

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0099 of 31 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	TILCA Chemical Anchor VZ-P
Product family to which the construction product belongs	Bonded anchor for use in concrete
Manufacturer	EFCO Befestigungstechnik AG Grabenstraße 1 8606 NÄNIKON SCHWEIZ
Manufacturing plant	Werk 1, Deutschland
This European Technical Assessment contains	22 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-02-0601, Edition 12/2023

Page 2 of 22 | 31 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The "TILCA TILCA Chemical Anchor VZ-P-P" is a bonded fastener consisting of a resin anchor capsule VZ-P and an anchor rod V-A or an internally threaded anchor rod VZ-IG.

The resin anchor capsule VZ-P is placed in the hole and the anchor rod V-A or the internally threaded anchor rod VZ-IG is driven by machine as specified in Annex B6 and B7. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1, C2, C5, B2, B3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C3, C6
Displacements under short-term and long-term loading	See Annex C7
Characteristic resistance for seismic performance category C1	See Annex C4
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire No performance assesse		

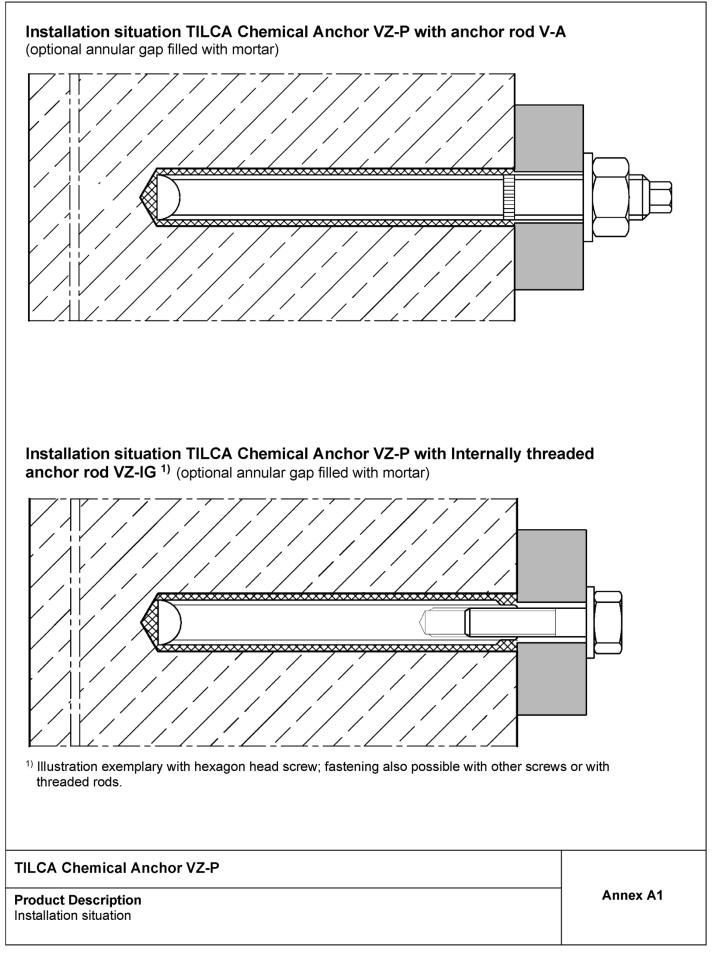
3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

