

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0120 of 11 April 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / **ULTRA HCR**

Mechanical fasteners for use in concrete

ICCONS 383 Frankston-Dandenong Road Dandenong South VIC 3175 **VICTORIA AUSTRALIEN**

Plant 2, Germany

24 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601-v05, Edition 01/2024

Z090197.25

European Technical Assessment ETA-25/0120

English translation prepared by DIBt

Page 2 of 24 | 11 April 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 11 April 2025

Specific Part

1 Technical description of the product

The ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B3, C1, C2
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C3
Characteristic resistance for seismic performance categories C1 and C2	see Annex C4, C5
Displacements	see Annex C8, C9, C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C6, C7

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

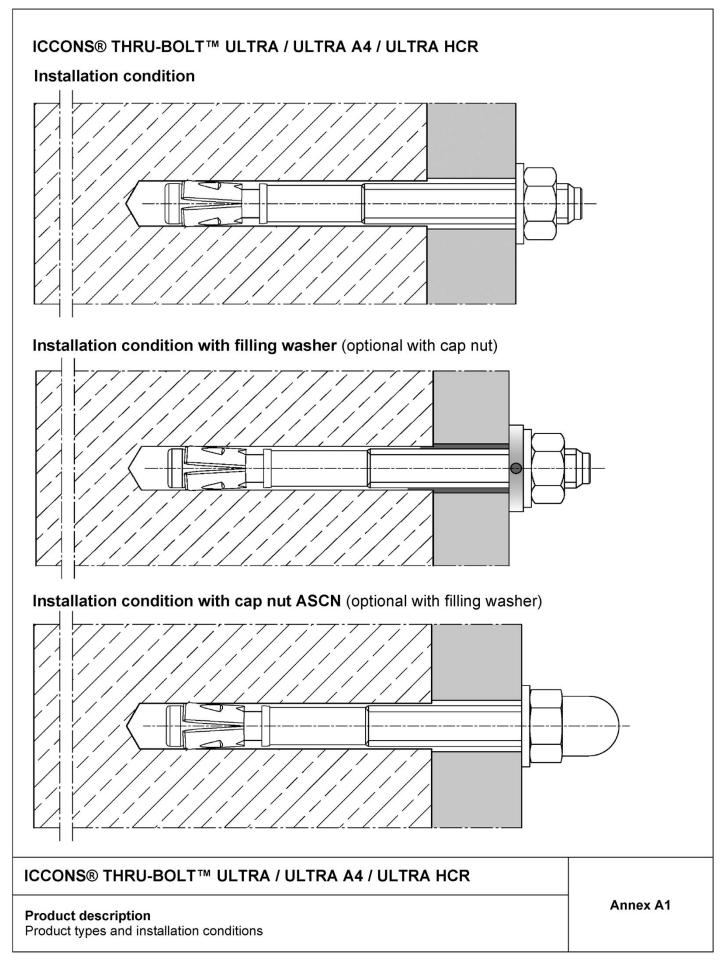
In accordance with the European Assessment Document EAD 330232-01-0601-v05 the applicable European legal act is: 1996/582/EC.

The system to be applied is: 1

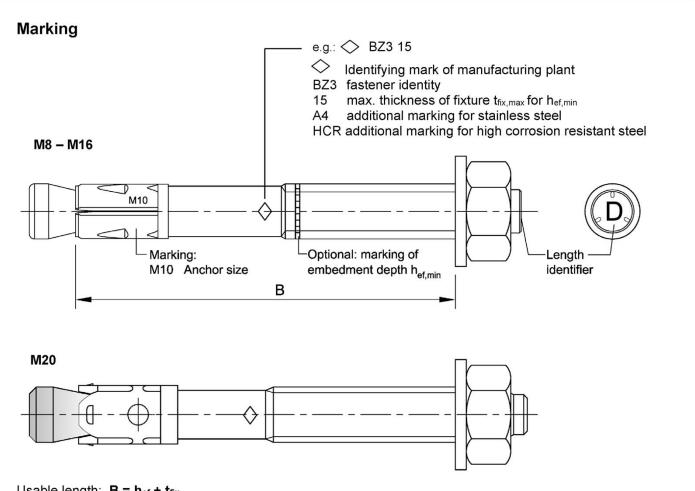
European Technical Assessment ETA-25/0120

English translation prepared by DIBt

Page 4 of 24 | 11 April 2025


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 11 April 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Usable length: B = hef + tfix

(existing) effective anchorage depth hef:

fixture thickness (including e.g. levelling layers or other non-load-bearing layers or t_{fix} :

additional filling washer)

