M12

Injection system SWEYTEC IMS for masonry

Intended Use

Installation parameters for anchor rods and internal threaded anchors SWEYTEC E with perforated sleeve (pre-positioned anchorage)

Annex B6

²⁾ Bridging of unbearing layer (e.g. plaster) is possible. When reducing the effective anchorage depth h_{ef, min}, the values of the next shorter perforated sleeve of the same diameter must be used. The smaller value of charastereristic resistance must be taken.

Table B7.1: Parameters of the cleaning brush BS (steel brush with steel bristles)								
The size of the cleaning brush refers to the drill hole diameter								
Drill hole diameter	d₀ [mm]	8	10	12	14	16	18	20
Brush diameter	d₅ [mm]	9	11	14	16	20	20	25

Only for solid bricks and autoclaved aerated concrete or solid areas of perforated bricks and hollow blocks

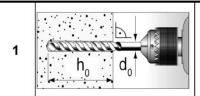
Table B7.2: Maximum processing times and minimum curing times

(During the curing time of the mortar the masonry temperature may not fall below the listed minimum temperature)

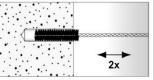
Temperature at	Maxim	um processing t _{work}	time ²⁾	Minimum curing time 1), 2) t _{cure}			
anchoring base [°C]	SWEYTEC IMS Pro High Speed	MS Pro High SVVEY IEC II		SWEYTEC IMS Pro High Speed	SWEYTEC IMS Pro	SWEYTEC IMS Pro Low Speed	
-10 to -5	>5 min	-	-	12 h	-	-	
> -5 to 0	5 min	>13 min	-	3 h	24 h	-	
> 0 to 5	5 min	13 min	>20 min	3 h	3 h	6 h	
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h	
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h	
> 20 to 30	-	4 min	6 min	ı	45 min	60 min	
> 30 to 40	-	2 min	4 min	ı	35 min	30 min	

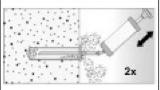
¹⁾ For wet bricks the curing time must be doubled.

Figures not to scale

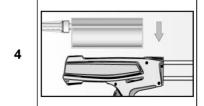

Injection system SWEYTEC IMS for masonry	
Intended Use Cleaning brush (steel brush) Maximum processing times and minimum curing times	Annex B7

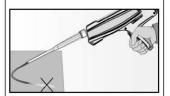
²⁾ Minimum cartridge temperature +5°C.

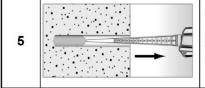

Installation instruction part 1

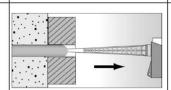

Installation in solid brick and autoclaved aerated concrete (without perforated sleeve)

Drill the hole (drilling method see Annex C of the respective brick) depth of drill hole h_0 and drill hole diameter d_0 see **Table B4.1**; **B5.1**.




Blow out the drill hole twice. Brush twice and blow out twice again.


Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible).


Place the cartridge into a suitable dispenser.

Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed of.

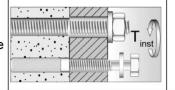
Fill approximetly 2/3 of the drill hole with mortar beginning from the bottom of the hole¹⁾. Avoid bubbles!

For push through anchorage fill the annular clearance with mortar.

Only use clean and oil-free metal parts.

Mark the anchor rod for setting depth.

Insert the anchor rod or internal threaded anchor SWEYTEC E by hand using light turning motions.


When reaching the setting depth marking, excess mortar must emerge from the mouth of the drill hole.

7

6

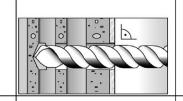
Do not touch.
Minimum curing time see **Table B7.2**.

Mounting the fixture. max T_{inst} see parameter of brick in **Annex C**.

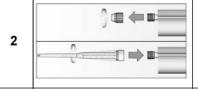
Injection system SWEYTEC IMS for masonry

Intended Use

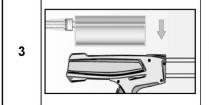
Installation instruction (without perforated sleeve) part 1


Annex B8

¹⁾ Exact volume of mortar see manufacturer's specification.

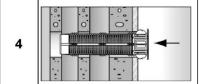

Installation instruction part 2

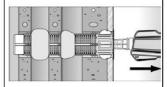
Installation in perforated or solid brick with perforated sleeve (pre-positioned anchorage)

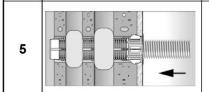


Drill the hole (drilling method see Annex C of the respective brick). depth of drill hole h_0 and drill hole diameter d_0 see **Table B6.1**

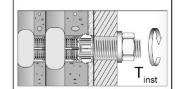
When install perforated sleeves in solid bricks or solid areas of hollow bricks, also clean the hole by blowing out and brushing.


Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible).


Place the cartridge into a suitable dispenser.


Press out approximately 10 cm of mortar until the resin is permanently grey in colour. Mortar which is not grey in colour will not cure and must be disposed of.

Insert the perforated sleeve flush with the surface of the masonry or plaster.


Fill the perforated sleeve completely with mortar beginning from the bottom of the hole¹⁾.

Only use clean and oil-free metal parts. Mark the ancher rod for setting depth. Insert the anchor rod or the internal threaded anchor SWEYTEC E by hand using light turning motions until reaching the setting depth marking (anchor rod) or flush with the surface (internal threaded anchor).

Do not touch. Minimum curing time see **Table B7.2**.

Mounting the fixture. max T_{inst} see parameter of brick in **Annex C**.

Injection system SWEYTEC IMS for masonry

Intended Use

Installation instruction (with perforated sleeve) part 2

Annex B9

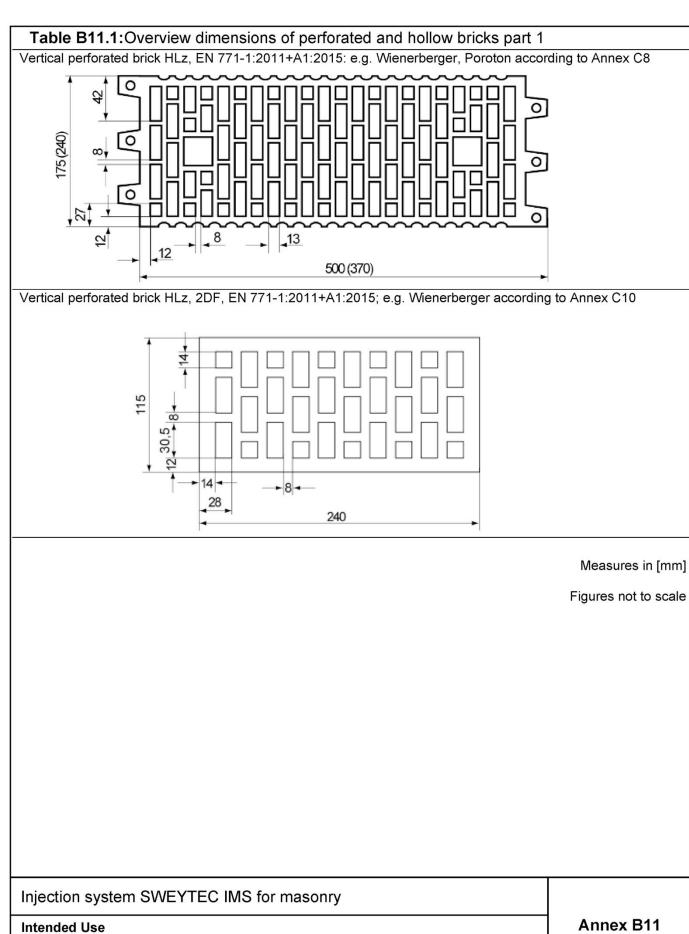
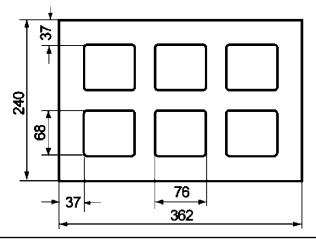

¹⁾ Exact volume of mortar see manufacturer's specification.