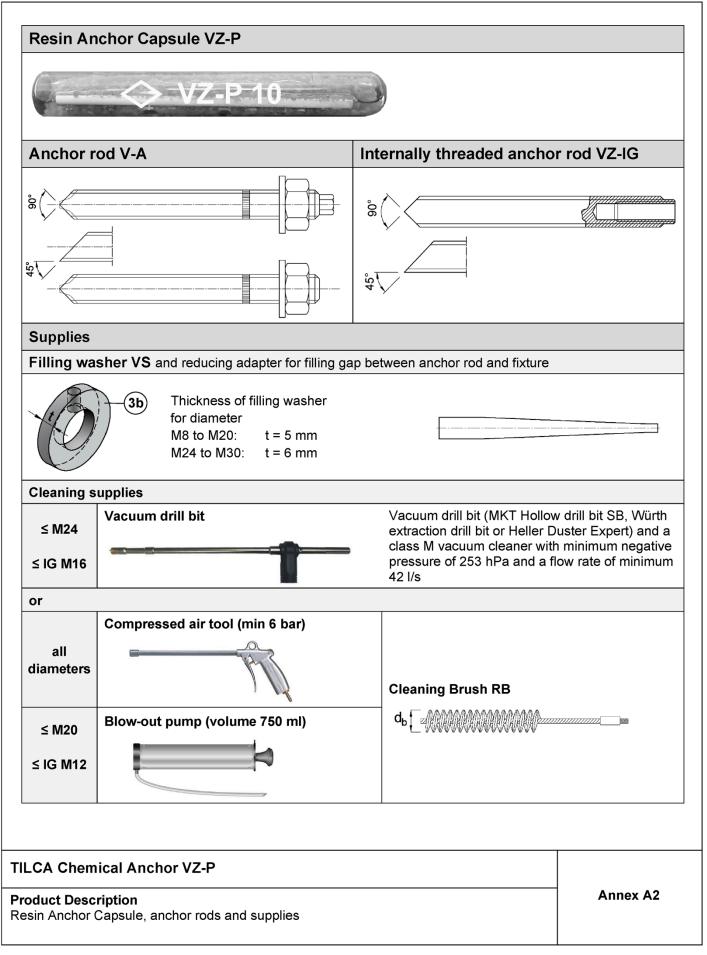
Page 4 of 22 | 31 March 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

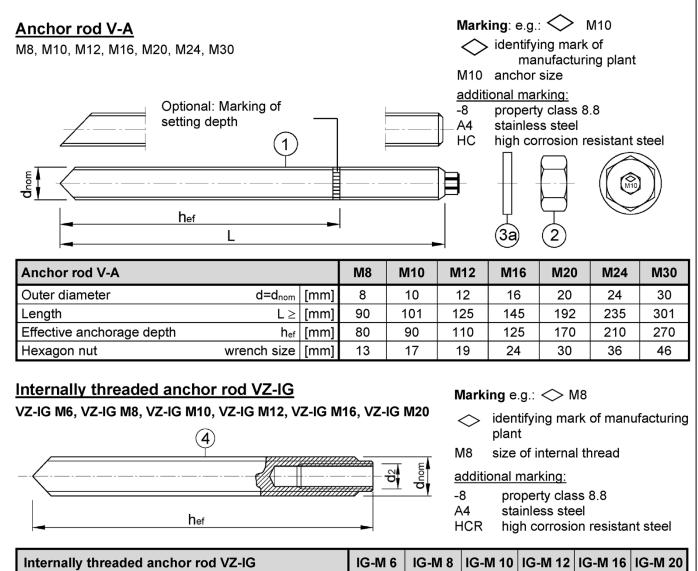
In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 31 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider



Internally threaded anchor rod VZ-IG			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Outer diameter of threaded rod	$d=d_{nom}$	[mm]	10	12	16	20	24	30
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Minimum screw in-depth	lig	[mm]	8	8	10	12	16	20
Effective anchorage depth	h _{ef}	[mm]	90	110	125	170	210	270

Requirements for fastening screws or threaded rods (incl. nut and washer):

These must at least correspond to the material and strength class of the internally threaded anchor rod used.

Material:

- Steel, zinc plated: Minimum property class 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
- Stainless steel A4 or high corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506-1:2020 or EN ISO 3506-2:2020

TILCA Chemical Anchor VZ-P

Product Description Marking Annex A3

Table A1: Materials

Part	Designation		Materials				
electi hot-d	ip galvanized ≥ 50 μ Ε	m average N ISO 106	84:2004+AC	kness accord	-	SO 1461:2009 a	and
		Property class	characteris	stic ultimate ngth	characte	eristic yield ength	fracture elongation
1	Anchor rod	5.8	f _{uk}	500	f _{yk}	400	A ₅ > 8 %
		8.8	[N/mm²]	800	[N/mm ²]	640	A₅ ≥ 12 %
		5	for class 5.8	anchor rods	5		
2	Hexagon nut	8	for class 5.8	3, 8.8 anchor	rods		
3a	Washer		steel, zinc p	lated			
3b	Filling washer		steel, zinc p	lated			
4	Internally threaded	5.8		-1			in e d
4	anchor rod	8.8		stee	el, electropia	ated or sherardi	Izea
acc. t	o EN 10088:2014	Property class		stic ultimate		tic steel yield ength	fracture elongation
1	Anchor rod	50		500		210	A ₅ > 8 %
-		70	f _{uk} [N/mm²]	700	f _{yk} [N/mm²]	560	A₅ ≥ 12 %
	80		800		640	A₅ ≥ 12 %	
		50	for class 50	anchor rods	·	·	
2	Hexagon nut	70	for class 50	, 70 anchor r	ods		
		80	for class 50	, 70, 80 anch	or rods		
3a	Washer		stainless ste high corrosi	eel A4; on resistant :	steel HCR		
3b	Filling washer		stainless ste high corrosi	eel A4; on resistant :	steel HCR		
4	Internally threaded	50	IG-M20		stainless s high corros	teel A4; sion resistant sl	teel HCR
4	anchor rod	70	IG-M6 bis I	G M20	stainless s high corros	teel A4; sion resistant st	teel HCR
Glass	s capsule				1		
5	Resin Anchor Caps	ule	glass, quart	z, resin, harc	lener		
	1		1				
	Chemical Ancho	r VZ-P					Annex A4
r odu lateria	ct Description al						Alliex A4

