

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0251 of 11 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

CLR plus concrete screw

Mechanical fasteners for use in concrete

Friulsider S.p.A. Via Trieste 1 33048 SAN GIOVANNI AL NATISONE (UD) ITALIEN

Friulsider Plant

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-25/0251

English translation prepared by DIBt

Page 2 of 22 | 11 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

English translation prepared by DIBt

Page 3 of 22 | 11 March 2025

Specific Part

1 Technical description of the product

The CLR plus concrete screw is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load	See Annex B4, C1 and C2			
(static and quasi-static loading)				
Characteristic resistance to shear load	See Annex C1 and C2			
(static and quasi-static loading)				
Displacements (static and quasi-static loading)	See Annex C7			
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C3 to C5, C8			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C6

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-25/0251

English translation prepared by DIBt

Page 4 of 22 | 11 March 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

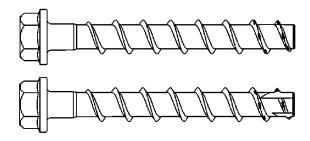
The system to be applied is: 1

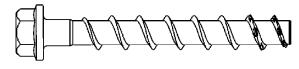
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

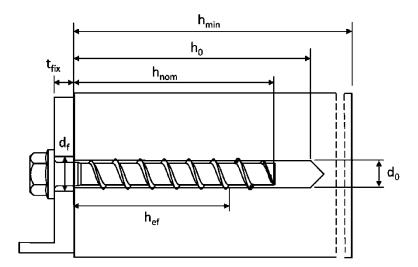
Issued in Berlin on 11 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel


English translation prepared by DIBt


Product in installed condition

CLR plus concrete screw


- Galvanized carbon steel
- Zinc flakes coated carbon steel

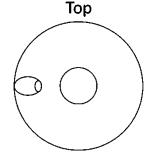
- Stainless steel A4
- Stainless steel HCR

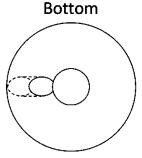
e.g. CLR plus concrete screw, zinc flakes coated, configuration with hexagon head and fixture

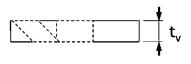
d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

df = clearance hole diameter


h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth


h₀ = drill hole depth

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

CLR plus concrete screw

Product description

Product in installed condition

Annex A1

	©	Configuration with metric connect and hexagon socket; Type ST	ion threat				
	0	Configuration with metric connect and hexagon drive; Type ST	ion threat				
	TSAN OF TO STAND	Configuration with washer and hex	xagon head; Type H				
	(15 Ag	Configuration with washer, hexago TORX drive; Type H	on head and				
	OC! AND OC!	Configuration with washer and bu	nd; Type BND				
	00,00	Configuration with hexagon head;	Type S				
	O CONTRACTOR OF	Configuration with countersunk he Type SK	ead and TORX drive;				
	001	Configuration with pan head and T	ORX drive; Type P				
	(SM)	Configuration with large pan head Type P	and TORX drive;				
		Configuration with countersunk he connection thread; Type ST-6	ead and				
		Configuration with hexagon drive a connection thread; Type ST-6	and				
		Configuration with internal thread hexagon drive; Type I	and				
CLR plus concret	e screw		Annex A2				
Product descri Screw types	Product description Screw types						

Table 1: Material

Product name	Material
CLR plus	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018
CLR plus ZF	Zinc flake coating according to EN ISO 10683:2018 (≥5µm)
CLR plus A4	1.4401; 1.4404; 1.4571; 1.4578
CLR plus HCR	1.4529
	CLR plus CLR plus ZF CLR plus A4

Part	Product name	Nominal chara Yield strength f _{yk} [N/mm²]	acteristic steel Ultimate strength f _{uk} [N/mm²]	Rupture elongation A₅ [%]
	CLR plus			
all	CLR plus ZF	560	700	≤8
types	CLR plus A4	300	700	>0
	CLR plus HCR			

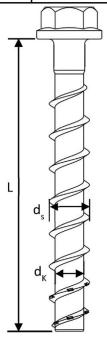
Table 2: Dimensions

Anchor size			6 8			10			12			14				
Nominal embedme	nt	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d _K	[mm]	5,	5,1 7,1			9,1			11,1			13,1			
Thread outer diameter	d _s	[mm]	7,	7,5 10,6				12,6 14,6			5	16,6				
Thickness of filling washer	t _v	[mm]		_		5			5			5			5	

Marking: CLR plus (ZF)

Screw type: TSM
Screw size: 10
Screw length: 100

CLR plus A4


Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

CLR plus HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

CLR plus concrete screw

Product description

Material, Dimensions and markings

Annex A3

English translation prepared by DIBt

Specification of Intended use

Table 3: Anchorages subject to

CLR plus concrete screw	size	(5	8		10		12		14					
Nominal embedment		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static load	ls				٨١١	sizes	and	all on	ahad	mont	dont	·hc			
Fire exposure					All	SIZES	anu	all el	iibeu	пеп	uepi	.115			
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR: no performa assessed)	nce	1	L)	1	1)	ok	1)	1)	ok	1)	ok	1	.)	ok

¹⁾ no performance assessed

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw type CLR plus A4 with marking A4: CRC III
 - High corrosion resistant steel acc. to Annex A3, screw type CLR plus HCR with marking HCR: CRC V

CLR plus concrete screw

Intended use
Specification

Annex B1

English translation prepared by DIBt

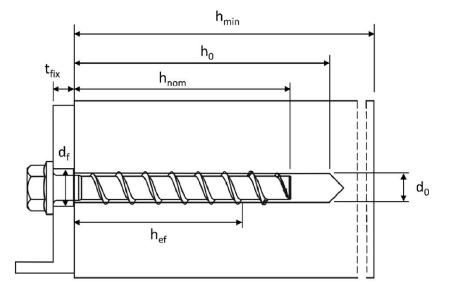
Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055,
 Edition February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:


- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth
 of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the
 hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-14, all embedment depths except for seismic application.
- Cleaning of borehole is not necessary, if using a hollow drill.