Table A1: Length identification

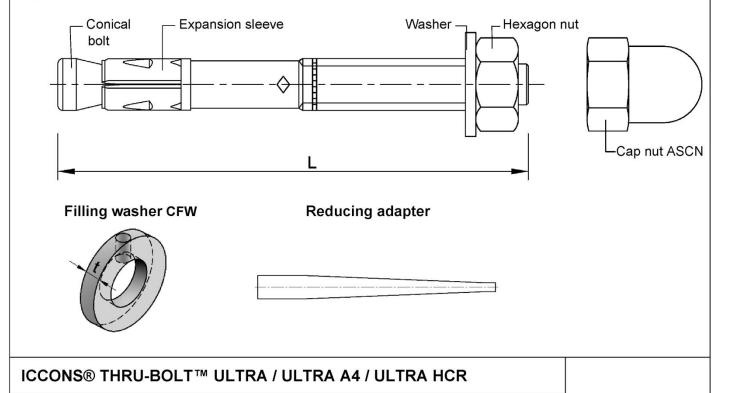
Length identifier	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
Usable length B ≥	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105

Length identifier	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	ВВ	СС	DD
Usable	110	115	120	125	130	135	140	145	150	160	170	180	190	200	210
length B	1														

Length ident	ifier	EE	FF	GG	НН	Ш	JJ	KK	LL
Usable length B	≥	220	230	240	250	260	270	280	290

Dimensions in mm

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Product description Marking	Annex A2


Table A2: Material

	ULTRA	ULTRA A4	ULTRA HCR		
Part	Steel, zinc plated	Stainless steel CRC III	High corrosion resistant steel CRC V		
Conical bolt	Steel, galvanized $\geq 5 \mu m$ fracture elongation $A_5 \geq 8\%$	Stainless steel fracture elongation A₅ ≥ 8%	High corrosion resistant steel fracture elongation $A_5 \ge 8\%$		
Expansion sleeve	Stainless steel	Stainless steel	Stainless steel		
Washer					
Filling washer CFW	Steel, galvanized	Stainless steel	High corrosion resistant		
Hexagon nut	≥ 5 µm	Stainless steel	steel		
Cap nut ASCN					

Table A3: Fastener dimensions

Product description
Material and dimensions

Footoner size		ULTRA / ULTRA A4 / ULTRA HCR								
Fastener size			M8	M10	M12	M16	M20			
Width across hexagon nut / cap nut ASCN	s	[mm]	13	17	19	24	30			
Length of fastener	L	[mm]	h _{ef} + t _{fix} + 18,0	h _{ef} + t _{fix} + 21,5	h _{ef} + t _{fix} + 26,0	h _{ef} + t _{fix} + 33,0	h _{ef} + t _{fix} + 37,0			
Thickness of Filling washer CFW	t	[mm]			5	-				

Z090194.25 8.06.01-34/25

Annex A3

Specifications of intended use

ICCONS® TUBU BOLT™ III TRA	ULTRA / ULTRA A4 / ULTRA HCR								
ICCONS® THRU-BOLT™ ULTRA	M8	M10	M12	M16	M20				
Static or quasi-static action	✓								
Seismic performance categories C1 and C2	✓								
Fire exposure	R30 / R60 / R90 / R120								
Variable, effective anchorage depth	35 mm to 90 mm	40 mm to 100 mm	50 mm to 125 mm	65 mm to 160 mm	90 mm to 140 mm				

Base materials:

- For all anchor sizes: compacted reinforced or unreinforced normal weight concrete according to EN 206:2013+A2:2021
- For anchor sizes M8 to M10: steel fibre reinforced concrete (SFRC) according to EN 206:2013+A2:2021 including steel fibres according to EN 14889-1:2006, clause 5, group I. The maximum content of steel fibres is 80 kg/m³.
- Cracked or uncracked concrete
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015: stainless steel according to Annex A3, Table A2 of this ETA

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018 and Technical Report TR 055:2018

Installation:

- · Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener (exception: when using the cap nut ASCN)
- The anchor can be set in pre- or through-setting installation.
- Optionally, the annular gap between fixture and stud of ULTRA can be filled to reduce the hole clearance.
 For this purpose, the filling washer (Annex A3) must be used in addition to the supplied washer. For filling
 use Injection Adhesive BIS-HY Hybrid Gen2, BIS-V Vinylester or other high-strength injection mortar with
 compressive strength ≥ 40N/mm².

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Intended use Specifications	Annex B1