Specifications of intended use					
TILCA Chemical Anchor VZ-P with	Anchor rod V-A	Internally threaded anchor rod VZ-IG			
Static or quasi-static action	M8 to M30	IG-M6 to IG-M20			
Seismic action, performance category C1	M8 to M30 ¹⁾	no performance assessed			
		nforced normal weight concrete EN 206:2013+A1:2016			
Base materials	strength classes C20/25 to C50/6	0, acc. to EN 206:2013+A1:2016			
	cracked or unc	acked concrete			
Temperature range I -40°C to +40°C	max long-term temperature +24°C; max short-term temperature +40°C				
Temperature range II -40°C to +80°C	max long-term temperature +50°C; max short-term temperature +80°C				
-					

¹⁾ M30: property class 8.8 and A4/ HCR property class \ge 70

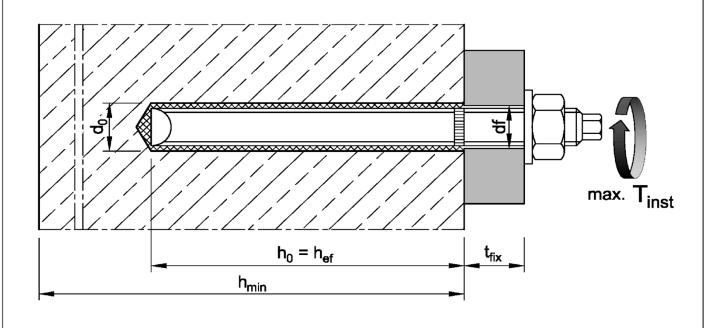
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions
- For all other conditions according to EN 1993-1-4:2006+A1:2015, corresponding to corrosion resistance classes CRC according to Annex A4, Table A1

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

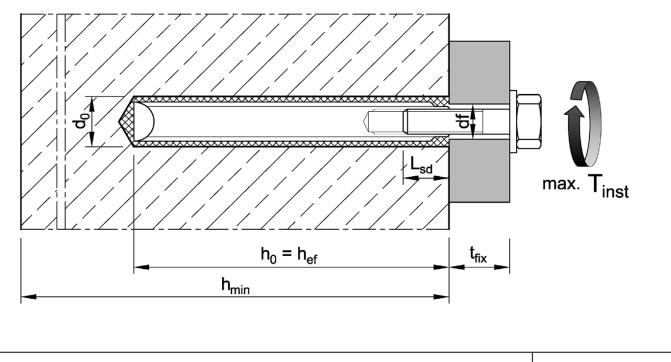
Installation:


- Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling (see Annex A2)
- Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation
- Installation temperature in concrete:
 -20°C up to +40°C for the standard variation of temperature after installation.
- Optionally, the annular gap between anchor rod and attachment can be backfilled. In this case, the washer is replaced by the filling washer (Part 3b, Annex A2). MKT injection mortars VMH, VMU plus, VMZ or other high-strength injection mortars with a compressive strength ≥ 40N/mm² can be used for backfilling.
- <u>Internally threaded anchor rods</u>: Bolts or threaded rod (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod that is used. The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length and the minimum screw-in depth L_{sd,min}.

