

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-25/0131 vom 24. März 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

CLR plus und CLR plus ZF

Schraubanker zur Verankerung im Mauerwerk

Friulsider S.p.A. Via Trieste 1 33048 SAN GIOVANNI AL NATISONE (UD) ITALIEN

Friulsider Plant

39 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330460-00-0604, Edition 08/2022

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z078310.25

Seite 2 von 39 | 24. März 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z078310.25 8.06.04-39/25

Seite 3 von 39 | 24. März 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Die CLR plus und CLR plus ZF ist ein Dübel in den Größen 5, 6, 8 und 10 mm aus galvanisch verzinktem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand eines einzelnen Schraubankers gegen Stahlversagen unter Zugbeanspruchung	N _{Rk,s} siehe Anhang C1
Charakteristischer Widerstand eines einzelnen Schraubankers gegen Stahlversagen unter Querbeanspruchung	V _{Rk,s} [kN], M ⁰ _{Rk,s} siehe Anhang C1
Charakteristischer Widerstand eines einzelnen Schraubankers gegen Herausziehen oder Ausbruch des Mauersteins unter Zugbeanspruchung	$\begin{array}{c} N_{Rk,p},\ N_{Rk,b},\ N_{Rk,p,c},\ N_{Rk,b,c}\\ \text{siehe Anhang B7, C4, C9, C14, C19, C23}\\ \alpha_{j,N}\\ \text{siehe Anhang C3, C8, C13, C18, C23} \end{array}$
Charakteristischer Widerstand eines einzelnen Schraubankers gegen örtliches Versagen oder Kantenbruch des Mauersteins unter Querbeanspruchung	$\begin{array}{c} V_{Rk,b,II},V_{Rk,b,\perp},V_{Rk,c,II},V_{Rk,c,\perp}\\ \text{siehe Anhang B7, C4, C9, C14, C19, C23}\\ \alpha_{j,VII},\alpha_{j,V\perp}\\ \text{siehe Anhang C3, C8, C13, C18, C23} \end{array}$
Charakteristischer Widerstand einer Schraubankergruppe gegen Ausbruch des Mauersteins unter Zugbeanspruchung	N_{Rk}^g siehe Anhang B7 $\alpha_{\rm g,N}$ siehe Anhang B7, C2, C8, C13, C18, C22
Charakteristischer Widerstand einer Schraubankergruppe gegen örtliches Versagen oder Kantenbruch des Mauersteins unter Querbeanspruchung	$\begin{array}{c} V_{Rk,b,II},V_{Rk,b,\perp},V_{Rk,c,II},V_{Rk,c,\perp}\\ \text{siehe Anhang B7}\\ \alpha_{\text{g,VII}},\alpha_{\text{g,VII}\perp}\\ \text{siehe Anhang B7},\text{C2},\text{C8},\text{C13},\text{C18},\text{C22} \end{array}$

Z078310.25 8.06.04-39/25

Seite 4 von 39 | 24. März 2025

Wesentliches Merkmal	Leistung
Randabstand, Abstand zur Fuge, Achsabstand, Mauersteindicke	c _{cr} , s _{crll} , s _{cr⊥} siehe Anhang B7
	c _{min} , c _{jII} , c _{j⊥} , s _{minII} , s _{min⊥} siehe Anhang B7, C2, C8, C13, C18, C22
	h _{min} siehe Anhang C2, C7, C12, C17, C22
Charakteristische Widerstand unter kombinierter Zug- und Querbeanspruchung (Hohl- und Lochsteine)	Grenzwert X für Interaktion siehe Anhang C14
Verschiebungen	$\begin{array}{c} \delta_{\text{N0}},\delta_{\text{N}^{\infty}},\delta_{\text{V0}},\delta_{\text{V}^{\infty}}\\ \text{siehe Anhang C5, C10, C15, C 20, C 24} \end{array}$

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung	
Brandverhalten	Klasse A1	
Feuerwiderstand	$\begin{array}{c} N_{Rk,s,fi}\;,N_{Rk,p,fi}\;,N_{Rk,b,fi}\;,V_{Rk,s,fi}\;,M^0{}_{Rk,s,fi}\;,\\ c_{min,fi}\;,c_{j,fi}\\ siehe\;Anhang\;C6,\;C11,\;C16,\;C21 \end{array}$	
	N _{RK,fi} , s _{min,fi} , c _{min,fi} , c _{j,fi} siehe Anhang C5, C10, C15, C20	

3.3 Aspekte der Dauerhaftigkeit

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

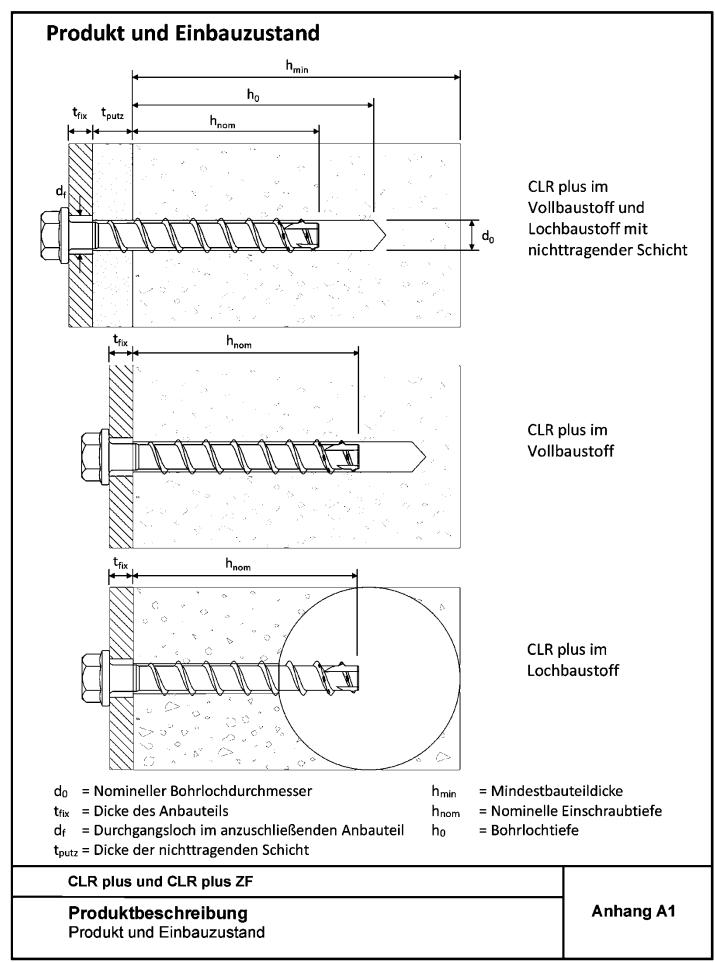
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330460-00-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 24. März 2025 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Referatsleiterin

Aksünger

Z078310.25 8.06.04-39/25

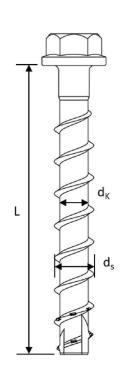
	0	Ausführung mit metrischem An Sechskantantrieb, Typ ST	schlussgewinde und		
	(SA)	Ausführung mit Sechskantkopf, Unterlegscheibe, Typ H	angepresster		
	(15 A) (2) (-)	Ausführung mit Sechskantkopf, legscheibe und TORX, Typ H	angepresster Unter-		
	(SA)	Ausführung mit Sechskantkopf,	Тур S		
	(\$5.4°)	Ausführung mit Senkkopf und T	ORX, Typ SK		
	(2) - C	Ausführung mit Linsenkopf und	TORX, Typ P		
	(SAY (SZ) O'	Ausführung mit großem Linsenkopf und TORX, Typ P			
		Ausführung mit Senkkopf und Anschlussgewinde, Typ ST-6			
		Ausführung mit Sechskantantrie Anschlussgewinde, Typ ST-6	eb und metrischem		
		Ausführung mit Innengewinde Sechskantantrieb, Typ I	und		
	CLR plus und CLR plus ZF				
Produktbeschr Ausführungen	Anhang A2				

Tabelle 1: Werkstoffe

Teil	Bezeichnung	Werkstoff
Alla Austiikuungan	CLR plus	Stahl EN 10263-4:2017 galvanisch verzinkt nach EN ISO 4042:2018
Alle Ausführungen	CLR plus ZF	zinklamellenbeschichtet nach EN ISO 10683:2018 (≥5μm)

			nominelle charakteristische		
Teil	Bezeichnung	Streckgrenze f _{yk} [N/mm²]	Zugfestigkeit f _{uk} [N/mm²]	Bruchdehnung A₅ [%]	
Alle Ausführungen	CLR plus, CLR plus ZF	560	700	≤8	

Tabelle 2: Abmessungen


Schraubengröße		5	6		8		10		
Nominelle		h_{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Einschraubtiefe		[mm]	35	35	55	45	65	55	75
Schraubenlänge ≤L [m		[mm]	500						
Kerndurchmesser	nesser d _K [mm] 4,0 5,1 7,1		,1	9	,1				
Gewindeaußen- durchmesser	ds	[mm]	6,5	7,5		10),6	12	2,6

Prägung:

CLR plus

Schraubentyp: TSM Schraubendurchmesser: 10 Schraubenlänge: 100

CLR plus und CLR plus ZF

Produktbeschreibung

Werkstoffe, Abmessungen und Prägungen

Anhang A3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Zugbelastung, Querbelastung oder kombinierte Zug- und Querbelastung oder Biegung
- Brandbeanspruchung (nur für trockenes Mauerwerk)