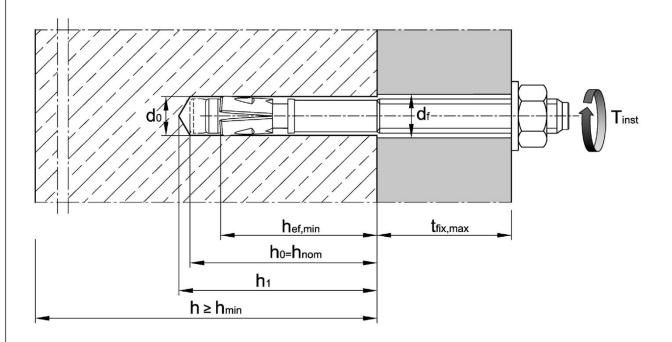


Table B1: Installation parameters

Anchor size					ULTRA / UI	TRA A4 / U	JLTRA HCF	₹
Allchor Size				M8	M10	M12	M16	M20
Nominal drill hole diameter	•	d₀	[mm]	8	10	12	16	20
Cutting diameter of drill bit	Cutting diameter of drill bit d _{cut} ≤		[mm]	8,45	10,45	12,5	16,5	20,55
Minimum effective anchora	Minimum effective anchorage depth hef,min		[mm]	35	40	50	65	90
Maximum effective anchor	age depth	h _{ef,max}	[mm]	90	100	125	160	140
Double of drill halo	= h ₀ ≥	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14	$h_{ef} + 14$ $(h_{ef} + 28)^{1)}$	
Depth of drill hole		h₁≥	[mm]	h _{ef} + 10	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17	$h_{ef} + 17$ $(h_{ef} + 31)^{1)}$
Diameter of clearance hole fixture ²⁾	in the	$d_f \! \leq \!$	[mm]	9	12	14	18	22
Projection after anchor has been inserted for installing with cap nut ASCN (acc. to Annex B7, Figure 3)		С	[mm]	10,5	12,5	16,0	19,5	23,0
Installation ULTRA		T_{inst}	[Nm]	15	40	60	110	160
torque ULTRA A	4/HCR	T _{inst}	[Nm]	15	40	55	100	200

¹⁾ Increased drill hole depth for hammer drilling without borehole cleaning.

²⁾ For larger diameters of clearance hole in the fixture, see EN 1992-4:2018, chapter 6.2.2.2

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Intended use Installation parameters	Annex B2

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances

Anchor size			ULTRA / ULTRA A4 / ULTRA HCR					
			M8	M10	M12	M16	M20	
Minimum member thickness depending on h	h _{min} ≥	[mm]	max (1,5·h _{ef} ; 80)		max (1,5·h _{ef} ;100)	max (1,5·h _{ef} ;120)	max (1,5·h _{ef} ;150)	
Minimum edge distance	s and spac	ings						
Minimum odgo distance	Cmin	[mm]	40	45	55	65	90	
Minimum edge distance	for s ≥	[mm]			see Table B4			
Minimum angoings	Smin	[mm]	35	40	50	65	95	
Minimum spacings	for c ≥	[mm]			see Table B4	,		

The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness:

 $A_{sp,rqd} \leq A_{sp,ef}$

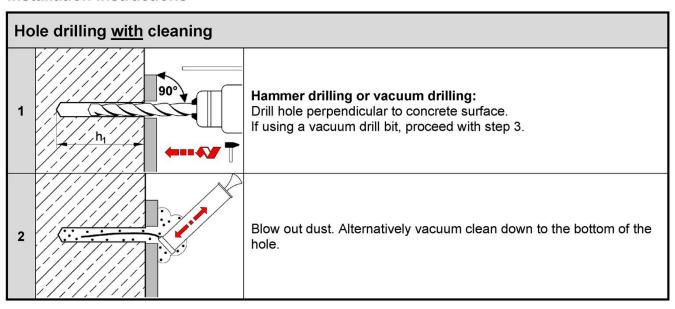
Required splitting area A_{sp,rqd} and idealized splitting area A_{sp,ef} according to Table B4.

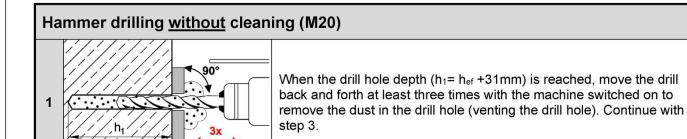
Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp}

Anchor size				ULTRA / ULTRA A4 / ULTRA HCR							
Allelioi Siz	Allchor size				M8 M10 M12 M16 M						
Applicable concrete thickness	ULTRA ULTRA A4 ULTRA HCR	h _{sp}	[mm]	$\min(h; h_{ef} + 1.5 \cdot c \cdot \sqrt{2})$							
Area to	ULTRA	Asp	[mm²]	$\frac{N_{Rk,sp}^0 - 2,573}{0,000436}$	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$	$\frac{N_{Rk,sp}^0 + 2,423}{0,000453}$			
C _{cr,sp} 1)	ULTRA A4 ULTRA HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 4,177}{0,000862}$	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,41}{0,000742}$	$\frac{N_{Rk,sp}^0 + 2,423}{0,000453}$			

¹⁾ With NORK,sp in kN

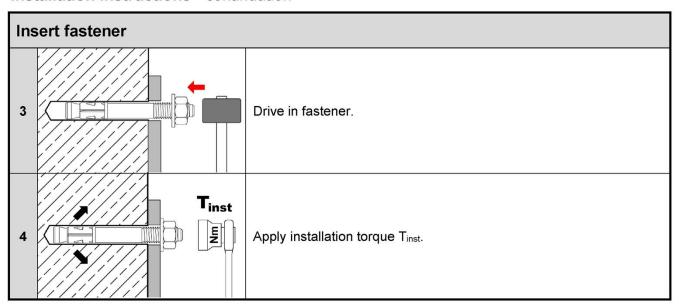
ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Intended use	Annex B3
Minimum spacings and edge distances	
Required area and applicable concrete thickness	