TILCA Chemical Anchor VZ-P

Intended Use Specifications

Table B1: Installation parameters for anchor rods V-A									
Anchor rod V-A			M8	M10	M12	M16	M20	M24	M30
Resin Anchor Capsule			VZ-P 8	VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20	VZ-P 24	VZ-P 30
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20	24	30
Nominal diameter of drill hole	do	[mm]	10	12	14	18	22	28	35
Depth of drill hole	ho	[mm]	80	90	110	125	170	210	270
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	270
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	33
Cleaning Brush		[-]	RB 10	RB 12	RB 14	RB 18	RB 22	RB 28	RB 35
Diameter of Cleaning Brush	d₅≥	[mm]	10,5	12,5	14,5	18,5	22,5	28,5	35,5
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	150	200	300
Minimum member thickness	\mathbf{h}_{min}	[mm]	110	120	140	160	220	270	340
Minimum edge distance	Cmin	[mm]	40	45	45	50	55	60	80
Minimum spacing	Smin	[mm]	40	50	60	75	90	115	140

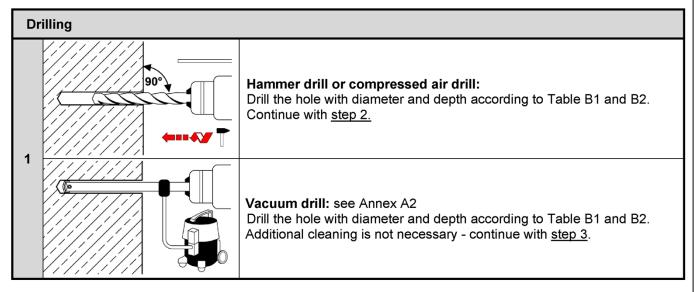

TILCA Chemical Anchor VZ-P

Intended Use Installation parameters – Anchor rod V-A

Table D2. Installation parameters for internally threaded anchor rods v2-16								
Internally threaded anchor rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Resin Anchor Capsule		VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20	VZ-P 24	VZ-P 30	
Outer diameter of threaded rod	$d=d_{nom}$	[mm]	10	12	16	20	24	30
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Nominal drill hole diameter	do	[mm]	12	14	18	22	28	35
Depth of drill hole	h₀	[mm]	90	110	125	170	210	270
Effective anchorage depth	h _{ef}	[mm]	90	110	125	170	210	270
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18	22
Cleaning Brush		[-]	RB 12	RB 14	RB 18	RB 22	RB 28	RB 35
Diameter of Cleaning Brush	d₀ ≥	[mm]	12,5	14,5	18,5	22,5	28,5	35,5
Minimum screw-in depth	$L_{sd,min}$	[mm]	8	8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Minimum member thickness	\mathbf{h}_{min}	[mm]	120	140	160	220	270	340
Minimum edge distance	Cmin	[mm]	45	45	50	55	60	80
Minimum spacing	Smin	[mm]	50	60	75	90	115	140

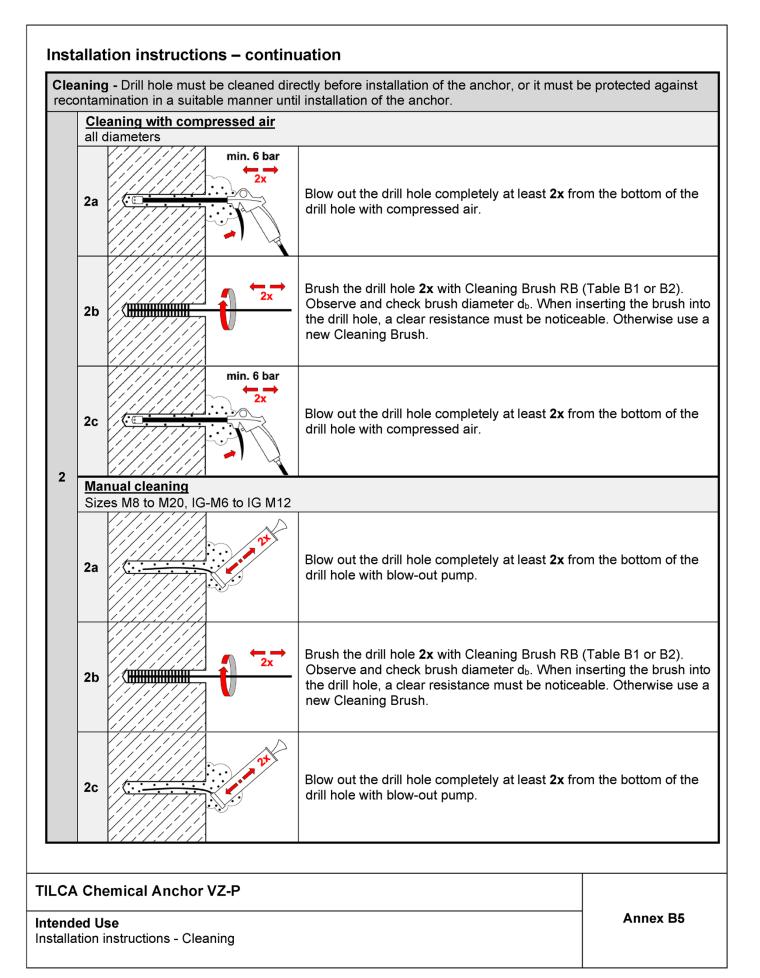
Table B2: Installation parameters for internally threaded anchor rods VZ-IG