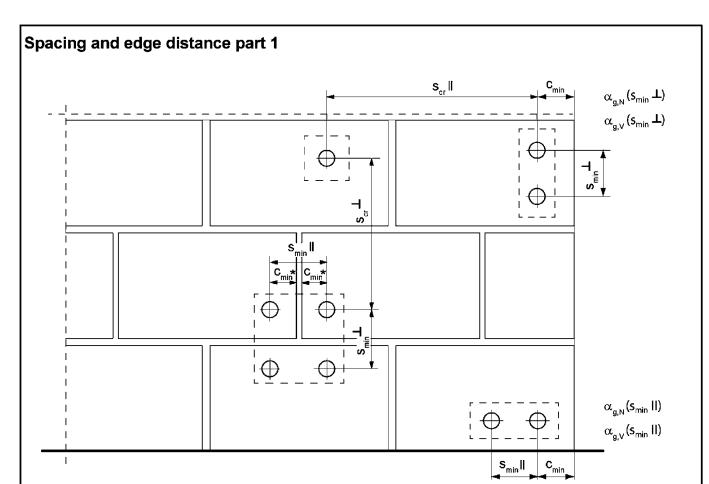
Table B10.1: Over	view of	f assessed br	icks						
Kind of masonry	В	Brick format compressiv [mm] strength [N/mm²]		Main country of origin	Mean gross density ρ [kg/dm³]	Annex			
Solid brick Mz									
Solid brick Mz	NF	≥240x115x71	15 / 25 / 35	Germany	≥1,8	C4 - C7			
		Vertica	I perforated brick HLz						
		370x240x237	5 / 7,5 / 10 / 12,5 / 15	Germany	≥1,0	C8 / C9			
		500x175x237	5 / 7,5 / 10 / 12,5 / 15	Germany	≥1,0	C8 / C9			
Vertical perforated brick HLz	2DF	240x115x113	7,5 / 12,5 / 20 / 25 / 35	Germany	≥1,4	C10 / C11			
DIICKTILZ	2DF	365x248x245	10	Austria	≥0,6	C12 / C13			
		240x175x113	12,5	Germany	≥0,9	C14 / C15			
		Light-weight	t concrete hollow block	k Hbl					
Light-weight concrete hollow block Hbl		362x240x240	2,5 / 5	Germany	≥1,0	C16 / C17			
		Autoclave	d aerated concrete (AA	(C)					
PP2 / AAC		-	2,5	Germany	0,35	C18 - C20			

Injection system SWEYTEC IMS for masonry	
Intended Use Overview of assessed bricks	Annex B10


Z092243.25 8.06.04-242/24

Overview dimensions of perforated and hollow bricks part 1

Table B12.1:Overview dimensions of perforated and hollow bricks part 2 Vertical perforated brick filled with mineral wool, EN 771-1:2011+A1:2015; according to Annex C12 Vertical perforated brick HLz, EN 771-1:2011+A1:2015; e.g. Wienerberger according to Annex C14


Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015; according to Annex C16

Measures in [mm] Figures not to scale

Injection system SWEYTEC IMS for masonry	
Intended Use Overview dimensions of perforated and hollow bricks part 2	Annex B12

* Only, if vertical joints are not completely filled with mortar

 s_{min} II = Minimum spacing parallel to horizontal joint

 s_{min} = Minimum spacing perpendicular to horizontal joint

s_{cr} II = Characteristic spacing parallel to horizontal joint

 $s_{cr} \perp$ = Characteristic spacing perpendicular to horizontal joint

 $c_{cr} = c_{min}$ = Edge distance

 $\alpha_{g,N}$ (s_{min} II) = Group factor for tension load, anchor group parallel to horizontal joint

 $\alpha_{g,V}(s_{min} | I)$ = Group factor for shear load, anchor group parallel to horizontal joint

 $\alpha_{g,N}(s_{min}^{\perp})$ = Group factor for tension load, anchor group perpendicular to horizontal joint

 $\alpha_{g,V}(s_{min} \perp)$ = Group factor for shear load, anchor group perpendicular to horizontal joint

Figures not to scale

Injection system SWEYTEC IMS for masonry	
Intended Use Spacing and edge distance part 1	Annex B13

Spacing and edge distance part 2

For $s \ge s_{cr}$: $\alpha_g = 2$

For $s_{min} \le s < s_{cr}$: α_g according to installation parameters of brick Annex C

Group of 2 anchors

$$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
; $V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$

Group of 4 anchors

$$N_{Rk} = \alpha_{g,N} (s_{min} II) \cdot \alpha_{g,N} (s_{min} L) \cdot N_{Rk}$$
;

$$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \; (s_{min}II) \; \bullet \; \alpha_{g,V} \; (s_{min} \perp) \; \bullet \; V_{Rk}$$

with N_{Rk} and $\alpha_{g,N}$ depending on s_{min}II or s_{min} \perp acc. to Annex C

with V_{Rk} and $~\alpha_{g,V}$ depending on $s_{min}II$ or $s_{min}\bot$ acc. to Annex C

Injection system SWEYTEC IMS for masonry

Intended Use

Spacing and edge distance part 2

Annex B14

Table C1.1: Characteristic resistance to steel failure under tension loading of Anchor rods and Threaded rods

Anch	or rod / Threaded	l rod			M6	M8 ³⁾	M10 ³⁾	M12	M16		
Chara	Characteristic resistance to steel failure under tension loading										
			4.6		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8		
σ	Stool zing plated		4.8		8,0	14,6(13,2)	23,2(21,4)	33,7	62,8		
istic N _{Rk,s}	Steel zinc plated		5.8		10,0	18,3(16,6)	29,0(26,8)	42,1	78,5		
teri ce		Property	8.8	[LAN]	16,0	29,2(26,5)	46,4(42,8)	67,4	125,6		
Characteristic esistance N _{Rk,}	Stainless steel R and	class	50	[kN]	10,0	18,3	29,0	42,1	78,5		
ည် <u>နို</u>	High corrosion		70		14,0	25,6	40,6	59,0	109,9		
	resistant steel HCR		80		16,0	29,2	46,4	67,4	125,6		
Partia	al factors 1)										
			4.6			2,00					
5490	Stool zing plated		4.8		1,50						
ors	Steel zinc plated		5.8		1,50						
fact s,z	-	Property	8.8		1,50						
Partial factors	Stainless steel R and	class	50	[-]	2,86						
P _e	High corrosion		70		1,50 ²⁾ / 1,87						
	resistant steel HCR		80				1,60				

¹⁾ In absence of other national regulations

Injection system SWEYTEC IMS for masonry	
Performance Characteristic resistance to steel failure under tension loading of Anchor rods and Threaded rods	Annex C1

²⁾ Only for SWEYTEC A / SWEYTEC RG M made of high corrosion resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

Table C2.1: Characteristic resistance to steel failure under shear loading of Anchor rods and Threaded rods