Table B4: Areas to determine spacings and edge distances for installation

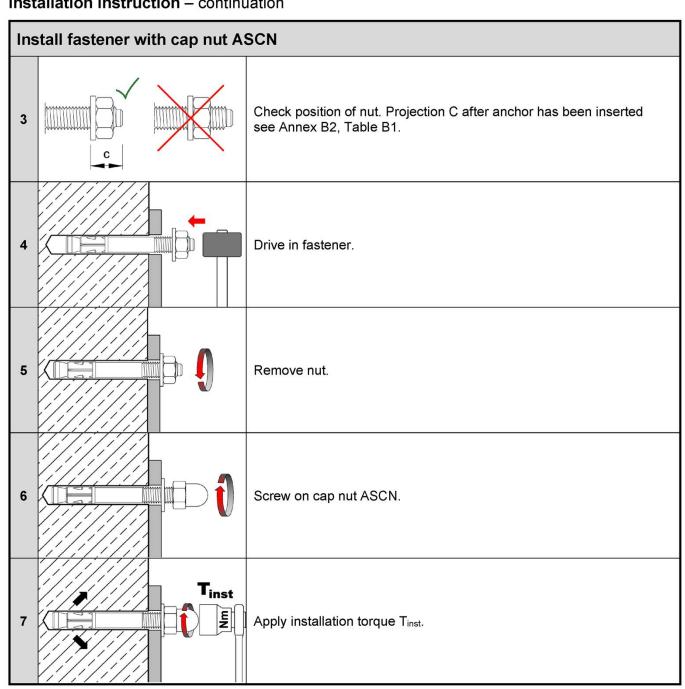

				ULTRA / ULTRA A4 / ULTRA HCR						
Anchor size	Anchor size			M8	M10	M12	M16	M20		
The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness: A _{sp,rqd} ≤ A _{sp,ef}										
Idealized splitting area A _{sp,ef} The edge distances and spacings shall be selected or rounded in steps of 5 mm.										
Member thickness: h > hef + 1,5 · c										
Single anchor	or anchor group wit	h s ≥ 3 ·	С							
Idealized splitting area $A_{sp,ef}$ [mm²] (6·c) · (1,5·c + h _{ef})										
Anchor group (s < 3·c)										
Idealized split	ting area	A _{sp,ef}	[mm²]		(3·c	+ s) · (1,5·c ·	+ h _{ef})			
Member thick	kness: h≤h _{ef} +1	,5 · с								
Single anchor	or anchor group wit	h s ≥ 3 ·	С							
Idealized split	ting area	A _{sp,ef}	[mm²]			(6·c) · h				
Anchor group	(s < 3·c)	(1)								
Idealized split	ting area	A _{sp,ef}	[mm²]			(3·c + s) · h				
Required spl	itting area A _{sp,rqd}									
	cracked concrete	A _{sp,rqd}	[mm²]	13 900	23 700	31 500	42 300	91 250		
ULTRA -	uncracked concrete	$A_{sp,rqd}$	[mm²]	22 500	34 700	41 300	50 200	110 000		
ULTRA A4 _	cracked concrete	$A_{\text{sp,rqd}}$	[mm²]	16 900	25 900	29 800	44 300	91 250		
ULTRA HCR	uncracked concrete	$A_{sp,rqd}$	[mm²]	19 700	35 700	35 300	54 800	110 000		


ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Intended use Projected effective area to determine spacings and edge distances	Annex B4

Installation instructions



Installation instructions - continuation



In	Insert fastener with filling of annular gap								
3		Drive in fastener with additionally mounted filling washer.							
4	T _{inst}	Apply installation torque T _{inst} .							
5		Fill the annular gap between anchor and fixture with injection adhesive (see Annex B1). Use enclosed reducing adapter. The annular gap is completely filled, when excess mortar seeps out.							

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Intended Use Installation instructions - set fastener	Annex B6

Installation instruction - continuation

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Product description Installation instruction – set fastener with cap nut ASCN	Annex B7

Table C1: Characteristic values for **tension loads** under static and quasi-static action, **ULTRA** (steel, zinc plated)