Verankerungsgrund:

- Mauerwerk aus Vollsteinen und Lochsteinen siehe Anhang B3
- Minimale Bauteildicke h_{min} siehe Anhänge C2, C7, C12, C17, C22
- Lagerfugen müssen vollständig mit Mörtel mindestens der Druckfestigkeitsklasse M5 gemäß EN 998-2:2016 vermörtelt sein. Stoßfugen können, müssen aber nicht vermörtelt sein.
- Im Brandfall müssen alle Fugen vollständig mit Mörtel mindestens der Druckfestigkeitsklasse
 M5 gemäß EN 998-2:2016 vermörtelt sein
- Trockenes oder nasses Mauerwerk (bei Installation)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: Alle Schraubentypen
- Temperaturbereich des Mauerwerks über die Einsatzdauer: -40°C bis +80°C

Bemessung:

- Die Bemessung der Verankerung erfolgt gemäß EOTA Technical Report TR 054:2022-07.
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs.
- Schrauben dürfen bei einer nominellen Verankerungstiefe <50 mm nur für Verankerungen von statisch unbestimmten Systemen verwendet werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zu den Auflagern, usw.) anzugeben.
- Die Schraube darf in der Wandseite und in der Laibungsseite des Mauerwerks gesetzt werden.
 Die Installationsparameter für die Montage in der Laibungsseite sind gemäß Anhang B8 einzuhalten. Bei Silka XL Kalksandvollstein KS 12DF darf die Montage nur in der Wandseite erfolgen.
- Für Vollsteine gelten die charakteristischen Tragfähigkeiten auch für größere Steinformate, größere Druckfestigkeiten und größere Rohdichten der Mauersteine.
- Montage in der Fuge und fugennah ist nicht möglich, die Abstände zu Fugen sind gemäß Anhang C3, C8, C13, C18, C23 einzuhalten.

CLR plus und CLR plus ZF

Verwendungszweck
Spezifikation

Anhang B1

Spezifizierung des Verwendungszwecks - Fortsetzung

Einbau:

- Die Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei der Auswahl der Schraubenlänge L ist die Dicke der Putzschicht t_{putz} zu berücksichtigen. L ≥ h_{nom} + t_{putz} + t_{fix} (siehe Abbildungen im Anhang A1)
- Bei der Montage sind die vom Planer vorgegebenen Fugen-, Achs- und Randabstände zu berücksichtigen.
- Einbau durch entsprechend geschultes Personal und unter der Aufsicht des Bauleiters.
- Das Bohrloch wird mit Hammer,- Schlag,- Saug- oder Steinbohrern im Hammermodus oder Drehmodus hergestellt. Das Mauerwerk darf beim Hammerbohren nicht beschädigt werden. Sollten Risse beim Bohren auftreten, muss der Drehmodus verwendet werden. In diesem Fall muss das Bohrloch verworfen werden.
- Im Fall von Fehlbohrungen sind diese mit hochfestem Mörtel zu verfüllen.

CLR plus und CLR plus ZF

Verwendungszweck
Spezifikation - Fortsetzung

Anhang B2

Tabelle 3: Vollsteine und Lochsteine, Abmessungen und Eigenschaften

Kalksandvollstein KS nach DIN EN 771-2:2015-11

	Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	Anhang
	KS 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	≥ 26,0	≥ 2,0	C2 – C6

Silka XL Kalksandvollstein KS 12DF nach DIN EN 771-2:2015-11

	Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	Anhang
	KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 B: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	C7 – C11

Kalksandlochstein KSL 3DF nach DIN EN 771-2:2015-11

	Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	Anhang
260	SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 B: ≥ 175 H: ≥ 113	≥ 17,0	≥ 1,5	C12 - C16

Mauerziegel MZ nach DIN EN 771-1:2015-11

	Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	Anhang
	MZ 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	C17 – C21

Vollblock aus Leichtbeton nach DIN EN 771-3:2015-11

	35	· · · · · · · · · · · · · · · · · · ·		
Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	Anhang
VBL 4 - 1,0 - 2DF	L: ≥ 240 B: ≥ 115 H: ≥ 113	≥ 4,0	≥ 1,5	C22 - C24

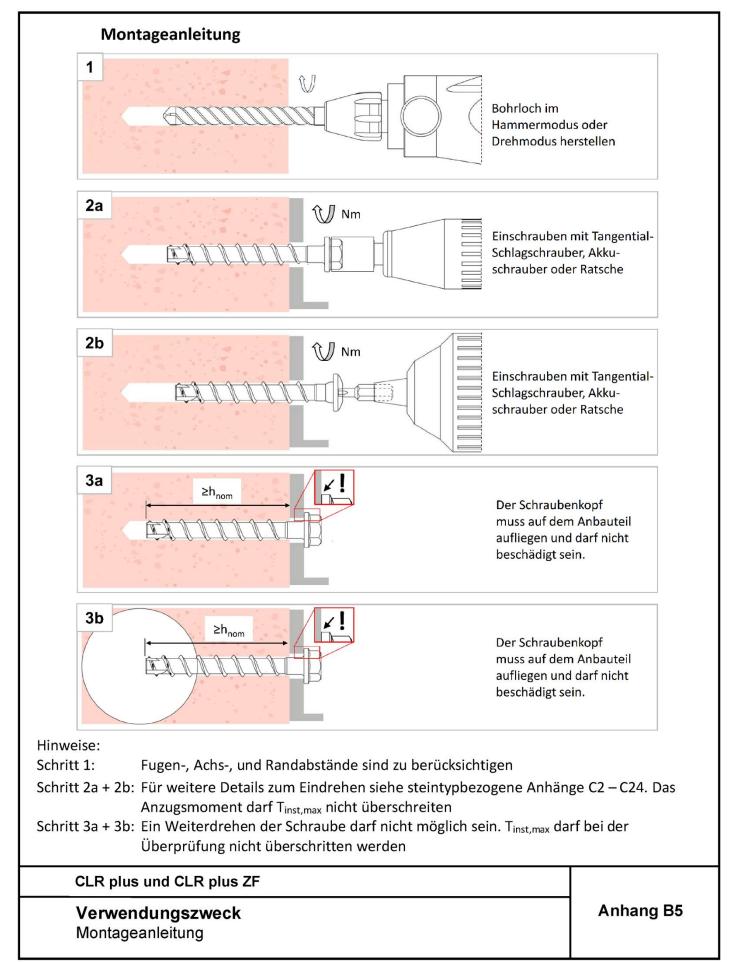
CLR plus und CLR plus ZF

Verwendungszweck

Vollsteine und Lochsteine, Abmessungen und Eigenschaften

Anhang B3

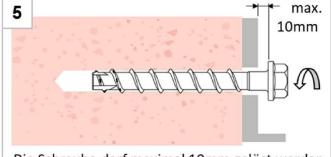
Tabelle 4: Allgemeine Montagekennwerte

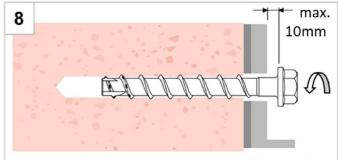

CLR plus Schraubengröße			5	(5	8	3	1	0
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Norminene Emschraubtiele		[mm]	35	35	55	45	65	55	75
Nomineller Bohrlochdurchmesser	d ₀	[mm]	5	(ô	8	3	1	0
Bohrerschneiden- durchmesser	d _{cut} ≤ [mm] 5,40 6,40		40	8,45		10,45			
Bohrlochtiefe	h ₀ ≥	[mm]	55	55	75	65	85	75	95
Durchgangsloch im Anbauteil	d _f ≤	[mm]	7	8		12		14	

CLR plus und CLR plus ZF

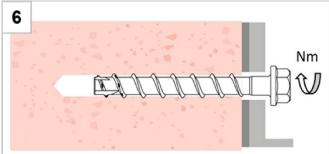
Verwendungszweck
Allgemeine Montagekennwerte

Anhang B4

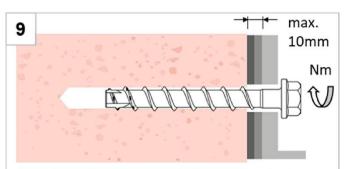


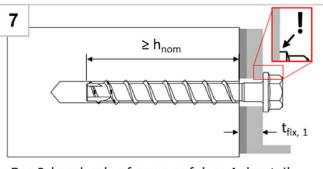

Montageanleitung – Adjustierung

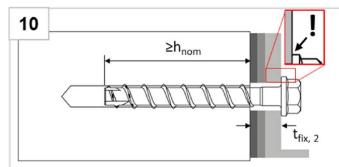
1. Adjustierung



Die Schraube darf maximal 10mm gelöst werden.


2. Adjustierung


Die Schraube darf maximal 10mm gelöst werden.


Nach Adjustierung wird die Schraube mit einem Tangetial-Schlagschrauber, Akkuschrauber oder Ratsche eingeschraubt.

Nach Adjustierung wird die Schraube mit einem Tangetial-Schlagschrauber, Akkuschrauber oder Ratsche eingeschraubt.