Anch	or rod / Threaded	d rod			M6	M8 ³⁾	M10 ³⁾	M12	M16
Chara	acteristic resistar	nce to steel	failure	unde	er shear loa	ding			
witho	ut lever arm								
			4.6		4,8	8,7(7,9)	13,9(12,8)	20,2	37,6
, v	Steel zinc plated		4.8		4,8	8,7(7,9)	13,9(12,8)	20,2	37,6
stic VRK	Steel Zille plated		5.8		6,0	10,9(9,9)	17,4(16,0)	25,2	47,1
steri	70.	Property	8.8	[kN]	8,0	14,6(13,2)	23,2(21,4)	33,7	62,8
Characteristic resistance V _{RK,s}	Stainless steel R and	class	50	ונאוזן	5,0	9,1	14,5	21,0	39,2
S S	High corrosion		70		7,0	12,8	20,3	29,5	54,9
	resistant steel HCR		80		8,0	14,6	23,2	33,7	62,8
with I	ever arm	-							
e	Steel zinc plated	Property	4.6		6,1	14,9(12,9)	29,9(26,5)	52,3	132,9
tan			4.8		6,1	14,9(12,9)	29,9(26,5)	52,3	132,9
esis			5.8		7,6	18,7(16,1)	37,3(33,2)	65,4	166,2
ristic re M ⁰ Rk,s			8.8	[Nm]	12,2	29,9(25,9)	59,8(53,1)	104,6	265,9
terist Mº	Stainless steel R and	class	50		7,6	18,7	37,3	65,4	166,2
Characteristic resistance M ^{ORK,S}	High corrosion resistant steel		70		10,6	26,2	52,3	91,5	232,6
ວັ	HCR		80		12,2	29,9	59,8	104,6	265,9
Partia	al factors ¹⁾								
			4.6				1,67		
	Steel zinc plated		4.8				1,25		
tors	Steel Zille plated		5.8				1,25		
al fac		Property	8.8	[-]			1,25		
Partial factors	Stainless steel R and	class	50	[1			2,38		
ď	High corrosion resistant steel		70				1,25 ²⁾ / 1,56		
	HCR		80				1,33		

¹⁾ In absence of other national regulations

Injection system SWEYTEC IMS for masonry	
Performance Characteristic resistance to steel failure under shear loading of Anchor rods and Threaded rods	Annex C2

²⁾ Only for SWEYTEC A / SWEYTEC RG M made of high corrosion resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised standard threaded rods (M8 resp. M10) according to EN ISO 10684:2004+AC:2009.

Table C3.1:	Characteristic resistance to steel failure under tension / shear loading of internal threaded anchors SWEYTEC E								
Internal threade	d anch	or SWEYT	EC E		M6	M8	M1	0	M12
Characteristic r screw/threaded		ice to stee	l failure	unde	er tension loadii	ng, decisive va	lues of sl	eeve and	l
		Property class	4.6		8,0	14,6	23,	2	33,7
Characteristic resistance	$N_{Rk,s}$	Property class	5.8	[kN]	10,0	18,3	29,	0	42,1
		Property class 70	$\frac{R}{HCR}$		14,0 14,0	25,6 25,6	40, 40,		59,0 59,0
Partial factors ¹⁾							•	•	
		Property class	4.6			2	,00		
Partial factors	γMs,N	Property class	5.8	[-]		1,	50		
		Property	R		1,87				
		class 70	HCR			1	,87		
Characteristic r screw/threaded		ice to stee	l failure	unde	er shear loading	; decisive valu	es of slee	eve and	
without lever ar	m								
		Property class	4.6	[kN]	4,8	8,7	13,	9	20,2
Characteristic resistance	$V_{Rk,s}$	Property class	5.8		6,0	10,9	15,	0	21,0
		Property	_R		7,0	12,8	20,	3	29,5
		class 70	HCR		7,0	12,8	20,	3	29,5
with lever arm									
		Property class	4.6		6,1	14,9	29,	9	52,3
Characteristic resistance	M^0 Rk,s	Property class	5.8	[Nm]	7,6	18,7	37,	3	65,4
		Property	_R		10,6	26,2	52,		91,5
200 - 00000 GAY 1200 - 20 A0000		class 70	HCR		10,6	26,2	52,	3	91,5
Partial factors ¹⁾									
		Property class	4.6			1,	67		
Partial factors	γMs,V	Property class	5.8	[-]			25		
		Property	R				56		
		class 70	HCR			1,	56		
1) In absence of	f other i	national reg	julations	8					
Injection system	em SV	VEYTEC	IMS fo	or ma	sonry				
Performance Characteristic re threaded ancho			ailure ui	nder te	ension / shear lo	ading of internal		An	nex C3

Solid brick Mz, NF, EN 771	-1:2011+A1:2015				
\$175	Producer		e.g.	Wienerbe	rger
	Nominal dimensions	[mm]	length L	width W	height H
		Limin	≥ 240	≥ 115	≥ 71
271	Mean gross dry density ρ	[kg/dm ³]		≥ 1,8	
	Mean compressive strength / Min. compressive strength single brick ¹⁾	[N/mm ²]	15 /	12 or 25 / : 35 / 28	20 or
7.0	Standard or annex		EN 771	-1:2011+ <i>A</i>	1:2015
Table C4 1: Installation	narameters for edge distance a-100n	am.			

Table C4.1: Installation parameters for edge distance c=100mm

Anchor rod			M6	M8	M10	M12		•		
Internal three	aded anchor SWEYT	EC E			200	1000	M6	M8	M10	M12
internal tilre	aded anchor SVVETT	EC E	-	-	-	-	11>	85	15	c 85
Anchor rod ar	nd internal threaded an	chor SWEYTEC	E without	perforate	d sleeve					
			50 50 50 50							
Effective anchorage dep	th hef	[mm]	80	80	80	80		8	85	
and lorage dep			200	200	200	200				
Max. installatio torque	n max T _{inst}	[Nm]	4						10	
General instal	lation parameters									
Edge distance	$c_{min} = c_{cr}$			10	00			10	00	
Edge distance	h _{ef} =200 c _{min} = c _{cr}]		15	50			-	2)	
	Smin II,	ı		6	0			6	60	
	h _{ef} =200 s _{min} II, _N	[mm]		24	40			_	2)	
Spacing	Smin II,	•		24	40			24	40	
	S _{cr} I			24	40		240			
	s _{cr} ⊥ = s _{min} ⊥			7	5			7	5	

Drilling method

Hammer drilling with hard metal hammer drill

Table C4.2: Group factors

Anchor rods			M6	M8	M10	M12	2.9	-			
Internal three	aded anchor SWEYTE	C E					M6	M8	M10	M12	
internal threa	aded anchor SVVETTE	IC E	-	-	-	-	112	k 85	15>	c 85	
Edge distance	C _{min}	[mm]				100					
	αα.N (Smin II)					1,5					
	αg, v (Smin II)					2,0					
	h _{ef} =200 α _{g,N} (s _{min} II)					1,5					
0	h_{ef} =200 $\alpha_{g,V}$ (s_{min} II)	f 1				2,0					
Group factor	α _{α,N} (S _{min} 丄)	[-]				2,0					
	$lpha_{\sf g,V}$ (S _{min} ot)					2,0					
	h _{ef} =200 $\alpha_{a.N}$ ($s_{min} \perp$)					2,0					
	h _{ef} =200 $\alpha_{g,V}$ ($s_{min} \perp$)					2,0					

Injection system SWEYTEC IMS for masonry	
Performance Solid brick Mz, NF, dimensions, installation parameters for edge distance c=100mm, Group factors	Annex C4

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

²⁾ No performance assessed.