Fastener size			ULTRA						
rastener size			M8	M10	M12	M16	M20		
Installation factor	γinst	[-]		1,0					
Steel failure				_					
Characteristic resistance	N _{Rk,s}	[kN]	19,8	30,4	44,9	79,3	126,2		
Partial factor 4)	γMs	[-]			1,5				
Pull-out									
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,cr}	[kN]	9,5	15	22	30	45		
Increasing factor $N_{Rk,p,cr} = \psi_C \cdot N_{Rk,p,cr}$ (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,439}$	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$	$\left(\frac{f_{ck}}{20}\right)^{0,338}$		
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p,ucr}	[kN]	14	24	30	50	55		
Increasing factor N _{Rk,p,ucr} = ψ _C • N _{Rk,p,ucr} (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,489}$	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$		
Splitting									
Characteristic resistance	N ⁰ Rk,sp	[kN]		min	($N_{Rk,p}$; N^0_{Rk}	(,c ³⁾)			
Characteristic edge distance 2)	C cr,sp	[mm]	mi	$in\left(\frac{A_{sp} + 0.8 \cdot (h_{sp} - h_{sp})}{(3.41 \cdot h_{sp} - h_{sp})}\right)$	$\left(\frac{A_{sp}-h_{ef}}{0.59\cdot h_{ef}}\right)^2; \frac{A_{sp}}{h_{sp}}$	$\left(\frac{sp}{\sqrt{8}}\right) \ge 1.5 \cdot h$	n_{ef}		
Characteristic spacing	S _{cr,sp}	[mm]			$2 \cdot c_{\text{cr,sp}}$				
Factor	Ψh,sp	[-]			1,0				
Concrete cone failure									
Minimum, effective anchorage depth	h _{ef,min}	[mm]	35 ¹⁾	40	50	65	90		
Maximum, effective anchorage depth	h _{ef,max}	[mm]	90	100	125	160	140		
Characteristic edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}						
Characteristic spacing	S _{cr,N}	[mm]	2 · C _{cr,N}						
Factor cracked concrete k _{cr,N} [-]				7,7					
uncracked concrete	k ucr,N	[-]			11,0				

¹⁾ Fastenings with anchorage depth h_{ef} < 40mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

⁴⁾ In absence of other national regulations

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic values for tension loads, ULTRA (Steel, zinc plated)	Annex C1

 $^{^{2)}}$ Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$ according to Table B3

³⁾ N⁰Rk,c according to EN 1992-4:2018

Table C2: Characteristic values for tension loads under static or quasi-static action, ULTRA A4 and ULTRA HCR

Fastanansina				ULTR	A A4 / ULTR	A HCR		
Fastener size			M8	M10	M12	M16	M20	
Installation factor	γinst	[-]	1,0					
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	19,8	30,4	44,9	74,6	126,2	
Partial factor 4)	γMs	[-]			1,5			
Pull-out								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	9,5	17	22	35	45	
Increasing factor N _{Rk,p,cr} = ψ _C • N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,488}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$	$\left(\frac{f_{ck}}{20}\right)^{0,338}$	
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p,ucr}$	[kN]	20	25	42	50	55	
Increasing factor N _{Rk,p,ucr} = ψ _C • N _{Rk,p,ucr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,240}$	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	
Splitting								
Characteristic resistance	$N^0_{Rk,sp}$	[kN]		min	($N_{Rk,p}$; N^0_{Rk}	,c ³⁾)		
Characteristic edge distance 2)	C cr,sp	[mm]	m	$in\left(\frac{A_{sp}+0.8\cdot (h_{sp}-1)}{(3.41\cdot h_{sp}-1)}\right)$	$\frac{(a_{sp}-h_{ef})^2}{(0.59\cdot h_{ef})}$; $\frac{A_s}{h_{sp}}$	$\left(\frac{p}{\sqrt{8}}\right) \ge 1.5 \cdot h$	Pef	
Characteristic spacing	S _{cr,sp}	[mm]			2 · C _{cr,sp}			
Factor	Ψh,sp	[-]			1,0			
Concrete cone failure								
Minimum, effective anchorage depth	$h_{ef,min}$	[mm]	35 ¹⁾	40	50	65	90	
Maximum, effective anchorage depth	h _{ef,max}	[mm]	90	100	125	160	140	
Characteristic edge distance	C cr,N	[mm]	1,5 · h _{ef}					
Characteristic spacing	S cr,N	[mm]	2 · C _{cr,N}					
Factor cracked concrete	k cr,N	[-]			7,7			
uncracked concrete	k ucr,N	[-]	11,0					

¹⁾ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

⁴⁾ In absence of other national regulations

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic values for tension loads, ULTRA A4 and ULTRA HCR	Annex C2

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} according to Table B3 to determine characteristic edge distance c_{cr,sp}

 $^{^{3)}\,}N^0_{Rk,c}$ according to EN 1992-4:2018

Table C3: Characteristic values for shear loads under static and quasi-static action