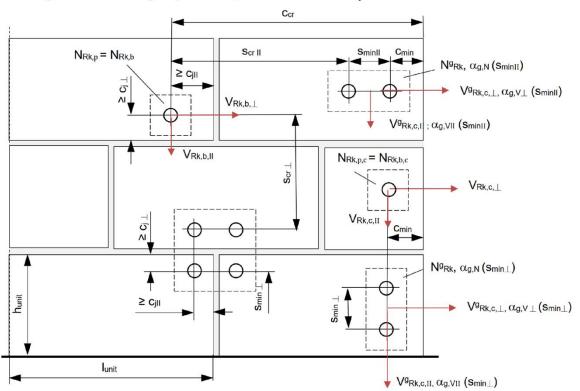
Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

Hinweis:

- 1. Die Schraube darf maximal zweimal adjustiert werden. Dabei darf die Schraube jeweils maximal um 10mm zurückgeschraubt werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10mm betragen. Die erforderliche Setztiefe h_{nom} muss nach der Adjustierung eingehalten sein.
- 2. Für weitere Details zum Eindrehen siehe steintypbezogene Anhänge C2-C24

CLR plus und CLR plus ZF


Verwendungszweck

Montageanleitung - Adjustierung

Anhang B6

Mögliche Montageoptionen, die Abstände c_j sind einzuhalten

c_{min} = minimaler Randabstand zum freien Rand

 $c_{j\,\parallel}$ = Abstand zu Stoßfugen für Tragfähigkeit des Schraubankers ohne Fugeneinfluss $c_{j\,\perp}$ = Abstand zu Lagerfugen für Tragfähigkeit des Schraubankers ohne Fugeneinfluss

 $s_{min \parallel}$ = Minimaler Achsabstand parallel zur Lagerfuge $s_{min \perp}$ = Minimaler Achsabstand senkrecht zur Lagerfuge

c_{cr} = Randabstand zur Übertragung des charakteristischen Widerstandes des Schraubankers = 1,5 h_{nom}

 $s_{cr \, I}$ = Charakteristischer Achsabstand parallel zur Lagerfuge = 3,0 h_{nom} = Charakteristischer Achsabstand senkrecht zur Lagerfuge = 3,0 h_{nom}

l_{unit} = Steinlänge h_{unit} = Steinhöhe

 $lpha_{g,N}$ (s_{min II}) = Gruppenfaktor bei Zuglast bei minimalen Achsabstand parallel zur Lagerfuge $lpha_{g,N}$ (s_{min I}) = Gruppenfaktor bei Zuglast bei minimalen Achsabstand senkrecht zur Lagerfuge $lpha_{g,V \, II}$ = Gruppenfaktor bei Querlast parallel zur Kante ($lpha_{g,V \, II}$ = $lpha_{g,V \, II}$ (s_{min II}) = $lpha_{g,V \, II}$ (s_{min II})

$$\begin{split} N_{Rk} &= N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c} \\ V_{Rk,\,\perp} &= V_{Rk,,b\,\perp} = V_{Rk,c\,\perp}; \ V_{Rk,\,\perp} = V_{Rk,,b\,\perp} = V_{Rk,c\,\perp} \end{split}$$

Für $s \ge s_{cr}$: $\alpha_{g,N}(s_{min \parallel}) = \alpha_{g,N}(s_{min \perp}) = \alpha_{g,V \parallel} = \alpha_{g,V \perp} = 2$

Für $s_{min} \le s \le s_{cr}$: $\alpha_{g,N}$ ($s_{min \mid l}$); $\alpha_{g,N}$ ($s_{min \mid l}$); $\alpha_{g,V \mid l}$; $\alpha_{g,V \mid l}$ entsprechend Montagekennwerte der Steine im Anhang C $N^g_{Rk}(s_{min \mid l}) = \alpha_{g,N}$ ($s_{min \mid l}$) x N_{Rk} (Gruppe von 2 Ankern bei minimalen Achsabstand parallel zur Lagerfuge) $N^g_{Rk}(s_{min \mid l}) = \alpha_{g,N}$ ($s_{min \mid l}$) x N_{Rk} (Gruppe von 2 Ankern bei minimalen Achsabstand senkrecht zur Lagerfuge)

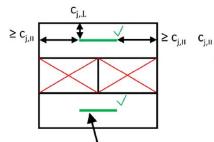
 $\begin{array}{ll} V^g_{Rk\,\parallel} = \alpha_{g,V\,\parallel}\,x\,\,V_{Rk,\,\parallel}\,;\, V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}\,x\,\,V_{Rk,\,\perp} & (Gruppe\ von\ 2\ Ankern) \\ N^g_{Rk} = \alpha_{g,N}\,(s_{min\,\parallel})\,x\,\,\alpha_{g,N}\,(s_{min\,\perp})\,x\,\,N_{Rk} & (Gruppe\ von\ 4\ Ankern) \\ V^g_{Rk\,\parallel} = \alpha_{g,V\,\parallel}^{\,2}\,x\,\,V_{Rk,\,\parallel}\,;\, V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}^{\,2}\,x\,\,V_{Rk,\,\perp} & (Gruppe\ von\ 4\ Ankern) \end{array}$

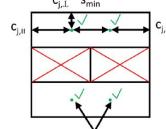
CLR plus und CLR plus ZF

Verwendungszweck

Mögliche Montagepositionen

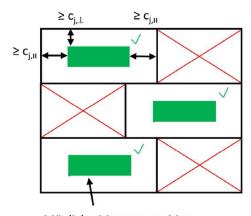
Anhang B7



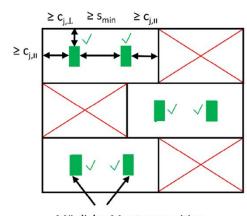

Installationshinweise für die Montage in der Laibungsseite

Positionierung in Laibung in Steintypen KS NF, MZ NF, VBL 2DF

Einzeldübel


Mögliche Montageposition

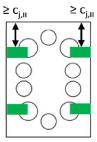
Mögliche Montageposition


Positionierung in Laibung in Steintypen KSL 3DF

Einzeldübel

2er Gruppe

Mögliche Montageposition



Mögliche Montageposition

Draufsicht

≥ c_{j,11} ≥ c_{j,11}

Draufsicht

CLR plus und CLR plus ZF

Leistungsmerkmale

Mögliche Montagepositionen in der Laibungsseite

Anhang B8

Tabelle 5: Charakteristischer Widerstand gegen Stahlversagen

CLR plus Schraubengröße			5	6		8		10		
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h_{nom1}	h _{nom2}	
Nominelle Ellischlaubtiele		[mm]	35	35	55	45	65	55	75	
Stahlversagen für Zug- und	Querbe	eanspr	uchung				S			
Charakteristischer Widerstand bei Zuglast	N _{Rk,s}	[kN]	8,7	1	4,0	27	7, 0	45	,0	
Teilsicherheitsbeiwert	sicherheitsbeiwert $\gamma_{Ms,N}^{(1)}$ [-]			1,5						
Charakteristischer Widerstand bei Querlast	V _{Rk,s}	[kN]	4,4	7	7,0	13,5	17,0	22,5	34,0	
Teilsicherheitsbeiwert	eilsicherheitsbeiwert $\gamma_{Ms,V}^{-1}$					1,25				
Charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]	5,3	1	0,9	26	5,0	56	,0	

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

CLR plus und CLR plus ZF	
Leistungsmerkmale Charakteristischer Widerstand gegen Stahlversagen	Anhang C1

Tabelle 6: Materialkennwerte Kalksandvollstein KS

Kalksandvollstein KS nach DIN EN 771-2:2015-11								
	Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	minimale Wanddicke h _{min} [mm]			
	KS 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	≥ 26,0	≥ 2,0	240			

Tabelle 7: Montagekennwerte Kalksandvollstein KS

utzungskategorie (Instal		trocken oder nass								
CLR plus Schraubengröße			5	(5	3	3	10		
Nominelle Einschraubtiefe Nomineller Bohrlochdurchmesser		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2} 75	
		[mm]	5	(5	3	3	1	0	
ohrerschneiden- urchmesser	d _{cut} ≤ [mm] 5,40 6,40		8,45		10,45					
ohrlochtiefe	h₀ ≥	[mm]	55	55	75	65	85	75	95	
urchgangsloch im nbauteil	d _f ≤	[mm]	7	8	3	1	12		14	
nzugsmoment bei andmontage	max. T _{inst}	[Nm]	6	11		27		37	46	
angentialschlagschrauber	T _{imp,max}	[Nm]	n 						ngabe	
	LR plus Schraubengröße ominelle Einschraubtiefe omineller ohrlochdurchmesser ohrerschneiden- urchmesser ohrlochtiefe urchgangsloch im nbauteil nzugsmoment bei andmontage	$\begin{array}{c c} ominelle Einschraubtiefe \\ \hline omineller \\ ohrlochdurchmesser \\ ohrerschneiden-\\ urchmesser \\ ohrlochtiefe \\ urchgangsloch im \\ nbauteil \\ \hline nzugsmoment bei \\ andmontage \\ \hline \end{array}$	LR plus Schraubengröße	LR plus Schraubengröße 5 ominelle Einschraubtiefe d_0 m_0 m	LR plus Schraubengröße 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	LR plus Schraubengröße 5 6 ominelle Einschraubtiefe $[mm]$ 35 35 55 omineller ohrlochdurchmesser $[mm]$ 5 6 ohrerschneiden-urchmesser $[mm]$ $5,40$ $6,40$ ohrlochtiefe $[nb]$	LR plus Schraubengröße 5 6 8 ominelle Einschraubtiefe $\frac{h_{nom}}{[mm]}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom2}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom1}}{h_{nom1}}$ $\frac{h_{nom1}}{h_{nom2}}$ $\frac{h_{nom2}}{h_{nom2}}$	LR plus Schraubengröße 5 6 8 ominelle Einschraubtiefe $[mm]$ 35 35 55 45 65 omineller ohrlochdurchmesser 35 35 35 35 35 35 35 35	LR plus Schraubengröße 5 6 8 1 cominelle Einschraubtiefe $\frac{h_{nom}}{[mm]}$ $\frac{h_{nom1}}{35}$ $\frac{h_{nom1}}{35}$ $\frac{h_{nom2}}{35}$ $\frac{h_{nom1}}{45}$ $\frac{h_{nom1}}{45}$ $\frac{h_{nom1}}{45}$ $\frac{h_{nom2}}{45}$ $\frac{h_{nom1}}{45}$ $\frac{h_{nom1}}{45}$ $\frac{h_{nom2}}{45}$ $\frac{h_{nom1}}{45}$	