TILCA Chemical Anchor VZ-P


Intended Use Installation parameters – Internally threaded anchor rod VZ-IG

able B3: Curing time					
Concrete t	empe	rature ¹⁾	Minimum curing time		
-20°C	to	-16°C	17 h		
-15°C	to	-11°C	7 h		
-10°C	to	-6°C	4 h		
-5°C	to	-1°C	3 h		
0°C	to	+4°C	50 min		
+5°C	to	+9°C	25 min		
+10°C	to	+19°C	15 min		
+20°C	to	+29°C	6 min		
+30°C	to	+40°C	6 min		
Capsule	tempe	rature	-15°C to +40°C		

¹⁾ for the standard variation of temperature after installation


Installation instructions

TILCA Chemical Anchor VZ-P

Intended Use Curing time / Installation instructions - drilling

nstallation instructions - continuation						
3		Check the depth of drill hole. If necessary, mark an anchor rods. Insert the capsule into the drill hole.	choring depth on the			
4		Drive in the anchor rod using a hammer drill set on immediately after reaching the setting depth.	rotary impact. Stop			
5		Observe curing time according to Table B3. Do not anchor until it is fully cured.	move or load the			
6		Remove excess adhesive.				
7	T _{inst}	Install fixture and apply installation torque T _{inst} acco	rding to Table B1.			
8		The annular gap between anchor rod and fixture ma with mortar (see Annex B1). Therefore, replace reg washer (note thickness of the filling washer) and plu adapter on static mixer. Annular gap is completely filled, when excess morta	ular washer by filling ug on reducing			
end	A Chemical Anchor VZ-P led Use ation instructions – Inserting anch	or rod V-A	Annex B6			

nse	erting the internally threade	d anchor rod VZ-IG	
3		Check the depth of drill hole. Insert the capsule into the drill hole.	
4		Screw the setting tool into the internally threaded stop. Drive in the internally threaded anchor rod to rotary impact. Switch off the hammer drill immediately after read	with a hammer drill set
5		Observe curing time according to Table B3. Do n anchor and don't remove the setting tool until it is	
6		Remove excess adhesive and unscrew the settin	g tool.
7	Tinst	The fixture can be mounted with threaded rod, nu Apply the installation torque T _{inst} according to Ta	
8		The annular gap between threaded rod or screw optionally be filled with mortar (see Annex B1). T regular washer by filling washer or assemble it o thickness of filling washer and minimum screw-in reducing adapter on static mixer and fill annular filled, when excess mortar seeps out.	herefore, replace n the screw (observe depth). Plug on
СА	Chemical Anchor VZ-P		Annex B7

Table C1: Characteristic steel resistance under tension load for anchor rods V-A

Anchor rod V-A				M8	M10	M12	M16	M20	M24	M30 ²⁾
Steel failure										
Characteristic resistance	under tension load				_					
Steel,	Property class 5.8	NRk,s	[kN]	18	29	42	79	123	176	280
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	448
Stainless steel / high	Property class 70	NRk,s	[kN]	26	41	59	110	172	247	392
corrosion resistant steel	Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_ 3)
Partial factor ¹⁾						<u>.</u>		·		
Steel,	Property class 5.8	γMs,N	[-]				1,5			
zinc plated	Property class 8.8	γMs,N	[-]				1,5			
Stainless steel / high	Property class 70	γMs,N	[-]	1,5						
corrosion resistant steel	Property class 80	γMs,N	[-]	1,5						

¹⁾ In absence of other national regulations

 $^{2)}$ M30 A4/HCR also in strength class 50 with $N_{\text{Rk},\text{s}}$ = 281 kN and $\gamma_{\text{Ms},\text{N}}$ = 2,86