Fastener size				L	JLTRA / UL	TRA A4 / U	ILTRA HCF	}			
i astellel size				M8	M10	M12	M16	M20			
Installation factor		γinst	[-]			1,0					
Steel failure without	lever arm										
Characteristic resistance –	ULTRA	V ⁰ Rk,s	[kN]	15,7	26,8	38,3	60,0	83,8			
unfilled annular gap	ULTRA A4 / HCR	V ⁰ Rk,s	[kN]	16,8	27,8	39,8	69,5	108,5			
Characteristic	ULTRA	V ⁰ Rk,s	[kN]	17,3	26,7	38,6	60,6	86,1			
resistance – <u>filled</u> annular gap	ULTRA A4 / HCR	V ⁰ Rk,s	[kN]	16,8	27,8	44,9	80,1	108,5			
Partial factor 2)		γMs	[-] 1,25								
Ductility factor k ₇				1,0							
Steel failure with leve	er arm										
Characteristic	ULTRA	M ⁰ Rk,s	[Nm]	30	60	105	240	412			
bending resistance	ULTRA A4 / HCR	M ⁰ Rk,s	[Nm]	27	55	99	223	390			
Partial factor 2)		γMs	[-]			1,25					
Concrete pry-out fail	ure										
Device of factors	ULTRA	k ₈	[-]	2,8	3,1	3,0	3,6	3,3			
Pry-out factor	ULTRA A4 / HCR	k 8	[-]	2,7	2,8	3,3	3,4	3,3			
Concrete edge failure	9										
Effective length of fast loading	ener in shear	lf	[mm]								
Outside diameter of fa	stener	d _{nom}	[mm]	8	10	12	16	20			

¹⁾ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic values for shear loads	Annex C3

²⁾ In absence of other national regulations.

Table C4: Characteristic values for seismic loading, performance category C1

Factorer size				ULTRA / ULTRA A4 / ULTRA HCR										
Fastener size				IV	18	М	M10		12	M16		М	20	
Effective anchora	ige depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	
Tension load														
Installation factor		γinst	[-]	1,0										
Steel failure														
Characteristic	ULTRA	$N_{\text{Rk,s,C1}}$	[kN]	19	9,8	30),4	44	l,9	79	9,3	12	6,2	
resistance	ULTRA A4 / HCR	N _{Rk,s,C1}	[kN]	19,8		30),4	44	1,9	74	·,6	12	6,2	
Pull-out									,					
Characteristic	ULTRA	$N_{Rk,p,C1}$	[kN]	9,1		15	15,0		22,0		30,0		45,1	
resistance	ULTRA A4 / HCR	N _{Rk,p,C1}	[kN]	9,0		17	17,0		22,0		5,0	45,1		
Shear load														
Steel failure with	nout lever arr	n				·								
Characteristic resistance -	ULTRA	$V_{Rk,s,C1}$	[kN]	11,7	13,4	22,5	24,4	30,0	33,8	48,8	52,3	83	3,8	
unfilled annular gap	ULTRA A4 / HCR	V _{Rk,s,C1}	[kN]	11,0	12,7	20,6	22,2	33,2	33,2	61,1	64,3	10	8,5	
Characteristic resistance -	ULTRA	V _{Rk,s,C1}	[kN]	14,0	14,7	24,1	24,4	37,0	38,6	60,2	60,2	86	5,1	
<u>filled</u> annular gap	ULTRA A4 / HCR	V _{Rk,s,C1}	[kN]	12,6	16,8	24,5	27,5	36,7	39,8	67,7	74,2	10	8,5	
Factor for	unfilled annular gap	$lpha_{\sf gap}$	[-]					0	,5					
anchorages	filled annular gap	αgap	[-]					1	,0					

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic resistance for seismic loading, performance category C1	Annex C4

Table C5: Characteristic values for seismic loading, performance category C2

Fastananaisa				ULTRA / ULTRA A4 / ULTRA HCR											
Fastener size				M8		M	M10		M12		M16		M20		
Effective anchora	age depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140	
Tension load															
Installation factor	r	γinst	[-]	1,0											
Steel failure															
Characteristic ULTRA N		$N_{\text{Rk,s,C2}}$	[kN]	19	9,8	30	0,4	4	4,9	7	9,3		126,2		
resistance	ULTRA A4 / HCR	N _{Rk,s,C2}	[kN]	19,8		30	0,4	4	4,9	7.	4,6	1	126,2		
Pull-out															
Characteristic	ULTRA	$N_{Rk,p,C2}$	[kN]	2,8	3,6	7,3	12,5	10,7	19,0	19,8	35,2	35,1	37,6	42,9	
resistance	ULTRA A4 / HCR	N _{Rk,p,C2}	[kN]	2,3	3,2	5,0	7,7	8,0	13,8	19,0	29,4	35,1	37,6	42,9	
Shear load															
Steel failure wit	hout lever a	rm													
Characteristic resistance -	ULTRA	V _{Rk,s,C2}	[kN]	7,3	11,3	15,4	19,0	18,3	28,0	39,4	43,3		69,0		
<u>unfilled</u> annular gap	ULTRA A4 / HCR	V _{Rk,s,C2}	[kN]	7,5	8,6	12,5	15,9	22,4	25,6	42,7	46,1		88,9		
Characteristic resistance -	ULTRA	$V_{Rk,s,C2}$	[kN]	9,7	10,8	17,7	19,9	27,6	28,9	46,0	48,8		73,3		
<u>filled</u> annular gap	ULTRA A4 / HCR	V _{Rk,s,C2}	[kN]	9,4	9,7	16,5	17,1	24,5	28,5	47,4	47,4		88,9		
	unfilled annular gap	$lpha_{\sf gap}$	[-]						0,5						
anchorages	filled annular gap	αgap	[-]						1,0						