Tabelle 8: Min. Rand- und Achsabstand, Gruppenfaktoren

CLR plus Schrauber	CLR plus Schraubengröße			5 6 8 10				0	
Nominelle Einschrau	Naminalla Finankunuktiafa		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominelle Einschrau	bueie	[mm]	35	35	55	45	65	55	75
min. Randabstand	C _{min}	[mm]				80			
min. Achsabstand $s_{min,II} = s_{min, \perp}$ [mm] 80									
	α _{g,N} (S _{min II})	[-]	1,65	1,70	1,05	1,15	1,15	1,05	1,65
Course and alst a see	α _{g,N} (s _{min ⊥})	[-]	1,55	1,70	1,05	1,15	1,20	1,10	1,20
Gruppenfaktoren	$\alpha_{g,V,II}$	[-]	1,55	1,55	1,35	1,15	1,05	1,05	1,35
	α _{g,V, ⊥}	[-]				1,30			

CLR plus und CLR plus ZF	
Leistungsmerkmale	Anhang C2
Kalksandvollstein KS – Materialkennwerte, Montagekennwerte,	
minimaler Achs- und Randabstand, Gruppenfaktoren	

Tabelle 9: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

CLR plus Schraubengr	5	6	8	10			
Abstand zu Fugen	Cj⊥	[mm]	≥35				
Abstanti zu Fugen	C _{j II}	[IIIIII]	[mm] ≥80 [-] 1 (volle Tragfähigkei				
Abminderungsfaktor	α _{j, N}	[-]				eit)	
	$\alpha_{j, \forall II} = \alpha_{j, \forall \perp}$ $c_{j \perp}$	[mm]	<35				
Abstand zu Fugen	Сј п		<80				
Abminderungsfaktor	α	[-]	Schraube darf nicht				
Abililideidilgsidktoi	$\alpha_{j, N}$	[-]	verwendet werden				

CLR plus und CLR plus ZF

Leistungsmerkmale
Kalksandvollstein KS – Montagekennwerte bei Montage in
Fugennähe

Anhang C3

Tabelle 10: Charakteristische Tragfähigkeit

Nutzungskategorie (Installa	trocken oder nass										
CLR plus Schraubengröße	CLR plus Schraubengröße				6	8	3	1	0		
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}		
		[mm]	35	35	55	45	65	55	75		
Druckfestigkeit f _{mean}	[N/m	nm²]				≥ 26,0					
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	3,5	3,1	4,9	4,1	4,3	3,8	4,5		
Charakteristischer	V _{Rk,II}	[kN]	5,3	5,3	8,6	6,3	11,3	7,7	13,0		
Widerstand bei Querlast	V _{Rk,⊥}	[kN]			2	3,3	*				
Druckfestigkeit f _{mean}	uckfestigkeit f _{mean} [N/mm²]					≥ 30,0					
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	3,7	3,4	5,3	4,4	4,6	4,0	4,8		
Charakteristischer	$V_{Rk,II}$	[kN]	5,7	5,7	9,3	6,7	12,1	8,3	13,9		
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	3,5								
Druckfestigkeit f _{mean}	[N/m	[N/mm²] ≥ 35,0									
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	4,0	3,7	5,7	4,8	5,0	4,4	5,2		
Charakteristischer	V _{Rk,II}	[kN]	6,1	6,1	10,0	7,3	13,1	8,9	15,0		
Widerstand bei Querlast	derstand bei Querlast $V_{Rk,\perp}$ [kN]										
Druckfestigkeit f _{mean}	[N/m	nm²]				≥ 38,0					
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	4,2	3,8	6,0	5,0	5,2	4,5	5,4		
Charakteristischer	V _{Rk,II}	[kN]	6,4	6,4	10,4	7,6	13,7	9,3	15,7		
Widerstand bei Querlast	V _{Rk,⊥}	[kN]				4,0					

	CLR	plus	und	CLR	plu	s ZF
--	-----	------	-----	-----	-----	------

Leistungsmerkmale

Kalksandvollstein KS – Charakteristische Tragfähigkeit

Anhang C4

Tabelle 11: Verschiebungen

Nutzungskategorie (Installat	trocken oder nass								
CLR plus Schraubengröße			5	5 6		8	3	10	
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominelle Emschraubtiele		[mm]	35	35	55	45	65	55	75
Zuglast	F _N	[kN]	1,00	0,89	1,40	1,17	1,23	1,09	1,29
Verschiehung in Zugrichtung	δ_{NO}	[mm]	0,02	0,04	0,04	0,04	0,03	0,02	0,01
Verschiebung in Zugrichtung	$\delta_{N\varpi}$	[mm]	0,03	0,08	0,08	0,07	0,05	0,04	0,03
Querlast parallel zum Rand	F _V , _{II}	[kN]	1,51	1,51	2,46	1,80	3,23	2,20	3,71
Verschiebung der Querlast	δ _{V0,II}	[mm]	0,93	0,09	1,51	0,52	1,00	0,22	0,98
parallel zum Rand	$\delta_{\text{V}\text{00,II}}$	[mm]	1,40	0,13	2,26	0,78	1,50	0,33	1,46
Querlast senkrecht zum Rand	F _V ,⊥	[kN]	0,94						
Verschiebung der Querlast	$\delta_{V0,\perp}$	[mm]		0,22			0,03		0,02
senkrecht zum Rand	$\delta_{V\varpi,\perp}$	[mm]		0,33			0,05		0,03

Tabelle 12: Leistungen unter Brandbeanspruchung für Ankergruppen

CLR plus Schraubeng	röße		5	6	5	3	3	10				
Nominelle Einschraubtiefe –		h_{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}			
		[mm]	35	35	55	45	65	55	75			
Charakteristischer W	Charakteristischer Widerstand für Ausbruchsversagen unter Brandbeanspruchung											
		R30-R90	0,09 ·	0,09 ·	0,15 ·	0,12 ·	0,18 ·	0,15 ·	0,24 ·			
$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$	[kN]	N30-N30	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	$N^{g}_{Rk,b}$			
N ^g _{Rk,p,fi}	[KIN]	R120	0,08 ·	0,08 ·	0,12 ·	0,10 ·	0,15 ·	0,12 ·	0,19 ·			
5000 40		11120	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	$N^{g}_{Rk,b}$			
Minimaler Achs-	[mm]	$C_{min,fi} = C_{j,fi}$	2 x h _{nom} 1)									
und Randabstand		S _{min,fi}		107								

¹⁾ Es sind mindestens die Abstände gemäß Tabelle 13 einzuhalten

CLR plus und CLR plus ZF

Leistungsmerkmale
Kalksandvollstein KS – Verschiebungen und Leistungen unter
Brandbeanspruchung bei Ankergruppen

Anhang C5

Tabelle 13. Leistu		Didilabea	пэргис							
CLR plus Schraube	ngröße			5	(5	8	3	1	0
Nominelle Einschra	uhtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
TTOTTITE ETTSETTE	abticie		[mm]	35	35	55	45	65	55	75
Stahlversagen für	Zug- und	Querlast				r ₂				
	R30	N _{Rk,s,fi30}	[kN]	1,3	1,3	1,3	1,3	1,3	3,4	3,4
	R60	N _{Rk,s,fi60}	[kN]	1,0	1,0	1,0	1,0	1,0	2,7	2,7
	R90	N _{Rk,s,fi90}	[kN]	0,6	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,s,fi120}	[kN]	0,5	0,5	0,5	0,5	0,5	1,7	1,7
	R30	V _{Rk,s,fi30}	[kN]	1,3	1,3	1,3	1,3	1,3	3,4	3,4
Charakteristischer Widerstand	R60	V _{Rk,s,fi60}	[kN]	1,0	1,0	1,0	1,0	1,0	2,7	2,7
	R90	V _{Rk,s,fi90}	[kN]	0,6	0,6	0,6	0,6	0,6	2,0	2,0
	R120	V _{Rk,s,fi120}	[kN]	0,5	0,5	0,5	0,5	0,5	1,7	1,7
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,8	1,1	1,1	1,5	1,5	4,9	4,9
	R60	M ⁰ Rk,s,fi60	[Nm]	0,5	0,8	0,8	1,1	1,1	4,0	4,0
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	0,5	0,5	0,8	0,8	3,0	3,0
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,4	0,4	0,6	0,6	2,5	2,5
Herausziehen										
	R30	N _{Rk,p,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	3,4	3,4
Charakteristischer	R60	N _{Rk,p,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	2,7	2,7
Widerstand	R90	N _{Rk,p,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,7	1,7
Ausbruchsversage	n									
	R30	N _{Rk,b,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	3,4	3,4
Charakteristischer	R60	N _{Rk,b,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	2,7	2,7
Widerstand	R90	N _{Rk,b,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,7	1,7
Randabstand										
R30 - R120	C _{min,fi} =		[mm]				120			
		Cj,fi,⊥	[mm]				35			
Achsabstand										
R30 - R120	R30 - R120									
The state of the s										