³⁾ Anchor type not part of the ETA

Table C2: Characteristic steel resistance under shear load for anchor rods V-A

Anchor rod V-A				M8	M10	M12	M16	M20	M24	M30 ²⁾
Characteristic resistance	es under shear load				•			•	•	
Steel failure without leve	er arm									
Steel,	Property class 5.8	$V^0_{Rk,s}$	[kN]	11	17	25	47	73	106	168
zinc plated	Property class 8.8	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	224
Stainless steel / high	Property class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	123	196
corrosion resistant steel	Property class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	- ³⁾
Steel failure <u>with</u> lever a	rm									
Steel,	Property class 5.8	M ⁰ Rk,s	[Nm]	19	37	65	166	325	561	1124
zinc plated	Property class 8.8	M ⁰ Rk,s	[Nm]	30	60	105	266	519	898	1799
Stainless steel / high	Property class 70	M ⁰ Rk,s	[Nm]	26	52	92	233	454	785	1574
corrosion resistant steel	Property class 80	M⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	_ 3)
Partial factor ¹⁾										
Steel,	Property class 5.8	γMs,V	[-]				1,25			
zinc plated	Property class 8.8	γMs,V	[-]				1,25			
Stainless steel / high	Property class 70	γMs,V	[-]				1,25			
corrosion resistant steel	Property class 80	γMs,V	[-]				1,25			
 In absence of other nati M30 A4/HCR also in str Anchor type not part of 	ength class 50 with V_{Rk}	_s = 140 k	N; M ^o rk	_{a,s} = 1124	1 Nm anc	I γ _{Ms,V} =2	,38			

TILCA Chemical Anchor VZ-P

Performances	

Characteristic steel resistance under tension and shear load for anchor rods V-A

Г

Anchor rod V-A				M8	M10	M12	M16	M20	M24	M30
Steel failure						I	1			
Characteristic resist	ance under tension	load								
Characteristic tension	resistance	N _{Rk,s}	[kN]			se	e Table	C1		
Partial factor		γMs,N	[-]			se	e Table	C1		
Combined pull-out a	nd concrete failure									
Characteristic bond	resistance in <u>uncrac</u>	<u>ked</u> co	ncrete C2	0/25						
Temperature range I:	+24°C / +40°C	$ au_{Rk,ucr}$	[N/mm²]	8,7	11,4	11,4	11,4	11,4	11,3	11,6
Temperature range II:	+50°C / +80°C	$ au_{Rk,ucr}$	[N/mm²]	7,3	9,7	9,7	9,7	9,7	9,5	9,8
Increasing factors for $\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr}(C2)$		Ψc,ucr	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,17}$						
Characteristic bond resistance in <u>cracked</u> concrete C20/25										
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm²]	4,4	5,6	5,9	6,2	6,2	6,4	6,7
Temperature range II:	+50°C / +80°C	τ _{Rk,cr}	[N/mm²]	3,7	4,7	5,0	5,2	5,2	5,4	5,6
Increasing factors for $\tau_{Rk,cr} = \psi_{c,cr} \bullet \tau_{Rk,cr}(C20)$		Ψc,cr	[-]				$\left(\frac{f_{ck}}{20}\right)^{0,14}$	Ļ		
Reduction factor ψ^0_s	us in concrete C20/2	5								
Temperature range I:	+24°C / +40°C	ψ^0 sus	[-]				0,64			
Temperature range II:	+50°C / +80°C	$\psi^0 sus$	[-]				0,63			
Concrete cone failur	e									
Factor for	uncracked concrete	k ucr,N	[-]				11,0			
	cracked concrete	k cr,N	[-]				7,7			
Edge distance		C cr,N	[mm]				1,5 h _{ef}			
Spacing		S cr,N	[mm]				3 h _{ef}			
Splitting failure										
	h/h _{ef} ≥ 2,0						1,0 h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C cr,sp	[mm]			2 ∙ h∈	_{ef} (2,5 - ł	n / h _{ef})		
	h/h _{ef} ≤ 1,3						$2,4 h_{ef}$			
Spacing		S cr,sp	[mm]	2 c _{cr,sp}						
Installation factor		γinst	[-]	1,0						