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic resistance for seismic loading, performance category C2	Annex C5

Table C6: Characteristic values for tension and shear load under fire exposure, ULTRA (steel, zinc plated)

Fastananaina						ULTRA				
Fastener size				M8	M10	M12	M16	M20		
Tension load										
Steel failure										
	R30		[kN]	1,2	2,6	4,6	7,7	9,4		
Characteristic	R60	NI=		1,0	1,9	3,3	5,6	8,2		
resistance	R90	$N_{Rk,s,fi}$		0,7	1,3	2,1	3,5	6,9		
	R120			0,6	1,0	1,5	2,5	6,3		
Shear load										
Steel failure withou	<u>ıt</u> lever arm									
	R30			4,0	7,5	12,3	20,7	11,0		
Characteristic	R60	\/	FIANIT	2,7	5,1	8,5	14,2	10,6		
resistance	R90	$V_{Rk,s,fi}$	[kN]	1,4	2,7	4,6	7,7	10,2		
	R120			0,8	1,6	2,7	4,5	10,0		
Steel failure with le	ever arm									
	R30	·		4,1	9,6	19,1	43,8	29,1		
Characteristic	R60	5.4 0	[MM]	2,8	6,6	13,1	30,1	28,0		
resistance	R90	M ⁰ Rk,s,fi	[Nm]	1,5	3,5	7,2	16,4	26,9		
	R120			0,8	2,0	4,2	9,6	26,3		

 $N_{\text{Rk,p,fi}}$ and $N_{\text{Rk,c,fi}}$ according to EN 1992-4:2018

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic values under fire exposure, ULTRA (steel, zinc plated)	Annex C6

Table C7: Characteristic values for tension and shear load under fire exposure, ULTRA A4 and ULTRA HCR

Faatawayaina					ULTRA	A4/ULTR	A HCR	
Fastener size				M8	M10	M12	M16	M20
Tension load								
Steel failure								
	R30		[kN]	4,0	6,9	11,0	18,1	36,9
Characteristic	R60	No		2,9	5,0	8,0	13,1	27,4
resistance	R90	$N_{Rk,s,fi}$		1,8	3,1	4,9	8,1	17,9
	R120			1,2	2,1	3,4	5,6	13,1
Shear load								
Steel failure withou	ut lever arm							
	R30		[kN]	8,5	17,6	32,0	52,6	73,5
Characteristic	R60	1/		6,2	12,6	22,6	37,1	51,8
resistance	R90	$V_{Rk,s,fi}$		3,9	7,5	13,1	21,5	30,1
	R120			2,8	5,0	8,4	13,8	19,2
Steel failure with le	ever arm							
	R30			8,7	22,7	49,8	111,5	194,7
Characteristic	R60	n an	[NIma]	6,3	16,2	35,1	78,6	137,2
resistance	R90	M^0 Rk,s,fi	[Nm]	4,0	9,7	20,4	45,6	79,7
	R120			2,8	6,5	13,0	29,2	50,9

N_{Rk,p,fi} and N_{Rk,c,fi} according to EN 1992-4:2018

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Characteristic values under fire exposure, ULTRA A4 and ULTRA HCR	Annex C7

Table C8: Displacements under tension load, ULTRA (steel, zinc plated)

Fastener size			ULTRA											
r asterier size			M8 M10			М	M12 M		16	16 M20				
Displacements under sta														
$\delta_{N0} = \delta_{N0-factor} * N$	N:	acting te	ension	load										
$\delta_{N\infty} = \delta_{N\infty\text{-factor}} * N$		-	_	_		_	_	_		_	г			
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5	·	90		
Cracked concrete														
Factor for displacement	δ N0-factor	[mm/kN]	0,13		0,	05	0,04		0,03		0,04			
Factor for displacement	δN∞-factor	[mm/kN]	0,29		0,	0,20 0,		,15 (11	0,05			
Uncracked concrete														
Factor for displacement	δ N0- factor	[mm/kN]	0,	03	0,01		0,004		0,005		0,02			
Factor for displacement	δN∞- factor	[mm/kN]	0,	03	0,	03	0,	03	0,	03	22	0,03		
Displacement under seis	smic action	1 C2					30					200	,	
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140	
Displacements for DLS	$\delta_{\text{N, C2(DLS)}}$	[mm]	3,9	4,9	2,8	4,7	2,4	4,2	2,5	4,5	4,2	4,5	5,1	
Displacements for ULS	δN, C2(ULS)	[mm]	11,3	14,3	9,4	16,1	7,3	12,9	7,2	12,8	11,7	12,5	14,3	