CLR plus und CLR	plus ZF
------------------	---------

Leistungsmerkmale

Kalksandvollstein KS – Leistung unter Brandbeanspruchung

Anhang C6

Tabelle 14: Materialkennwerte Silka XL Kalksandvollstein KS 12DF

Silka XL Kalksar	ndvollstein KS 12	2DF nach DIN EN 7	771-2:2015-	11
Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	minimale Wanddicke h _{min} [mm]
KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 B: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	175

Tabelle 15: Montagekennwerte Silka XL Kalksandvollstein KS 12DF

Nutzungskategorie (Installa	Nutzungskategorie (Installation)				trocken oder nass								
CLR plus Schraubengröße			5		6		3	10					
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}				
Nomineller Bohrlochdurchmesser	d ₀	[mm]	5		6	8				0			
Bohrerschneiden- durchmesser	d _{cut} ≤	[mm]	5,40	6,	,40	8,45		10,45					
Bohrlochtiefe	h ₀ ≥	[mm]	55	55	75	65	85	75	95				
Durchgangsloch im Anbauteil	d _f ≤	[mm]	7		8	1	2	14					
Drehmoment bei Handmontage	max. T _{inst}	[Nm]	6	1	10	2	5	4	5				
Drehmoment bei Drehschraubermontage	T _{imp,max}	[Nm]	8	10		Leistung nicht bewertet							
			Max.	Nenndr	ehmome	ent gemä	ß der He	rstellerar	gabe				
Tangentialschlagschrauber	T _{imp,max}	[Nm]	Leistung nicht bewertet		185	300							

CLR plus und CLR plus ZF	
Leistungsmerkmale Silka XL Kalksandvollstein KS 12DF – Materialkennwerte, Montagekennwerte	Anhang C7

Tabelle 16: Min. Rand- und Achsabstand, Gruppenfaktoren

CLR plus Schrauber		5	5 6			8		0	
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Norminene Emschrau	bueie	[mm]	35	35	55	45	65	55	75
min. Randabstand	C _{min}	[mm]	80						
min. Achsabstand	$S_{min,II} = S_{min, \perp}$	[mm]	80						
	α _{g,N} (S _{min II})	[-]	1,65	1,65	1,75	1,40	1,40	1,60	1,30
Crupponfaktoron	α _{g,N} (s _{min ⊥})	[-]	1,30	1,30	1,80	1,25	1,25	1,40	1,25
Gruppenfaktoren	$\alpha_{g,V,II}$	[-]	2,00	2,00	1,65	2,00	1,65	1,40	1,40
	$lpha_{\sf g,V, \perp}$	[-]	2,00	2,00	1,45	2,00	1,10	1,40	1,05

Tabelle 17: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

CLR plus Schraubengr	öße		5	6	8	10	
Abstand zu Eugen	Abstand zu Fugen		≥40				
Abstanti zu Fügen	Cj II	[mm]	a.	≥8	80		
Abminderungsfaktor	$\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (volle Tragfähigkeit)				
Abstand zu Fugen	Cj⊥	[mm]	5	</td <td>40</td> <td></td>	40		
Abstand zu Fugen	C _{j II}			<8	80		
Abminderungsfaktor	α _{j, N}	[-]			darf nic		

CLR plus und CLR plus ZF

Leistungsmerkmale

Silka XL Kalksandvollstein KS 12DF – minimaler Achs- und Randabstand, Gruppenfaktoren, Montagekennwerte bei der Montage in Fugennähe **Anhang C8**

Tabelle 18: Charakteristische Tragfähigkeit

Nutzungskategorie (Installa	ition)				trock	ken oder	nass		
CLR plus Schraubengröße			5	(5	3	3	10	
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Druckfestigkeit f _{mean}	[N/m	[mm] nm²]	35	35	55	45 ≥ 14,0	65	55	75
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	2,3	2,3	4,1	6,3	6,3	6,4	6,7
Charakteristischer	$V_{Rk,II}$	[kN]	3,2	3,2	9,7	3,2	9,7	17,4	17,4
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	3,6	3,6	8,3	3,6	7,5	5,9	9,8
Druckfestigkeit f _{mean}	[N/m	nm²]				≥ 15,0			
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	2,4	2,4	4,3	6,5	6,5	6,6	6,9
Charakteristischer	$V_{Rk,II}$	[kN]	3,3	3,3	10,1	3,3	10,1	18,0	18,0
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	3,7	3,7	8,6	3,7	7,8	6,1	10,1
Druckfestigkeit f _{mean}	[N/m	nm²]				≥ 20,0			
Charakteristischer Widerstand bei Zuglast	N_{Rk}	[kN]	2,8	2,8	4,9	7,5	7,5	7,6	8,0
Charakteristischer	$V_{Rk,II}$	[kN]	3,8	3,8	11,7	3,8	11,7	20,8	20,8
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	4,3	4,3	9,9	4,3	9,0	7,0	11,7

CLR plus und CLR plus ZF

Leistungsmerkmale

Silka XL Kalksandvollstein KS 12DF – charakteristische Tragfähigkeit

Anhang C9

Tabelle 19: Verschiebungen

Nutzungskategorie (Installa	tion)				troc	ken oder	nass		
CLR plus Schraubengröße			5		6	8	3	10	
Nominelle Einschraubtiefe		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Norminene Emschraubtiere		[mm]	35	35	55	45	65	55	75
Zuglast	F _N	[kN]	0,66	0,66	1,17	1,80	1,80	1,83	1,91
Verschiebung in Zugrichtung	δ_{NO}	[mm]	0,02	0,02	0,04	0,01	0,01	0,01	0,02
verschiebung in zugnentung	$\delta_{N\varpi}$	[mm]	0,04	0,04	0,08	0,02	0,02	0,02	0,05
Querlast parallel zum Rand	F _{V,II}	[kN]	0,91	0,91	2,77	0,91	2,77	4,97	4,97
Verschiebung der Querlast	$\delta_{V0,II}$	[mm]	0,98	0,98	3,00	0,98	3,00	2,95	2,95
parallel zum Rand	$\delta_{V_{\infty,II}}$	[mm]	1,47	1,47	4,50	1,47	4,50	4,42	4,42
Querlast senkrecht zum Rand	$F_{V,\perp}$	[kN]	1,03	1,03	2,37	1,03	2,14	1,69	2,80
Verschiebung der Querlast	$\delta_{V0,\perp}$	[mm]	0,42	0,42	0,03	0,42	1,00	0,05	0,44
senkrecht zum Rand	$\delta_{V\varpi,\!\perp}$	[mm]	0,63	0,63	0,05	0,63	1,50	0,08	0,66

Tabelle 20: Leistungen unter Brandbeanspruchung für Ankergruppen

CLR plus Schraubeng	röße		5	E	5	8	3	10				
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}			
		[mm]	35	35	55	45	65	55	75			
Charakteristischer Widerstand für Ausbruchsversagen unter Brandbeanspruchung												
		R30-R90	0,09 ·	0,09 ·	0,15 ·	0,12 ·	0,18 ·	0,15 ·	0,24 ·			
$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$	 [kN]	N30-N30	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	$N^{g}_{Rk,b}$							
N ^g _{Rk,p,fi}	[KIN]	R120	0,08 ·	0,08 ·	0,12 ·	0,10 ·	0,15 ·	0,12 ·	0,19 ·			
	l-	KIZU	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	$N^{g}_{Rk,b}$			
Minimaler Achs-	[mm]	$C_{min,fi} = C_{j,fi}$		2 x h _{nom} 1)								
und Randabstand	[mm]	S _{min,fi}				107						

¹⁾ Es sind mindestens die Abstände gemäß Tabelle 21 einzuhalten

CLR plus und CLR plus ZF

Leistungsmerkmale
Silka XL Kalksandvollstein KS 12DF – Verschiebungen und
Leistungen unter Brandbeanspruchung bei Ankergruppen

Anhang C10

CLR plus Schraube	ngröße			5	(5	3	3	1	0
Nominelle Einschra	ubtiefe	÷	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom}
Stahlversagen für	Zug- und	Querlast	[]							
	R30	N _{Rk,s,fi30}	[kN]	1,1	1,5	1,5	1,3	1,3	3,4	3,4
	R60	N _{Rk,s,fi60}	[kN]	0,8	1,1	1,1	1,0	1,0	2,7	2,7
	R90	N _{Rk,s,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	N _{Rk,s,fi120}	[kN]	0,3	0,4	0,4	0,5	0,5	1,7	1,7
	R30	V _{Rk,s,fi30}	[kN]	1,1	1,5	1,5	1,3	1,3	3,4	3,4
Charakteristischer	R60	V _{Rk,s,fi60}	[kN]	0,8	1,1	1,1	1,0	1,0	2,7	2,7
Widerstand	R90	V _{Rk,s,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	2,0	2,0
	R120	V _{Rk,s,fi120}	[kN]	0,3	0,4	0,4	0,5	0,5	1,7	1,7
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,8	1,2	1,2	1,5	1,5	4,9	4,9
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,5	0,9	0,9	1,1	1,1	4,0	4,0
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	0,5	0,5	0,8	0,8	3,0	3,0
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,3	0,3	0,6	0,6	2,5	2,5
Herausziehen										
	R30	N _{Rk,p,fi30}	[kN]	1,1	0,4	0,72	1,3	1,3	3,4	3,4
Charakteristischer	R60	N _{Rk,p,fi60}	[kN]	0,8	0,4	0,72	1,0	1,0	2,7	2,7
Widerstand	R90	N _{Rk,p,fi90}	[kN]	0,5	0,4	0,72	0,6	0,6	2,0	2,0
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,32	0,57	0,5	0,5	1,7	1,7
Ausbruchsversage	n									
	R30	N _{Rk,b,fi30}	[kN]	1,1	0,28	0,79	1,3	1,3	3,4	3,4
Charakteristischer	R60	N _{Rk,b,fi60}	[kN]	0,8	0,28	0,79	1,0	1,0	2,7	2,7
Widerstand	R90	N _{Rk,b,fi90}	[kN]	0,5	0,28	0,79	0,6	0,6	2,0	2,0
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,23	0,63	0,5	0,5	1,7	1,7
Randabstand										
R30 - R120		C _{min,fi} =	[mm]				120			
		C _{j,fi,⊥}	[mm]				35			
Achsabstand										
R30 - R120		S _{cr,fi}	[mm]				4 x h _{nom}			