TILCA Chemical Anchor VZ-P

Performances Characteristic values under tension load for anchor rods V-A

Anchor rod V-A			M8	M10	M12	M16	M20	M24	M30
Steel failure <u>without</u> lever arm			•				1		
Characteristic resistance	[kN]			see	e Table	C2			
Ductility factor	k 7	[-]	1,0						
Partial factor	γMs,V	[-]	see Table C2						
Steel failure <u>with</u> lever arm									
Characteristic bending resistance	M ⁰ Rk,s	[Nm]			see	e Table	C2		
Partial factor	γMs,∨	[-]			see	e Table	C2		
Concrete pry-out failure									
Pry-out factor	k8	[-]				2,0			
Concrete edge failure									
Effective length of anchor	lf	[mm]	80	90	110	125	170	210	270
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 16 20 24 3					30	
Installation factor	γinst	[-]	1,0						

TILCA Chemical Anchor VZ-P

Performances Characteristic values under shear load for anchor rods V-A

Table C5: Characteristic values of tension loads for anchor rods V-A under seismic action, performance category C1

Anchor rod V-A				M8	M10	M12	M16	M20	M24	M30
Steel failure										
Characteristic resistan	ce under tension	load								
Characteristic tension re	sistance	N _{Rk,s,C1}	[kN]			se	N _{Rk,s} e Table	C1		
Partial factor		γMs,N	[-]	see Table C1						
Combined pull-out and	concrete failure									
Characteristic bond re	sistance in concre	ete C20/2	5 to C50/6	60						
Temperature range I:	+24°C / +40°C	τ _{Rk,C1}	[N/mm²]	4,0	4,8	5,4	5,1	6,2	5,9	5,8
Temperature range II:	+50°C / +80°C	τ _{Rk,C1}	[N/mm²]	²] 3,3 4,0 4,6 4,3 5,2 5,0 4,						4,8
Installation factor		γinst	[-]	1,0						

Table C6: Characteristic values of shear loads for anchor rods V-A under seismic action,performance category C1

Anchor rod V-A				M8	M10	M12	M16	M20	M24	M30
Steel failure witho	ut lever arm									
Characteristic resi	stance under shear lo	oad								
Steel,	Property class 5.8	V _{Rk,s,C1}	[kN]	9,0	14,3	20,7	36,3	56,2	81,5	_ 1)
zinc plated	Property class 8.8	V _{Rk,s,C1}	[kN]	12,0	19,0	27,7	48,4	75,5	109,3	177,6
Stainless steel / High corrosion	Property class 70	VRk,s,C1	[kN]	10,5	16,6	24,2	42,3	66,0	94,7	154,9
resistant steel	Property class 80	V _{Rk,s,C1}	[kN]	12,0	19,0	27,7	48,4	75,5	108,7	_ 2)
Partial factor		γMs,∨	[-]			se	e Table	C2		
Factor for	with annular gap	αgap	[-]				0,5			
anchorages	without annular gap	$lpha_{ ext{gap}}$	[-]				1,0			
Installation factor		γinst	[-]	1,0						

¹⁾ No performance assessed

²⁾ Anchor type not part of the ETA

TILCA Chemical Anchor VZ-P

Performances Characteristic values under seismic action, performance category C1 for anchor rods V-A

Table C7: Chara inter	acteristic steel r o mally threaded				ion load	l for				
Internally threaded a	anchor rod VZ-			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure						•		•	•	
Characteristic	Property class 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
resistance, steel, zinc plated	Property class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor 1)		γMs,N	[-]			1,	5			
Characteristic resistance, stainless steel A4 / HCR	Property class 70	N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor 1)		γMs,N	[-]			1,87			2,86	
Combined pull-out a	and concrete failur	e								
Characteristic bond	resistance in <u>uncr</u>			C20/25						
Temperature range I:			[N/mm²]	11,4	11,4	11,4	11,4	11,3	11,6	
Temperature range II:	+50°C / +80°C	$\tau_{Rk,ucr}$	[N/mm²]	9,7	9,7	9,7	9,7	9,5	9,8	
Increasing factors for $\tau_{Rk,ucr}$ $\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr} (C20/25)$ $\psi_{c,ucr}$ [-] $\left(\frac{f_{ck}}{20}\right)^{0,17}$										
Characteristic bond	resistance in <u>crac</u>	<u>ked</u> coi	ncrete C2	20/25						
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm²]	5,6	5,9	6,2	6,2	6,4	6,7	
Temperature range II:	+50°C / +80°C	τ _{Rk,cr}	[N/mm²]	4,7	5,0	5,2	5,2	5,4	5,6	
Increasing factors for		Ψc,cr	[-]			$\left(\frac{f_{ck}}{2a}\right)$				
$\tau_{\text{Rk,cr}} = \psi_{\text{c,cr}} \cdot \tau_{\text{Rk,cr}} (C20/25)$ Reduction factor ψ^{0}_{s}		125				(20	/			
Temperature range I:		25 Ψ ⁰ sus	[-]			0,0	24			
Temperature range II:		Ψ^{0} sus	[-]			0,0				
Concrete cone failur		ψsus				0,	50			
	uncracked concrete	k ucr,N	[-]			11	,0			
Factor for _	cracked concrete	k cr,N	[-]			7	7			
Edge distance		Ccr,N	[mm]				h _{ef}			
Spacing		Scr,N	[mm]				nei			
Splitting failure										
	h/h _{ef} ≥ 2,0					1.0	h _{ef}			
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]			2 • h _{ef} (2,				
	h/h _{ef} ≤ 1,3	,-p					h _{ef}			
Spacing	,	Scr,sp	[mm]	2 C _{cr,sp}						
Installation factor		γinst	[-]				0			
¹⁾ In absence of other r	national regulations									