Table C9: Displacements under tension load, ULTRA A4 and ULTRA HCR

Fastener size		ULTRA A4 / ULTRA HCR											
Fasterier size				M8		M10		M12		M16		M20	
Displacements under s											, and the second		
$\delta_{N0} = \delta_{N0\text{-factor}} * N$ $\delta_{N\infty} = \delta_{N\infty\text{-factor}} * N$		N: acting t	ensior	1 load	27				-		101		
Effective anchorage dept	th h _{ef} ≥	[mm]	3	5	40		50		65		90		
Cracked concrete											All		
Factor for displacement	δ N0-factor	[mm/kN]	0,	11	0,06		0,05		0,02		0,04		
Factor for displacement $\frac{\delta N_{\infty} - factor}{\delta N_{\infty} - factor}$		[mm/kN]	0,27		0,17		0,16		0,08		0,05		
Uncracked concrete													
δ _{N0-factor} [mm/kN]		0,02		0,00		0,001		0,00		0,02			
Factor for displacement $\delta_{N∞-factor}$		[mm/kN]	0,05		0,05		0,05		0,05		0,03		
Displacement under seismic action C2													
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	100	140
Displacements for DLS	$\delta_{\text{N, C2(DLS)}}$	[mm]	2,0	2,9	2,6	4,1	3,3	5,7	3,3	5,1	4,2	4,5	5,1
Displacements for ULS	δ N, C2(ULS)	[mm]	[mm] 7,7 11,1		10,8	16,8	10,4	18,0	9,0	13,9	11,7	12,5	14,3

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Displacements under tension load	Annex C8

Table C10: Displacements under shear load, ULTRA (steel, zinc plated)

Eastener size			ULTRA										
Fastener size				18	M10		M12		M16		M20		
Displacements under state $\delta_{V0} = \delta_{V0\text{-factor}} * V$ $\delta_{V\infty} = \delta_{V\infty\text{-factor}} * V$	asi-static a		load										
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0 5		0	65		90		
Factor for displacement	δ V0- factor	[mm/kN]	0,	15	0,09		0,09		0,07		0,06		
unfilled annular gap	δ∨∞- factor	[mm/kN]	0,22		0,13		0,14		0,11		0,10		
Factor for displacement	δv0- factor	[mm/kN]	0,01		0,04		0,06		0,04		0,02		
<u>filled</u> annular gap	δ∨∞- factor	[mm/kN]	0,015		0,06		0,09		0,06		0,03		
Displacement under seis	on C2 ¹⁾ <u>un</u>	filled a	annular	gap									
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90		
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,8	2,7	3,0	3,1	3,4	3,7	3,4	3,8	5,1		
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,1	5,1 5,0		5,5	6,3	9,9	6,0	9,6	9,4		
Displacement under seismic action C2 filled annular gap													
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90		
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	0,5	0,4	1,4	0,9	1,4	0,7	1,4	1,2	1,3		
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	1,7	1,9	5,8	4,5	4,5	3,1	5,0	3,9	5,2		

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account.

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR	
Performance Displacements under shear load	Annex C9

Table C11: Displacements under shear load, ULTRA A4 and ULTRA HCR

Factorer circ			ULTRA A4 / ULTRA HCR									
Fastener size				18	M10		M12		M16		M20	
Displacements under state $\delta_{V0} = \delta_{V0\text{-factor}} * V$ $\delta_{V\infty} = \delta_{V\infty\text{-factor}} * V$	asi-static a		oad									
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	50		65		90	
Factor for displacement	δ V0- factor	[mm/kN]	0,	26	0,14		0,12		0,09		0,09	
unfilled annular gap	δ∨∞- factor	[mm/kN]	0,	0,39		0,20		0,17		14	0,13	
Factor for displacement	δv0- factor	[mm/kN]	0,16		0,05		0,05		0,03		0,09	
<u>filled</u> annular gap	δv∞- factor	[mm/kN]	0,23		0,08		0,08		0,05		0,13	
Displacement under seis	on C2 ¹⁾ <u>un</u>	filled a	annula	r gap								
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,8	3,0	3,4	3,5	3,5	4,2	3,8	4,4	5,1	
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,2	5,2 5,1		8,4	7,5	11,8	7,8	11,1	9,4	
Displacement under seismic action C2 filled annular gap							10					
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	90	
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	0,9	0,6	1,2	0,5	1,5	1,5	1,6	1,6	4,1	
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	2,5	2,6	5,4	3,6	6,0	7,1	6,2	6,2	8,4	

¹⁾ For anchorages with clearance in the fixture the annular gap must also be taken into account

ICCONS® THRU-BOLT™ ULTRA / ULTRA A4 / ULTRA HCR

Performance
Displacements under shear load

Annex C10