Solid brick Mz, NF, EN 771-1:211+A1:2015

Table C5.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading for edge distance c=100mm

Anchor rod			M6	M8		M10			M12		1-			•					
Internal threaded and SWEYTEC E	hor		-	-		:-		- 11x85				-						M10	M12 <85
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_R$	k,p,c =	= N _{Rk,b,}	c [kN];	tempe	rature	range	50/80	°C			<u> </u>								
Mean compressive		Use				Effe	ctive a	nchora	ge de	pth h _{ef}	[mm]								
strength / Min. compressive strength single brick 1)	200	con- itions	≥50	≥50	50	80	200	50	80	200			85						
15 / 12 N/mm²	w/	w w/d	2,5	2,5	2,0	3,0	7,5	2,0	3,5	5,0		(3,5						
15 / 12 N/MM²		d/d	4,0	4,0	3,5	5,0	12,0	3,0	5,5	8,0	5,5								
25 / 20 N/mm ²	w/	w w/d	3,5	3,5	3,0	4,5	11,0	3,0	5,0	7,0	5,0								
25 / 20 N/MM-		d/d	5.5	5.5	5.0	7.0	12.0	4.5	8.0	11.5	8.0								

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C5.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading for edge distance c=100mm

Anchor rod		M6	M8	М	10	M12						
Internal threaded anch	or	-	-	,	•			M6 11x8	M8	M10	M12 <85	
	. FLANT.	tompor		ones FOIS	00°C			1120	<u> </u>	157	(05	
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rl}$	k,c,⊥ [KIN],	temper	ature r	ange 50/c	0 C							
Mean compressive	Use			E	ffective an	chorage o	lepth h _{ef} [r	mm]				
strength / Min. compressive strength single brick 1)	con- ditions	≥50	≥50	≥50	200	≥50	200		8	5		
15 / 12 N/mm²	w/w w/d d/d	2,5	2,5	4,0	8,5	4,0	11,5		2,	5		
25 / 20 N/mm²	w/w w/d	4,0	4,0	6,0	12,0	5,5 12,0 4,				0		
	d/d											

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry	
Performance Solid brick Mz, NF, Characteristic resistance under tension and shear loading, edge distance c=100mm	Annex C5

Anchor Effective	threaded anchor	I	M6	M8	M10	M12	M16		-	-	
Anchor Effective					103	500		M6	M8	M10 I	M1:
Effective			-			-	-	11)	x85	15x8	85
	rod and internal	thread	ed anchor	SWEYTEC		perforated	sleeve				
	<u> </u>		50	50	50	50	50				
	nge depth h _{ef}	[mm]	100	100	100	100	100	_	8	35	
Max. ins	stallation max T _{inst}	[Nm]	200	200	200	0 200	200	4		10	
	l installation para	meters	•								
Edge di	7		<u> </u>			60					
Edge di h _{ef} =200						60					
	Smin II,N	1				80					
	h _{ef} =200 s _{min} II, _N	[mm]				80					
Spacing	S _{min} II,v					80					
opaome	S _{cr} II					3x h _{ef}					
	S _{min} ⊥					80					
	S _{cr} ⊥					3x h _{ef}					
Hamme	r drilling with hard			I							
	r drilling with hard			M8	M10	M12	M16		-		
Hamme Table Anchor	r drilling with hard C6.2: Group rods I threaded anchor	facto	rs		M10 -	M12 -	M16	M6	- M8 x85	- M10 I	
Table Anchor Internal SWEYT	r drilling with hard C6.2: Group rods I threaded anchor EC E	facto	rs		M10 -	M12 - 60	M16 -	M6	M8	M10 I	
Table Anchor Internal SWEYT	r drilling with hard C6.2: Group rods I threaded anchor EC E	facto	rs		M10 -	-	M16 -	M6	M8	M10 I	
Table Anchor Internal SWEYT	C6.2: Group rods threaded anchor	facto	rs		M10 -	- 60	M16 -	M6	M8	M10 I	
Table (Anchor Internal SWEYT Edge distance	r drilling with hard C6.2: Group rods I threaded anchor EC E comin comin (Smin II)	facto	rs		M10 -	- 60 0,6	M16 -	M6	M8	M10 I	
Table Anchor Internal SWEYT Edge distance	r drilling with hard C6.2: Group rods I threaded anchor EC E $\alpha_{g,N}$ (Smin II) $\alpha_{g,V}$ (Smin II)	facto	rs		M10 -	- 60 0,6 1,3 1,4 1,5	M16 -	M6	M8	M10 I	
Table (Anchor Internal SWEYT Edge distance	r drilling with hard C6.2: Group rods I threaded anchor EC E $\alpha_{g,N} (s_{min} II)$ $\alpha_{g,V} (s_{min} II)$ $\alpha_{g,V} (s_{min} II)$ $\alpha_{g,V} (s_{min} II)$ $\alpha_{g,N} (s_{min} II)$ $\alpha_{g,N} (s_{min} II)$ $\alpha_{g,N} (s_{min} II)$	facto	rs		M10 -	- 60 0,6 1,3 1,4 1,5 0,3	M16	M6	M8	M10 I	
Table (Anchor Internal SWEYT Edge distance Group factor —	r drilling with hard C6.2: Group rods I threaded anchor EC E $\alpha_{g,N} \text{ (Smin II)}$ $\alpha_{g,V} \text{ (Smin II)}$ $\alpha_{g,V} \text{ (Smin II)}$ $\alpha_{g,N} \text{ (Smin II)}$ $\alpha_{g,N} \text{ (Smin II)}$ $\alpha_{g,N} \text{ (Smin I)}$ $\alpha_{g,V} \text{ (Smin I)}$ $\alpha_{g,V} \text{ (Smin I)}$	facto	rs		M10 -	- 60 0,6 1,3 1,4 1,5 0,3 1,3	M16	M6	M8	M10 I	
Table (Anchor Internal SWEYT Edge distance Group factor	r drilling with hard C6.2: Group rods I threaded anchor EC E $\alpha_{g,N} (s_{min} II)$ $\alpha_{g,V} (s_{min} II)$ $\alpha_{g,V} (s_{min} II)$ $\alpha_{g,V} (s_{min} II)$ $\alpha_{g,N} (s_{min} II)$ $\alpha_{g,N} (s_{min} II)$ $\alpha_{g,N} (s_{min} II)$	facto	rs		M10 -	- 60 0,6 1,3 1,4 1,5 0,3	M16	M6	M8	M10 I	

Solid brick Mz, NF, EN 771-1:2011+A1:2015

Table C7.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading for edge distance c=60mm

Anchor rod			IV	16	N	18		M10			M12		M16			•		-
Internal threaded anchor SWEYTEC E				•		-		-			-		-		M6			M12 x85
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N$	Rk,p,c	= N _{Rk}	, _{b,c} [k	N]; t	emp	eratu	ire ra	ange	50/8	0°C								
Mean compressive strength / Min. compressive strength single brick 1)	CC	se on- ons	50	100	50	100		Effec 100				200	-] 200		8	5	
15 / 12 N/mm²	w/w	w/d	v/d 1,5 2,0 2,0 2,0 2,5 -2 2,0 2,5 -2 2,0 5,5 -2						-	2)								

15 / 12 N/mm d/d 2,5 3,0 | 4,0 | 3,0 | 4,0 | 9,5 | 3,0 | 4,0 | 9,5 | 3,0 | 8,5 | 9,5 w/w w/d 2,0 2,5 3,0 2,5 3,5 3,0 3,5 3,0 7,5 _2) 25 / 20 N/mm² _2) d/d 4,5 5,5 4,5 4,5 12 12 3,5 4,5 5,5 12 5,5 12 2,5 4,0 4,0 3,5 4,0 9,0 _2) _2) w/w w/d 3,0 3,0 3,5 35 / 28 N/mm² d/d 4,0 5,5 6,5 5,5 5,5 6,5 5,5 12 12 _2) 6,5 12 12