CLR	plus und CLR plus ZF	
	tungsmerkmale XL Kalksandvollstein KS 12DF – Leistung unter	Anhang C11
	dheanspruchung	

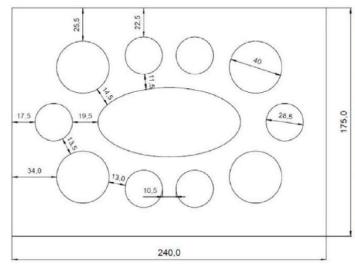
Tabelle 22: Materialkennwerte Kalksandlochstein KSL, 3DF

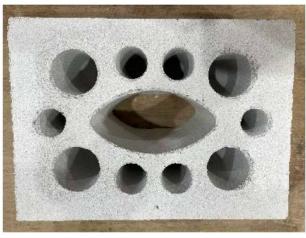
Kalksandlochst	ein KSL, 3DF nac	ch DIN EN 771-2:2	015-11	
Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	minimale Wanddicke h _{min} [mm]
SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 B: ≥ 175 H: ≥ 113	≥ 17,0	≥ 1,5	175

Tabelle 23: Montagekennwerte Kalksandlochstein KSL, 3DF

Nutzungskategorie (Installa	ation)			trocken oder nass						
CLR plus Schraubengröße			5	6		8		10		
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Nonlinelle Linschlaubtiele		[mm]	35	35	55	45	65	55	75	
Nomineller Bohrlochdurchmesser	d ₀	[mm]	5		6	×	3	1	0	
Bohrerschneiden- durchmesser	d _{cut} ≤	[mm]	5,40	6	,40	8,	45	10,	45	
Bohrlochtiefe	h ₀ ≥	[mm]	55	55	75	65	85	75	95	
Durchgangsloch im Anbauteil	d _f ≤	[mm]	7		8	1	2	1	4	
Drehmoment bei Handmontage	max. T _{inst}	[Nm]	3		4 9		g)		
Drehmoment bei Drehschraubermontage	T _{imp,max}	[Nm]	9	9 11 Leistung nicht bewertet						
			Max.	Nenndr	ehmome	ent gemä	ß der He	rstellerar	igabe	
Tangentialschlagschrauber	T _{imp,max}	[Nm]	Leistung bewe		100		20	00		

CLR plus und CLR plus ZF	
Leistungsmerkmale Kalksandlochstein KSL, 3DF – Materialkennwerte, Montagekennwerte	Anhang C12




Tabelle 24: Min. Rand- und Achsabstand, Gruppenfaktoren

CLR plus Schrauber	CLR plus Schraubengröße				6	8	3	1	0
Nominelle Einschraubtiefe		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
min. Randabstand	C _{min}	[mm]				58			
min. Achsabstand	S _{min,II} = S _{min,⊥}	[mm]				80			
	α _{g,N} (S _{min II})	[-]	2,00	2,00	2,00	1,55	1,55	1,95	1,80
Crunnanfaktaran	α _{g,N} (S _{min ⊥})	[-]	2,00	2,00	2,00	1,55	1,55	1,45	1,70
Gruppenfaktoren	$\alpha_{g,V,II}$	[-]	2,00	2,00	2,00	2,00	2,00	2,00	2,00
	$\alpha_{g,V,\perp}$	[-]	2,00	1,80	1,80	1,80	1,80	1,30	1,30

Tabelle 25: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

CLR plus Schraubengr	öße		5	6	8	10		
Abstand zu Fugen	[mm]	[mm] ≥35						
Abstanu zu Fugen	C _{j II}	[IIIIII]	≥58					
Abminderungsfaktor	$\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (volle Tragfähigkeit)			eit)		
Abstand zu Fugen	Cj⊥	[mm]		<	35			
Abstand zu Fugen	C _{j II}			<;	58			
Abminderungsfaktor	α _{j, N}	[-]	Schraube darf nicht verwendet werden					

CLR plus und CLR plus ZF

Leistungsmerkmale

Kalksandlochstein KSL, 3DF – minimaler Achs- und Randabstand, Gruppenfaktoren, Montagekennwerte bei der Montage in Fugennähe

Anhang C13

Tabelle 26: Charakteristische Tragfähigkeit

Nutzungskategorie (Installa	tion)		trocken oder nass						
CLR plus Schraubengröße			5		6	8	3	1	0
Nominelle Einschraubtiefe		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
		[mm]	35	35	55	45	65	55	75
Druckfestigkeit f _{mean}	[N/m	nm²]	≥ 17,0						
Charakteristischer Widerstand bei Zuglast	N_{Rk}	[kN]	1,1	1,1	1,1	1,6	1,6	2,2	2,2
Charakteristischer	$V_{Rk,II}$	[kN]				3,4			
Widerstand bei Querlast	$V_{Rk,\perp}$	[kN]	1,6	1,6	1,6	1,6	1,6	2,2	2,2
Druckfestigkeit f _{mean}	[N/mm²]					≥ 20,0			
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	1,3	1,3	1,3	1,9	1,9	2,5	2,5
Charakteristischer	$V_{Rk,II}$	[kN]	3,8	3,8	3,8	3,8	3,8	3,9	3,9
Widerstand bei Querlast	$V_{Rk,\perp}$	[kN]	1,8	1,8	1,8	1,8	1,8	2,5	2,5
Druckfestigkeit f _{mean}	[N/m	nm²]				≥ 25,0			
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	1,5	1,5	1,5	2,2	2,2	3,0	3,0
Charakteristischer	$V_{Rk,II}$	[kN]	4,5	4,5	4,5	4,5	4,5	4,6	4,6
Widerstand bei Querlast	$V_{Rk,\perp}$	[kN]	2,1	2,1	2,1	2,1	2,1	2,9	2,9
Interaktion	Х	[-]				1,0			

CLR plus und CLR plus ZF

Leistungsmerkmale

Kalksandlochstein KSL, 3DF – charakteristische Tragfähigkeit

Anhang C14

Tabelle 27: Verschiebungen

Nutzungskategorie (Installa	tion)				troc	ken odei	nass		
CLR plus Schraubengröße	CLR plus Schraubengröße			5 6 8			1	10	
Nominelle Einschraubtiefe		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominelle Einschraubtiefe		[mm]	35	35	55	45	65	55	75
Zuglast	F_N	[kN]	0,31	0,31	0,31	0,46	0,46	0,63	0,63
Verschiebung in Zugrichtung	δ_{NO}	[mm]	0,01	0,01	0,01	0,01	0,01	0,01	0,01
verschiebung in zugnentung	$\delta_{N\varpi}$	[mm]	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Querlast parallel zum Rand	F _{V,II}	[kN]				0,97			
Verschiebung der Querlast	$\delta_{V0,II}$	[mm]	0,80	0,80	0,80	0,80	0,80	1,42	1,42
parallel zum Rand	$\delta_{V\varpi,II}$	[mm]	1,19	1,19	1,19	1,19	1,19	2,12	2,12
Querlast senkrecht zum Rand	F _{V,⊥}	[kN]	0,46	0,46	0,46	0,46	0,46	0,63	0,63
Verschiebung der Querlast	$\delta_{V0,\perp}$	[mm]	0,01	0,01	0,01	0,01	0,01	0,01	0,01
senkrecht zum Rand	$\delta_{V\varpi,\!\perp}$	[mm]	0,02	0,02	0,02	0,02	0,02	0,02	0,02

Tabelle 28: Leistungen unter Brandbeanspruchung für Ankergruppen

CLR plus Schraubengröße			5	6				
Nominelle Einschraubtiefe	•	h_{nom}	h _{nom1}	h _{nom1}	h _{nom2}			
Norminene Emschraubhere	3	[mm]	35	35	55			
Charakteristischer Widers	tand für	Ausbruchsversa	gen unter Brandb	eanspruchung				
NIE – NIE – NIE	[kN]	R30-R90	0,09 · N ^g _{Rk,b}	$0.09 \cdot N^g_{Rk,b}$	$0,15 \cdot N^g_{Rk,b}$			
$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} = N^{g}_{Rk,p,fi}$	[KIN]	R120	0,08 · N ^g _{Rk,b}	$0.08 \cdot N^g_{Rk,b}$	$0,12 \cdot N^g_{Rk,b}$			
Minimaler Achs- und	[mm]	$c_{min,fi} = c_{j,fi}$		2 x h _{nom} 1)				
Randabstand	[mm]	S _{min,fi}		107				