¹⁾ In absence of other national regulations

²⁾ IG M20: property class 50

TILCA Chemical Anchor VZ-P

Performances

Characteristic values under tension load for internally threaded anchor rods VZ-IG

Internally threaded a	anchor rod VZ-			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without									
Steel,	Property class 5.8	V ⁰ _{Rk,s}	[kN]	6	10	17	25	45	74
zinc plated	Property class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Stainless steel A4 / HCR	Property class 70	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	62 ³⁾
Ductility factor		k 7	[-]			1	,0		
Partial factor ²⁾									
Steel,	Property class 5.8	γMs,V	[-]			1,2	25		
zinc plated	Property class 8.8	γMs,V	[-]			1,:	25		
Stainless steel A4 / HCR	Property class 70	γ̃Ms,∨	[-]			1,56			2,38
Steel failure <u>with</u> lev	ver arm ¹⁾								
Steel,	Property class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
zinc plated	Property class 8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Stainless steel A4 / HCR	Property class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	456 ³⁾
Partial factor ²⁾		_							
Steel,	Property class 5.8	γMs,V	[-]			1,2	25		
zinc plated	Property class 8.8	γMs,V	[-]			1,2	25		
Stainless steel A4 / HCR	Property class 70	γMs,∨	[-]			1,	56		
Concrete pry-out fai	ilure								
Pry-out factor		k ₈	[-]			2	,0		
Concrete edge failu	re								
Effective length of fas	stener	lf	[mm]	90	110	125	170	210	270
Outside diameter of fa	astener	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γinst	[-]	[-] 1,0					

⁷ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ In absence of other national regulations

³⁾ IG M20: Internally threaded rod: property class 50;

Fastening screws or threaded rods (incl. nut and washer): property class 70

TILCA Chemical Anchor VZ-P

Performances Characteristic values under shear load for internally threaded anchor rods VZ-IG

Table C9: Displace	Table C9: Displacements under tension load											
Anchor size			M8	M10 IG-M6	M12 IG-M8	M16 IG-M10	M20 IG-M12	M24 IG-M16	M30 IG-M20			
Displacement factor ¹⁾	for uncrack	ed concrete										
Dianta consent	δ₀₀ -factor	[mm/(N/mm²)]	0,015	0,031	0,035	0,015	0,046	0,060	0,060			
Displacement ·	δ _{N∞} -factor	[mm/(N/mm ²)]	0,085	0,067	0,067	0,067	0,067	0,067	0,067			
Displacement factor ¹⁾	for cracked	concrete										
Dianlagament	δ _{N0} -factor	[mm/(N/mm²)]	0,046	0,038	0,024	0,008	0,024	0,133	0,061			
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,192	0,142	0,090	0,104	0,082	0,069	0,087			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension $\delta_{N1} = \delta_{N1} - factor \cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

Table C10: Displacements under shear load

Anchor size			M8	M10 IG-M6	M12 IG-M8	M16 IG-M10	M20 IG-M12	M24 IG-M16	M30 IG-M20
Displacement factor ¹⁾									
Diaplacement	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03
Displacement	δv∞-factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,04

¹⁾ Calculation of the displacement

V: acting shear load $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

TILCA Chemical Anchor VZ-P

Performances Displacements