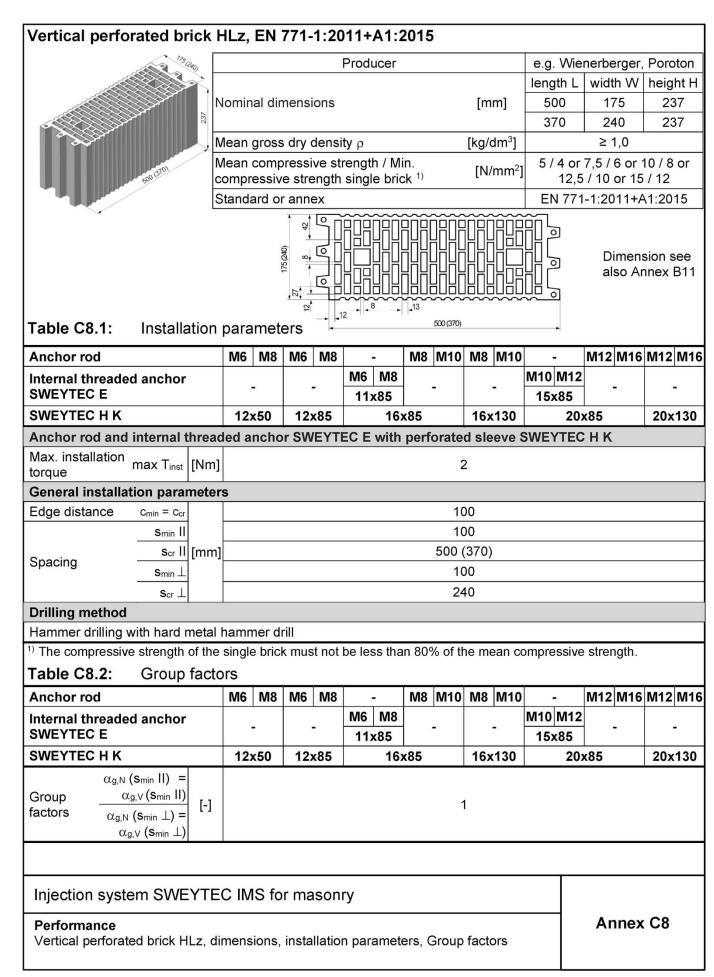
Table C7.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading for edge distance c=60mm

Anchor rod		M6	M8	M10	M12	M16	9	-	-		
Internal threaded an SWEYTEC E	chor	-	-	-	-	-		M8 x85	M10	M12 x85	
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,II}$	V _{Rk,c,⊥} [kN]	; tempera	ture rang	ge 50/80°C		•					
Mean compressive strength / Min.	Use con-			Effective a	nchorage dep	th h _{ef} [mm] 	Ĭ				

strength / Min. compressive strength single brick 1)	Use con- ditions	50	100	50	100			200		100				200	85
15 / 12 N/mm ²	w/w	1,2	2,5	1,2	3,0	2,0	3,0	1,5	1,5	3,0	3,0	0,6	3,0	4,5	_2)
25 / 20 N/mm ²	w/d	1,5	3,5	1,5	4,5	3,0	4,5	2,5	2,0	4,5	4,5	0,9	4,5	6,0	_2)
35 / 28 N/mm ²	d/d	2,0	4,0	2,0	5,0	3,5	5,0	3,0	2,5	5,0	5,0	1,2	5,0	7,5	_2)

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.


Injection system SWEYTEC IMS for masonry	
Performance Solid brick Mz, NF, Characteristic resistance under tension and shear loading, edge distance c=60mm	Annex C7

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

²⁾ No performance assessed.

²⁾ No performance assessed.

Vertical perforated brick HLz, EN 771-1:2011+A1:2015

Table C9.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M6	M8	M6	M8		-	M8	M10	M8	M10	,	-	M12	M16	M12	M16
Internal threaded				-		M8		-	10	-		M12		-		-
anchor SWEYTEC E					112	x85					15	x85				
Perforated sleeve SWEYTEC H K	12)	<50	12	x85		16	3x85		16x	130	20x		k 85		20x	130

						~:	
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,}$	c = NF	k,b,c [kN]; temperature	range 50/80°C			
Mean compressive strength / Min. compressive strength single brick 1)		se n- ons					
5 / 4 N/mm²	w/w	w/d	0,30		0,90		1,20
57 4 N/IIIII	d,	/d	0,40		0,90		1,20
7,5 / 6 N/mm ²	w/w	w/d	0,50		1,50		2,00
7,576 14/111111	d,	/d	0,60		1,50		2,00
10 / 8 N/mm²	w/w	w/d	0.75		2.00		2.50
10 / 6 N/IIIII-	d,	/d	0,75		2,00		2,50
12,5 / 10 N/mm²	w/w	w/d	0,90		2,50		3,00
12,57 10 N/MIII-	d,	/d	0,90		2,50		3,50
15 / 12 N/mm²	w/w	w/d	0,90		3,00		3,50
15 / 12 19/111111-	d,	/d	1,20		3,00		4,00

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C9.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	M6	M8	M6	M8		-	M8	M10	M8	M10		•	M12	M16	M12	M16
Internal threaded anchor SWEYTEC E	-	•		-	M6 11)	M8 k85		-		-	M10 15	M12 x85	I	-		-
Perforated sleeve SWEYTEC H K	12>	50	123	x85		16	x85		16x	130		202	x85		20x	130

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		700000000000000000000000000000000000000	
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,E}$,⊥ [kN]; ter	nperature range	e 50/80°C			
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions					
5 / 4 N/mm ²			0,50	0,60	0,50	0,60
7,5 / 6 N/mm ²	w/w		0,75	0,90	0,75	0,90
10 / 8 N/mm ²	w/d		0,90	1,20	0,90	1,20
12,5 / 10 N/mm ²	d/d		1,20	1,50	1,20	1,50
15 / 12 N/mm²			1,50	2,00	1,50	2,00

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry	
Performance Vertical perforated brick HLz, Characteristic resistance under tension and shear loading	Annex C9

Vartical partareted brief	UI - 2DF F	N 774 4.00	44+44-204	E								
Vertical perforated brick		:N //1-1:20	11+A1:201	5								
115	Producer					nerberger						
	Nominal dimen	sions		[mm]		Ith W height I						
13	Mean gross dry	y density ρ		[kg/dm ³]		1,4						
	Mean compres	sive strength		[N/mm ²]	7,5 / 6 or 12	,5 / 10 or 20						
	Min. compressi		ngle brick 1)	[]		20 or 35 / 28 011+A1:2015						
240	Standard or an	nex			EN // 1-1:20	J11+A1:2015						
Table C10.1: Installation	parameters	115		Dimension se also Annex B								
Table C10.1: Installation parameters : 240 Anchor rod												
Internal threaded	IAIO IAIO	IAIO IAIO	M6 M8	IVIO IVIIO	M10 M12	IVITZ IVITO						
anchor SWEYTEC E	-	-11	-	15x85	-							
SWEYTEC H K	12x50	12x85	c 85	20	x85							
Anchor rod and internal threaded anchor SWEYTEC E with perforated sleeve SWEYTEC H K												
Max. installation max T _{inst} [Nm] 2												
General installation paramete	rs											
Edge distance $c_{min} = c_{cr}$	1		8	1000								
Spacing $\frac{s_{cr} I = s_{min} I }{s_{cr} \perp = s_{min} \perp} [mm]$	J		22	10 15								
Drilling method												
Hammer drilling with hard metal	hammer drill											
Table C10.2: Group fact		ust not be less	than 80% of th	ne mean comp	ressive strenç	gth.						
Anchor rod	M6 M8	M6 M8	-	M8 M10		M12 M16						
Internal threaded anchor SWEYTEC E	-	-	M6 M8 11x85	-	M10 M12	-						
SWEYTEC H K	12x50	12x85		(85		x85						
$\begin{array}{c} \text{Group} \\ \text{factors} \end{array} \begin{array}{c} \underline{\alpha_{\text{g,N}} \left(s_{\text{min}} \ II \right)} \\ \underline{\alpha_{\text{g,V}} \left(s_{\text{min}} \ II \right)} \\ \underline{\alpha_{\text{g,N}} \left(s_{\text{min}} \ \bot \right)} \end{array} \begin{bmatrix} -] \end{array}$			2	2								
Injection system SWEYTE	EC IMS for m	nasonry			Ann	nex C10						
The state of the s	Vertical perforated brick HLz, 2DF, dimensions, installation parameters, Group factors											