¹⁾ Es sind mindestens die Abstände gemäß Tabelle 29 einzuhalten

CLR plus und CLR plus ZF

Leistungsmerkmale
Kalksandlochstein KSL, 3DF – Verschiebungen und Leistungen unter Brandbeanspruchung bei Ankergruppen

Anhang C15

Tabelle 29: Leistung unter Brandbeanspruchung	Tabelle 29	Leistung	unter	Brandbeans	pruchung
---	------------	----------	-------	------------	----------

CLR plus Schraube	ngröße			5		6		
Nominelle Einschrau	ubtiofo		h _{nom}	h _{nom1}	h_{nom1}	h _{nom2}		
Nominelle Emschlat	ubtiele		[mm]	35	35	55		
Stahlversagen für Z	Zug- und	Querlast						
	R30	N _{Rk,s,fi30}	[kN]	0,7	1,0	1,0		
	R60	N _{Rk,s,fi60}	[kN]	0,6	0,8	0,8		
	R90	N _{Rk,s,fi90}	[kN]	0,4	0,5	0,5		
	R120	N _{Rk,s,fi120}	[kN]	0,3	0,4	0,4		
	R30	V _{Rk,s,fi30}	[kN]	0,7	1,0	1,0		
Charakteristischer	R60	V _{Rk,s,fi60}	[kN]	0,6	0,8	0,8		
Widerstand	R90	V _{Rk,s,fi90}	[kN]	0,4	0,5	0,5		
	R120	V _{Rk,s,fi120}	[kN]	0,3	0,4	0,4		
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,5	0,8	0,8		
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,4	0,6	0,6		
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,2	0,4	0,4		
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,3	0,3		
Herausziehen								
	R30	N _{Rk,p,fi30}	[kN]	0,7	0,6	0,6		
Charakteristischer	R60	N _{Rk,p,fi60}	[kN]	0,6	0,4	0,4		
Widerstand	R90	N _{Rk,p,fi90}	[kN]	0,4	0,3	0,3		
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,2	0,2		
Ausbruchsversage	n							
	R30	N _{Rk,b,fi30}	[kN]	0,7	0,6	0,6		
Charakteristischer	R60	N _{Rk,b,fi60}	[kN]	0,6	0,4	0,4		
Widerstand	R90	N _{Rk,b,fi90}	[kN]	0,4	0,3	0,3		
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,2	0,2		
Randabstand								
R30 - R120		C _{min,fi} =	mm 101					
Cj,fi,⊥				56				
Achsabstand								
R30 - R120		S _{cr,fi}	[mm]		4 x h _{nom}			

CLR plus und CLR plus ZF	
Leistungsmerkmale Kalksandlochstein KSL, 3DF – Lei Brandbeanspruchung	ung unter Anhang C16

Tabelle 30: Materialkennwerte Mauerziegel MZ

Mauerziegel MZ nach DIN EN 771-1:2015-11											
Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	minimale Wanddicke h _{min} [mm]							
MZ 20 - 2,0 - NF	L: ≥ 240 B: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	240							

Tabelle 31: Montagekennwerte Mauerziegel MZ

Nutzungskategorie (Installa	Nutzungskategorie (Installation)					trocken oder nass							
CLR plus Schraubengröße	CLR plus Schraubengröße			6		8		10					
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2} 75				
Nomineller Bohrlochdurchmesser	d ₀	[mm]	5	6		8		10					
Bohrerschneiden- durchmesser	d _{cut} ≤	[mm]	5,40	6,40		8,45		10,45					
Bohrlochtiefe	h ₀ ≥	[mm]	55	55	75	65	85	75	95				
Durchgangsloch im Anbauteil	d _f ≤	[mm]	7	8	3	1	2	1	4				
Drehmoment bei Handmontage	max. T _{inst}	[Nm]	2	***	3		6	23					
Drehmoment bei Drehschraubermontage	T _{imp,max}	[Nm]	4 9		9	1	4	Leistung nicht bewertet					
Tangentialschlagschrauber	т.	[Mm]	Max.	Nenndr	ehmome	ent gemä	ß der He	rstellerar	ngabe				
langentialschlagschrauber	$T_{imp,max}$	[Nm]		Leistun	g nicht b	ewertet		18	35				

CLR plus und CLR plus ZF	
Leistungsmerkmale Mauerziegel MZ – Materialkennwerte, Montagekennwerte	Anhang C17

Tabelle 32: Min. Rand- und Achsabstand, Gruppenfaktoren

CLR plus Schrauber	5 6			8		10					
Nominelle Einschrau	htiofo	h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}		
Norminene Emscriau	Einschraubtiefe		35	35	55	45	65	55	75		
min. Randabstand	nin. Randabstand c _{min}			80							
min. Achsabstand	n. Achsabstand $s_{min,II} = s_{min, \perp}$ [m			80							
	α _{g,N} (S _{min II})	[-]	1,60	1,60	1,60	1,00	1,00	1,70	1,10		
Crupponfoltoron	α _{g,N} (S _{min ⊥})		1,75	1,75	1,75	1,15	1,15	1,45	1,40		
Gruppenfaktoren	$\alpha_{g,V,II}$	[-]	1,45	1,45	1,45	1,45	1,45	2,00	1,05		
	$\alpha_{g,V,\perp}$	[-]	1,20	1,20	1,20	1,20	1,20	1,50	1,15		

Tabelle 33: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

CLR plus Schraubengr		5	6	8	10			
Abstand zu Fugen	Cj⊥	[mm]	≥35					
Abstanu zu Fugen	Cj II	[[[]]]	≥80					
Abminderungsfaktor	$\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (\	olle Tra	ıgfähigk	eit)		
Abatanday Fusan	C _{j ⊥}	[mm]	<35					
Abstand zu Fugen	C _{j II}		<80					
Abminderungsfaktor	α _{j, N}	[-]	0000000000		darf nic et werd			

CLR plus und CLR plus ZF

Leistungsmerkmale

Mauerziegel MZ – minimaler Achs- und Randabstand, Gruppenfaktoren, Montagekennwerte bei der Montage in Fugennähe **Anhang C18**

Nutzungskategorie (Installa		trocken oder nass									
CLR plus Schraubengröße	•		5		6	8	3	10			
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}		
Normitelle Linschlaubtiele		[mm]	35	35	55	45	65	55	75		
Druckfestigkeit f _{mean}	[N/m	nm²]				≥ 21,0					
Charakteristischer Widerstand bei Zuglast	N_{Rk}	[kN]	1,6	1,6	1,6	2,3	2,3	3,1	3,2		
Charakteristischer	V _{Rk,II}	[kN]	2,5	2,5	2,5	2,5	2,5	2,6	8,1		
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	2,1	2,1	2,1	2,1	2,1	2,1	2,7		
Druckfestigkeit f _{mean}	[N/m	[N/mm²]		≥ 25,0							
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	1,7	1,7	1,7	2,5	2,5	3,4	3,5		
Charakteristischer	$V_{Rk,II}$	[kN]	2,7	2,7	2,7	2,7	2,7	2,8	8,9		
Widerstand bei Querlast	$V_{Rk,\perp}$	[kN]	2,3	2,3	2,3	2,3	2,3	2,3	3,0		
Druckfestigkeit f _{mean}	[N/m	nm²]	≥ 30,0								
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	1,9	1,9	1,9	2,8	2,8	3,7	3,8		
Charakteristischer	$V_{Rk,II}$	[kN]	2,9	2,9	2,9	2,9	2,9	3,1	9,7		
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	2,5	2,5	2,5	2,5	2,5	2,5	3,2		
Druckfestigkeit f _{mean}	[N/m	[N/mm²]				≥ 31,0					
Charakteristischer Widerstand bei Zuglast	N _{Rk}	[kN]	1,9	1,9	1,9	2,8	2,8	3,8	3,9		
Charakteristischer	$V_{Rk,II}$	[kN]	3,0	3,0	3,0	3,0	3,0	3,2	9,9		
Widerstand bei Querlast	$V_{Rk,\perp}$	[kN]	2,5	2,5	2,5	2,5	2,5	2,6	3,3		

CLR plus und CLR plus ZF

Leistungsmerkmale

Mauerziegel MZ – charakteristische Tragfähigkeit

Anhang C19

Tabelle 35: Verschiebungen

Nutzungskategorie (Installa		trocken oder nass							
CLR plus Schraubengröße	CLR plus Schraubengröße				6	8	3	10	
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Norminene Emischradbuere		[mm]	35	35	55	45	65	55	75
Zuglast	F _N	[kN]	0,46	0,46	0,46	0,66	0,66	0,89	0,91
Verschiebung in	δ_{NO}	[mm]	0,01	0,01	0,01	0,01	0,01	0,03	0,02
Zugrichtung	$\delta_{N\varpi}$	[mm]	0,02	0,02	0,02	0,02	0,02	0,05	0,05
Querlast parallel zum Rand	F _{V,II}	[kN]	0,71	0,71	0,71	0,71	0,71	0,74	2,31
Verschiebung der Querlast	δ _{V0,II}	[mm]	1,08	1,08	1,08	1,08	1,08	0,04	2,24
parallel zum Rand	δνω,ιι	[mm]	1,61	1,61	1,61	1,61	1,61	0,07	3,36
Querlast senkrecht zum Rand	F _{V,⊥}	[kN]	0,60	0,60	0,60	0,60	0,60	0,60	0,77
Verschiebung der Querlast	$\delta_{V0,\perp}$	[mm]	1,13	1,13	1,13	1,13	1,13	0,03	0,34
senkrecht zum Rand	δνω,⊥	[mm]	1,69	1,69	1,69	1,69	1,69	0,04	0,51