Vertical perforated brick HLz, 2DF, EN 771-1:2011+A1:2015

Table C11.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	М6	M8	M6	M8		-	M8 M10		M8 M10		M8 M10		M8 M10			-	M12	M16
Internal threaded anchor SWEYTEC E					M6 11	M8 x85			M10	M12 x85		<u>.</u>						
Perforated sleeve SWEYTEC H K	12x	50	12:	k 85		16	3x85	5 20		20:	k 85							

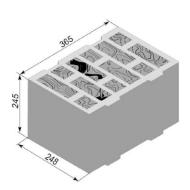
$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = I$	N _{Rk,b,c}	[kN]; t	emperatur	e range 50)/80°C	
Mean compressive strength / Min. compressive strength single brick 1)	co	se n- ons				
7,5 / 6 N/mm²	w/w	w/d	0.75	0.90	0,75	0.90
	d/	/d	0,75	1,20	0,75	0,90
12,5 / 10 N/mm²	w/w	w/d	1,20	1,50	1,20	1,50
	d/	/d	1,20	2,00	1,20	1,50
20 / 16 N/mm²	w/w	w/d	2.00	2.50	2.00	2.00
	d/	/d	2,00	3,00	2,00	2,50
25 / 20 N/mm²	w/w	w/d	2,50	3,50	2,50	3.00
	d/	/d	2,50	4,00	2,50	3,00
35 / 28 N/mm²	w/w	w/d	3,00	5,00	3,50	4.00
	d/	/d	3,50	5,50	3,50	4,50

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C11.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	M6 M8 M6		M6	M8	-		M8	M10	u=		M12	M16
Internal threaded anchor SWEYTEC E	-		-		M6 M8			- M10		M12 <85	-	
Perforated sleeve SWEYTEC H K	12	<50	12>	(85	16:		6x85		20		x85	

	DOC TORROW TARKET	11000 000		1000 000	acordinant -		2/40/00/2007/032707	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k	N]; tempera	ature	range	50/8	0°C		,	
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions							
7,5 / 6 N/mm ²		1,2	1,5	1,2	2,0	1,2	1,5	2,5
12,5 / 10 N/mm ²	w/w	2,0	2,5	2,0	4,0	2,0	2,5	4,5
20 / 16 N/mm ²	w/d	3,0	3,5	3,0	6,0	3,0	3,5	7,0
25 / 20 N/mm ²	d/d	4,0	4,5	4,0	7,5	4,0	4,5	8,5
35 / 28 N/mm ²		5,0	6,5	5,0	9,5	5,0	6,5	12,0


¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry	
Performance Vertical perforated brick HLz, 2DF, Characteristic resistance under tension and shear loading	Annex C11

Vertical perforated brick filled with mineral wool, EN 771-1:2011+A1:2015

Producer		e.g. Wienerberger				
Nominal dimensions	[mm]	length L	width W	height H		
	[mm]	≥ 365	≥ 248	≥ 245		
Mean gross dry density ρ	[kg/dm ³]		0,6			
Mean compressive strength / Min. compressive strength single brick 1)	[N/mm²]		10 / 8			
Standard or annex	EN 771	-1:2011+/	41:2015			

128 97 04 7,5 8,0 9

Dimension see also Annex B12

Table C12.1: Installation parameters

(Pre-positioned anchorage with perforated sleeve SWEYTEC H K)

Anchor rod	M6	M8	-		M8	M10	M8	M10	5 -	-		M16	M12	M16
Internal threaded anchor SWEYTEC E		-	M6 M8			=	-		M10	0.000		-	ę	
SWEYTEC H K	12	x85	35 16		x85		16x	16x130		20:	x85		20x	130

Anchor rod and internal threaded anchor SWEYTEC E with perforated sleeve SWEYTEC H K

Max.	D1—95.	20200000		
installation	max T _{inst}	[Nm]	2	4
torque				

General installation parameters

Edge distance	C _{min} = C _{cr}	100
Specing	s _{min} II s _{cr} II [mm]	250
Spacing	S _{min} ⊥ S _{cr} ⊥	245

Drilling method

Hammer drilling with hard metal hammer drill

Table C12.2: Group factors

Anchor r	od	M6	M8	M8	M10	M8	M10	M12	M16	M12	M16
SWEYTE	12:	x85	16:	x85	16x	130	20:	x85	20x130		
Group factors	$\begin{array}{c} \alpha_{g,N} \left(s_{min} \ II \right) = \\ \underline{\alpha_{g,V} \left(s_{min} \ II \right)} \\ \overline{\alpha_{g,N} \left(s_{min} \ \bot \right)} = \\ \alpha_{g,V} \left(s_{min} \ \bot \right) \end{array} [-]$:	2				

Injection system SWEYTEC IMS for masonry	
Performance Vertical perforated brick filled with mineral wool, dimensions, installation parameters, Group factors	Annex C12

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Vertical perforated brick filled with mineral wool, EN 771-1:2011+A1:2015

Table C13.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Pre-positioned anchorage)

Anchor rod	М6	M8		•	M8	M10	M8	M10	-		M12 N	116	M12	M16	M12	M16
Internal threaded anchor SWEYTEC E		-		M8 (85		-	-		M10 15x				-		,	-
Perforated sleeve SWEYTEC H K	12	12x85		16x	6x85		16x130			20x8	85		20x	130	20x	200

N _{Rk} = N _{Rk,p} = N _{Rk,b} = N _{Rk,p,c} = N _{Rk,b,c} [kN]; temperature range 50/80°C											
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions										
10 / 8 N/mm²	w/w	2,0	1,5	2,5	2,0	2,0	3,0				
10 / 3 14/11111	d/d	2,0	2,0	3,0	2,0	2,0	3,0				

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

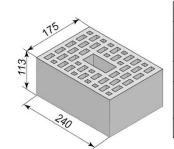
Factor for job site tests and displacements see annex C21.

Table C13.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Pre-positioned anchorage)

Anchor rod	M6	M8	,		M8	M10	M8	M10			M12	M16	M12	M16	M12	M16
Internal threaded anchor SWEYTEC E		-		M8 (85		-		-		M12 c85	-	•	20 -			-
Perforated sleeve SWEYTEC H K	12)	12x85		16x85			16x	16x130 20>		20x	85		20x	130	20x	200

100000000000000000000000000000000000000												
V _{Rk} = V _{Rk,b} = V _{Rk,c,II} = V _{Rk,c,⊥} [kN]; temperature range 50/80°C												
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions											
10 / 8 N/mm²	w/w	2,5	3,0	3,0	3,0	1,5	1,5	1,5	1,5			
10 / 0 14/111111	d/d	2,5	3,0	3,0	3,0	1,5	1,5	1,5	1,5			

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.


Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry
Performance Vertical perforated brick filled with mineral wool, Characteristic resistance under tension and shear loading

Annex C13

Vertical perforated brick HLz, EN 771-1:2011+A1:2015

Producer	e.g. Wienerberger						
Nominal dimensions	[mm]	length L	ength L width W				
	[mm]	≥ 240	≥ 175	≥ 113			
Mean gross dry density ρ	[kg/dm ³]	0,9					
Mean compressive strength / Min. compressive strength single brick 1)	[N/mm ²]	12,5 / 10					
Standard or annex		EN 771	-1:2011+/	41:2015			

21 11 240

Dimension see also Annex B12

Table C14.1: Installation parameters

(Pre-positioned anchorage with perforated sleeve SWEYTEC H K)

Anchor rod	M6	M8	1	-		- M8 M10 M8 M10 - M12 N		M16	M12 M16					
Internal threaded anchor SWEYTEC E		•	M6	M8 x85	-	-	3	-	M10	Several Control		_		8
SWEYTEC H K	12:	x85	35 10		x85		16x130			20:	(85		20x	130

Anchor rod and internal threaded anchor SWEYTEC E with perforated sleeve SWEYTEC H K

Max.			_		
installation	max T _{inst}	[Nm]	2	4	+
torque					

General installation parameters

Edge distance	C _{min} = C _{cr}	100
Consider	s _{min} II s _{cr} II [mm	240
Spacing	s _{min} ⊥ s _{cr} ⊥	115

Drilling method

Hammer drilling with hard metal hammer drill

Table C14.2: Group factors

Anchor r	od	M6	M8	M8	M10	M8	M10	M12	M16	M12	M16	
SWEYTE	CHK	12:	x85	16:	x85	16x	130	20:	x85	20x130		
Group factors	$\begin{array}{c} \alpha_{g,N} \left(s_{min} \ II \right) = \\ \underline{\alpha_{g,V} \left(s_{min} \ II \right)} \\ \overline{\alpha_{g,N} \left(s_{min} \ \bot \right)} = \\ \alpha_{g,V} \left(s_{min} \ \bot \right) \end{array} [-]$:	2					

Injection system SWEYTEC IMS for masonry	
Performance Vertical perforated brick HLz, dimensions, installation parameters, Group factors	Annex C14

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Vertical perforated brick HLz, EN 771-1:2011+A1:2015

Table C15.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Pre-positioned anchorage)

Anchor rod	M6	M8	-		M8	M10	M8	M10		-	M12	M16	M12	M16
Internal threaded anchor SWEYTEC E		-	M6 11x	M8 85		-		-	(Alternatives)	M12 x85		•	-	
Perforated sleeve SWEYTEC H K	12	x85		16	8x85		16x	130		20:	x85		20x	130

 $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN]; temperature range 50/80°C Mean compressive strength Use / Min. compressive strength consingle brick 1) ditions w/w 3,5 4,0 4,5 4,5 4.0 12,5 / 10 N/mm² d/d 4,0 4,5 5,0 5,0 4,0

Factor for job site tests and displacements see annex C21.

Table C15.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Pre-positioned anchorage)

Anchor rod	M6	M8	7-	0	M8	M10	M8	M10	-	M12	M16	M12	M16
Internal threaded anchor SWEYTEC E		■ 1:	M6 11x	M8 85		-1	11	-	 M12 x85		-	1-	
Perforated sleeve SWEYTEC H K	12>	(85		16	x85		16x	130	20:	x85		20x	130

$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,}$	$_{\perp}$ [kN]; te	mper	ature	rang	ge 50	/80°C									
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions														
12,5 / 10 N/mm ²	w/w	4,0	5,5	4,0	5,5	5,5	7,0	5,5	7,0	7,0	6,0	6,0	8,0	6,0	8,0
12,37 10 14/111111	d/d	4,0	5,5	4,0	5,5	5,5	7,0	5,5	7,0	7,0	6,0	6,0	8,0	6,0	8,0

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry	
Performance Vertical perforated brick HLz, Characteristic resistance under tension and shear loading	Annex C15

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015 Producer length L width W height H Nominal dimensions [mm] 362 240 240 Mean gross dry density ρ [kg/dm³] ≥ 1,0 Mean compressive strength / Min. 240 2,5/2 or 5/4 [N/mm²]compressive strength single brick 1) Standard or annex EN 771-3:2011+A1:2015 37 Dimension see also 240 Annex B12 88 76 37 -**Table C16.1:** Installation parameters 362 (Pre-positioned anchorage with perforated sleeve SWEYTEC H K) M8 M10 M8 M10 M12 M16 M12 M16 M12 M16 Anchor rod M6 M8 M6 M8 M6 | M8 M10 M12 Internal threaded anchor SWEYTEC E 15x85 11x85 SWEYTEC H K 12x50 20x130 20x200 12x85 16x85 16x130 20x85 Anchor rod and internal threaded anchor SWEYTEC E with perforated sleeve SWEYTEC H K Max. installation max Tinst | [Nm] 2 torque General installation parameters Edge distance Cmin = Ccr 60 $s_{\text{min}} \, II$ 100 [mm] scr II 362 Spacing 240 $s_{min} \perp = s_{cr} \perp$ **Drilling method** Hammer drilling with hard metal hammer drill 1) The compressive strength of the single brick must not be less than 80% of the mean compressive strength. **Table C16.2:** Group factors M8 M10 M8 M10 M12 M16 M12 M16 M12 M16 Anchor rod M6 M8 M6 M8 M10 M12 M6 | M8 Internal threaded anchor SWEYTEC E 15x85 11x85 SWEYTEC H K 20x130 20x200 12x50 12x85 16x85 16x130 20x85 1,2 αg,N (Smin II) αg, v (Smin II) 1,1 Group [-] factors $\alpha_{\text{g,N}}$ (s_{min} \perp) 2,0 $\alpha_{g,V}$ (Smin \perp) Injection system SWEYTEC IMS for masonry Annex C16 Performance Light-weight concrete hollow block Hbl, dimensions, installation parameters, Group factors

Light-weight concrete hollow block Hbl, EN 771-3:2011+A1:2015

Table C17.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Pre-positioned anchorage)

Anchor rod	M6	M8	М6	M8		•	M8	M10	M8	M10	-	M12	M16	M12	M16	M12	M16
Internal threaded anchor SWEYTEC E				-	M6 11)	M8 (85	-			-	 M12 x85	I	•	-			-
Perforated sleeve SWEYTEC H K	12>	(50	12	x85		16>	(85		16x	(130	202	ĸ85		20x	130	20x	(200

$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N$	Rk,b,c [kN	; tempe	rature range 50/80°C			
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions					
2,5 / 2 N/mm ²	w/w w/d	1,2		1,5		2,5
2,5 / 2 N/IIIII	d/d	1,2		1,5		2,5
5 / 4 N/mm ²	w/w w/d	2,0		3,0		5,0
5 / 4 N/IIIII	d/d	2,5		3,0		5,5

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Table C17.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Pre-positioned anchorage)

S. Control of the Con																
Anchor rod	М6	M8	М6	M8			М8	M10	M8	M10	-	M12	M16	M12	M16	M12 M16
Internal threaded anchor SWEYTEC E		•		-	M6 11)	M8 (85		-		-	 M12 x85	I	-	-	•	
Perforated sleeve SWEYTEC H K	12	<50	12:	x85		16)	(85		16>	c130	202	ĸ85		20x	130	20x200