Tabelle 36: Leistungen unter Brandbeanspruchung für Ankergruppen

ı		Breed.			8		20 Page 1	Ĩ.										
l	CLR plus Schraubeng	ıs Schraubengröße			6	õ	8		10									
l	Nominalla Einschraul	otiofo	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}								
l	Nominelle Emschrauf	minelle Einschraubtiefe [mm]		35	35	55	45	65	55	75								
l	Charakteristischer W	iderstan	d für Ausbru	ıchsversa	gen unter	Brandbea	inspruchu	ng										
l		R30-R90			0,09 ·	0,15 ·	0,12 ·	0,18 ·	0,15 ·	0,24 ·								
l	$N^{g}_{Rk,fi} = N^{g}_{Rk,b,fi} =$	[[A]]	[LAJ]	[[4]]	[[A]]	[[A]]	[LNI]	[FN]	[FN]	[kN]		$N^{g}_{Rk,b}$	N ^g _{Rk,b}	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	N ^g _{Rk,b}	$N^{g}_{Rk,b}$
l	N ^g _{Rk,p,fi}	[KIN]	R120	0,08 ·	0,08 ·	0,12 ·	0,10 ·	0,15 ·	0,12 ·	0,19 ·								
l			K12U	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	N ^g _{Rk,b}	$N^{g}_{Rk,b}$	$N^{g}_{Rk,b}$								
l	Minimaler Achs-	[mm]	$c_{min,fi} = c_{j,fi}$		2 x h _{nom} 1)													
	und Randabstand	[[[[]]]]	S _{min,fi}		107													

¹⁾ Es sind mindestens die Abstände gemäß Tabelle 37 einzuhalten

CLR plus und CLR plus ZF

Leistungsmerkmale

Mauerziegel MZ – Verschiebungen und Leistungen unter
Brandbeanspruchung bei Ankergruppen

Anhang C20

CLR plus Schraube	ngröße			5	e	5	8	8		10	
Nominelle Einschra	ubtiofo		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom}	
Nominelle Einschra	Nonmene Emsemadbheie			35	35	55	45	65	55	75	
Stahlversagen für	Zug- und	Querlast									
	R30	N _{Rk,s,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7	
	R60	N _{Rk,s,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	1,6	1,6	
	R90	N _{Rk,s,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	1,6	1,6	
	R120	N _{Rk,s,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,5	1,5	
	R30	V _{Rk,s,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7	
Charakteristischer	R60	V _{Rk,s,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	1,6	1,6	
Widerstand	R90	V _{Rk,s,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	1,6	1,6	
	R120	V _{Rk,s,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,5	1,5	
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,8	1,1	1,1	1,5	1,5	2,5	2,5	
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,5	0,8	0,8	1,1	1,1	2,4	2,4	
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	0,5	0,5	0,8	0,8	2,3	2,3	
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,4	0,4	0,6	0,6	2,2	2,2	
Herausziehen											
	R30	N _{Rk,p,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7	
Charakteristischer	R60	N _{Rk,p,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	1,6	1,6	
Widerstand	R90	N _{Rk,p,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	1,6	1,6	
	R120	N _{Rk,p,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,5	1,5	
Ausbruchsversage	n				3		2				
	R30	N _{Rk,b,fi30}	[kN]	1,1	1,3	1,3	1,3	1,3	1,7	1,7	
Charakteristischer	R60	N _{Rk,b,fi60}	[kN]	0,8	1,0	1,0	1,0	1,0	1,6	1,6	
Widerstand	R90	N _{Rk,b,fi90}	[kN]	0,5	0,6	0,6	0,6	0,6	1,6	1,6	
	R120	N _{Rk,b,fi120}	[kN]	0,3	0,5	0,5	0,5	0,5	1,5	1,5	
Randabstand							5				
D20 D420	C _{min,fi} =	[mm]				120					
R30 - R120		Cj,fi,II	[mm]				35				
Achsabstand	Cj,fi,⊥	[min]				33					
R30 - R120		S _{cr,fi}	[mm]				4 x h _{nom}				

CLR plus und CLR plus ZF	
Leistungsmerkmale Mauerziegel MZ – Leistung unter Brandbeanspruchung	Anhang C21

Tabelle 38: Materialkennwerte Vollblock aus Leichtbeton

Vollblock aus Leichtbeton nach DIN EN 771-3:2015-11							
Format	Abmessungen [mm]	Mittlere Druckfestigkeit [N/mm²]	Dichte [kg/dm³]	minimale Wanddicke h _{min} [mm]			
VBL L: ≥ 240 4 - 1,0 - 2DF B: ≥ 115 H: > 113		≥ 4,0	≥ 1,5	240			

Tabelle 39: Montagekennwerte Vollblock aus Leichtbeton

Nutzungskategorie (Insta	trocken			
CLR plus Schraubengröß	8	10		
Nominelle Einschraubtiefe		h _{nom} [mm]	h _{nom} 65	h _{nom} 75
Nomineller Bohrlochdurchmesser	d ₀	[mm]	8	10
Bohrerschneiden- durchmesser	d _{cut} ≤	[mm]	8,45	10,45
Bohrlochtiefe	h ₀ ≥	[mm]	85	95
Durchgangsloch im Anbauteil	d _f ≤	[mm]	12	14
Drehmoment bei Handmontage	max. T _{inst}	[Nm]	6	5
Drehmoment bei Drehschraubermontage	T _{imp,max}	[Nm]	10	14

Tabelle 40: Min. Rand- und Achsabstand, Gruppenfaktoren

CLR plus Schraub	engröße	8	10		
Nominelle Einschraubtiefe		h_{nom}	h _{nom}	h_{nom}	
		[mm]	65	75	
min. Randabstand	C _{min}	[mm]	80		
min. Achsabstand $s_{min,II} = s_{min,\perp}$		[mm]	80		
Commentation	α _{g,N} (S _{min II})	[-]	1,45	1,45	
	α _{g,N} (S _{min ⊥})	[-]	1,35	1,35	
Gruppenfaktoren	$\alpha_{g,V,II}$	[-]	0,90	0,90	
	α _{g,V, ⊥}	[-]	0,75	0,75	

CLR plus und CLR plus ZF	
Leistungsmerkmale Vollblock aus Leichtbeton – Materialkennwerte, Montagekennwerte, minimaler Achs- und Randabstand, Gruppenfaktoren	Anhang C22

Tabelle 41: Abminderungsfaktoren in Abhängigkeit vom Fugenabstand

CLR plus Schraubengr	8	10		
Abstand zu Eugen	Cj⊥	[mm]	≥35	
Abstand zu Fugen	C _{j II}		≥80	
Abminderungsfaktor	α _{j, N}	[-]	1 (volle Tragfähigkeit	
Abililiderungstaktor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]	I (volle Ira	granigkertj
Abstand zu Fugen	C _{j ⊥}	[mm]	<	35
	C _{j II}		<8	30
Abminderungsfaktor	$lpha_{i,N}$	[-]		darf nicht
Abrilliaciangsiaktor	α _j , Ν	LJ	verwende	et werden

Tabelle 42: Charakteristische Tragfähigkeit

Nutzungskategorie (Installa	trocken			
CLR plus Schraubengröße			8	10
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom1}
Nominelle Emschlaubtiele		[mm]	65	75
Druckfestigkeit f _{mean}	[N/m	nm²]	≥ 4	1,0
Charakteristischer	NI.	[LAI]	0.6	1.2
Widerstand bei Zuglast	N _{Rk} [[kN]	0,6	1,2
Charakteristischer	$V_{Rk,II}$	[kN]	4,0	5,1
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	2,3	3,3
Druckfestigkeit f _{mean}	[N/m	nm²] ≥ 5,0		5,0
Charakteristischer	NI .	[[A]]	0.7	1.4
Widerstand bei Zuglast	N _{Rk} [kN]	0,7	1,4	
Charakteristischer	$V_{Rk,II}$	[kN]	4,4	5,7
Widerstand bei Querlast	V _{Rk,⊥}	[kN]	2,6	3,7

CLR plus und CLR plus ZF	
Leistungsmerkmale Vollblock aus Leichtbeton – charakteristische Tragfähigkeit, Montagekennwerte bei der Montage in Fugennähe	Anhang C23

Tabelle 43: Verschiebungen

Nutzungskategorie (Installati	trocken			
CLR plus Schraubengröße			8	10
Nominelle Einschraubtiefe		h _{nom}	h _{nom}	h _{nom}
Nominelle Einschraubtiele		[mm]	65	75
Zuglast	F _N	[kN]	0,17	0,34
Verschiebung in Zugrichtung	δ_{N0}	[mm]	0,01	0,01
Verschiebung in Zugrichtung	$\delta_{N\varpi}$	[mm]	0,02	0,02
Querlast parallel zum Rand	F _{V,II}	[kN]	1,14	1,46
Verschiebung der Querlast	δ _{V0,II}	[mm]	1,94	2,11
parallel zum Rand	δνω,ιι	[mm]	2,92	3,16
Querlast senkrecht zum Rand	F _{V,⊥}	[kN]	0,66	0,94
Verschiebung der Querlast	$\delta_{V0,\perp}$	[mm]	0,36	1,92
senkrecht zum Rand	δνω,⊥	[mm]	0,54	2,89

CLR plus und CLR plus ZF

Leistungsmerkmale

Vollblock aus Leichtbeton – Verschiebungen

Anhang C24