$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [k]	l]; tempe	erature range 50/80°C
Mean compressive strength / Min. compressive strength single brick 1)	Use con- ditions	
2,5 / 2 N/mm²	w/w w/d d/d	0,9
5 / 4 N/mm²	w/w w/d d/d	2,0


¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry	
Performance Light-weight concrete hollow block Hbl, Characteristic resistance under tension and shear loading	Annex C17

Autoclaved aerated concrete (cylindrical drill hole), EN 771-4:2011+A1:2015

Producer		e.g. Ytong
Mean gross dry density $ ho$	[kg/dm ³]	0,35
Mean compressive strength / Min. compressive strength single brick 1)	[N/mm²]	2,5 / 2
Standard or annex		EN 771-4:2011+A1:2015

Table C18.1: Installation parameters

11000 60		-	4000	20.000			\$220,042.5	100000	NAME OF THE PERSON NAME OF THE P	Section 1	265.554.7	10/8/4	1		1	
Anchor ro	od		IV	16	IV	18	M	10	M	12	M	16	·-			•
Internal th	hreaded anchor		-			V=0		_		_				M8	M10	M12
SWEYTE	CE				_		-		-		-		11x	85	15	k 85
Anchor rod and internal threaded anchor SWEYTEC E with								hout _l	perfo	rated	sleeve	9				
Effective anchorage	e depth h _{ef}	[mm]	100	200	100	200	100	200	100	200	100	100 200 85			5	
Max. insta torque	Illation max T _{inst}	[Nm]	1	4	1	8	2	12	2	16	2	20	1		2	2
General in	nstallation paraı	meter	S									,	`		i.i.	
Edge dista	ance $c_{min} = c_{cr}$								10	00						
	$s_{cr} \parallel = s_{min} \parallel$								2	50						
	h _{ef} =200mm	122							8	0						
8	s _{min} II	[mm]														
	h _{ef} =200mm								3x	h _{ef}						
Spacing	Scr II															
	$s_{cr} \perp = s_{min} \perp$								2	50						
	h _{ef} =200mm								8	0						
	S _{min} ⊥															
	h _{ef} =200mm s _{cr} ⊥								3x	h _{ef}						

Drilling method

Hammer drilling with hard metal hammer drill

Injection system SWEYTEC IMS for masonry

Performance
Autoclaved aerated concrete (cylindrical drill hole), dimensions, installation parameters

Annex C18

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C19.1:	Group factors for autoclaved aerated concrete
	(Min. compressive strength single brick = 2 N/mm ²)

Anchor	rod	M6	M8	M10	M12	M16	-	-
Internal threaded anchor SWEYTEC E		_	_	_	_	_	M6 M8	M10 M12
		_	_	-	-	_	11x85	15x85
	h _{ef} =200 $\alpha_{g,N}$ (S _{min} II)			1,6			_1)	_1)
	h _{ef} =200 α _{g,V} (s _{min} II)			_1)	_1)			
Group	$\alpha_{g,N} \parallel, \alpha_{g,V} (s_{min} \parallel)$ [-]				2,0			
factors	h _{ef} =200 α _{g,N} (s _{min} ⊥)			1,6			_1)	_1)
	h _{ef} =200 $\alpha_{g,V}$ ($\mathbf{s}_{min} \perp$)			_1)	_1)			
	$\alpha_{g,N} \perp, \alpha_{g,V} (s_{min} \perp)$				2,0			

¹⁾ No performance assessed.

Injection system SWEYTEC IMS for masonry

Performance
Autoclaved aerated concrete (cylindrical drill hole), Group factors

Annex C19

Autoclaved aerated concrete (cylindrical drill hole), EN 771-4:2011+A1:2015

Table C20.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M6	M8	M10	M12	M16		-7	11	-
Internal threaded					-	M6	M8	M10	M12
anchor SWEYTEC E	-	-	-	-		11)	(85	15	x85

$N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c}$	N _{Rk} = N _{Rk,p} = N _{Rk,b} = N _{Rk,p,c} = N _{Rk,b,c} [kN]; temperature range 50/80°C												
Mean compressive	Use		Effective anchorage depth hef [mm]										
strength / Min. compressive strength single brick ¹⁾	con- ditions	100	200	100	200	100	200	100	200	100	200	8	5
2,5 / 2 N/mm ²	w/w w/d	1,2	1,2	1,5	2,0	1,5	3,0	1,5	3,0	2,0	3,0	1,5	1,5
2,5 / 2 N/IIIII ⁻	d/d	1,5	3,0	1,5	3,0	1,5	3,5	2,0	4,0	2,0	4,0	1,5	1,5

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Table C20.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	M6	M8	M10	M12	M16	-		-	
Internal threaded	0000	6270	575	5000	600	М6	M8	M10	M12
anchor SWEYTEC E	-	-	-		-	11)	k 85	15	x85

$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,}$	V _{Rk} = V _{Rk,b} = V _{Rk,c,II} = V _{Rk,c,⊥} [kN]; temperature range 50/80°C												
Mean compressive	Use		r s			Effecti	ive an	chora	ge de	pth h	ef [mm]	
strength / Min. compressive strength single brick 1)	con- ditions	100 200 100 200 100 200 100 200 100 200 85											
2,5 / 2 N/mm²	w/w w/d d/d	1,2	1,2	1,2	1,2	1,2	1,2	1,5	1,2	1,2	1,2	1,2	1,5

¹⁾ The compressive strength of the single brick must not be less than 80% of the mean compressive strength.

Factor for job site tests and displacements see annex C21.

Injection system SWEYTEC IMS for masonry	
Performance	Annex C20
Autoclaved aerated concrete (cylindrical drill hole),	
Characteristic resistance under tension and shear loading	

β -factors for job site tests; displacements

Table C21.1: β-factors for job site tests

use conditions		w/w and w/d	d/d
temperature range [°C]		50/80	50/80
Material	Size	β- fac	tor
	M6	0,55	
	M8	0,57	
	M10	0,59	
solid units	M12 SWEYTEC E 11x85	0,60	0,96
	M16 SWEYTEC E 15x85	0,62	
	SWEYTEC H 16x85 K	0,55	
hollow units	all sizes	0,86	0,96
Autoclaved aerated concrete cylindrical drill hole	all sizes	0,73	0,81

Table C21.2: Displacements

Material	N [kN]	δN ₀ [mm]	δ N ∞ [mm]		V [kN]	δ V 0 [mm]	δV∞ [mm]
solid units and autoclaved aerated concrete he∈100mm	N _{Rk} 1,4 * γ _{Mm}	0,03	0,06		V _{Rk}	0,82	0,88
hollow units	N _{Rk} 1,4 * γ _{Mm}	0,48	0,06		V _{Rk} 1,4 * γ _{Mm}	1,71	2,56
solid brick Mz NF annex C4 - C7	NRk 1,4 * γ _{Mm}	0,74	1,48		V _{Rk} 1,4 * γ _{Mm}	1,23	1,85
AAC h _{ef} =200 mm annex C18 - C20	N _{Rk} 1,4 * γ _{Mm}	1,03	2,06		V _{Rk} 1,4 * γ _{Mm}	1,25	1,88

For anchorage in autoclaved aerated concrete, the partial factor γ_{MAAC} shall be used instead of γ_{Mm} .

Injection system SWEYTEC IMS for masonry	
Performance β-factors for job site tests; displacements	Annex C21