CLR plus concrete screw	
Intended use Specification continuation	Annex B2
•	

Table 4: Installation parame	ters										
CLR plus concrete screw siz	e			5		8			10		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Norminal embedment depth		[mm]	40	55	45	55	65	55	75	85	
Nominal drill hole diameter	iameter d ₀ [mm]			5	8			10			
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40		8,45			10,45			
Drill hole depth	h₀≥	[mm]	45	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]	,	3		12			14		
Installation torque (version with connection thread)	T _{inst}	[Nm]	m] 10 20 40								
Torque impact screw driver		[Nm]	Max	x. torqu	e accord	ding to r	nanufac	turer's	instruct	ions	
		נואוון	16	60	9	300			400		

CLR plus concrete screw siz		12		14					
Nominal embedment depth	Naminal ambadment depth			h _{nom1} h _{nom2} h _{nom3}			h _{nom2}	h _{nom3}	
Nominal embeament depth		[mm]	65	85	100	75	100	115	
Nominal drill hole diameter	d_0	[mm]	nm] 12				14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	mm] 12,50				14,50		
Drill hole depth	h ₀ ≥	[mm]	75	95	110	85	110	125	
Clearance hole diameter	d _f ≤	[mm]		16		18			
Installation torque (version with connection thread)	T _{inst}	[Nm]	60			80			
Targue impost serous driver		[MM]	Max. t	torque ac	ccording to r	nanufacturer's instructions			
Torque impact screw driver	orque impact screw driver [Nm]			650			650		

CLR p	lus co	ncrete	screw
-------	--------	--------	-------

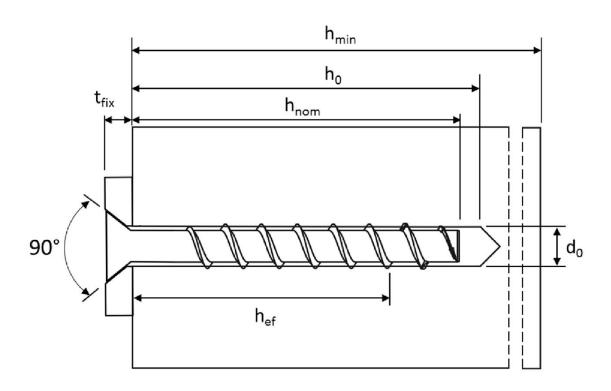
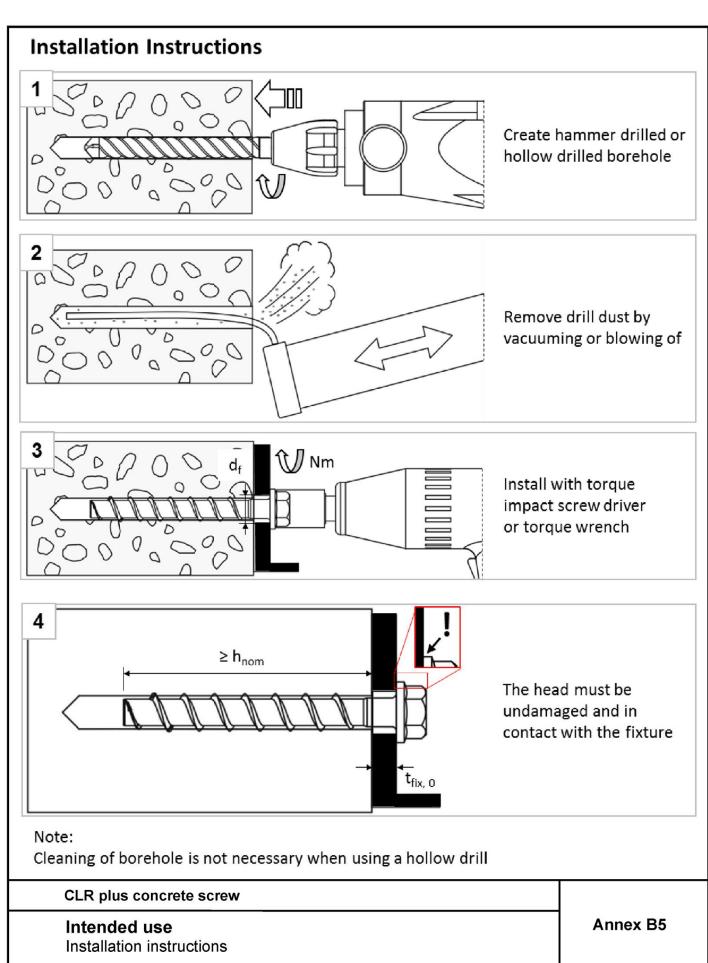
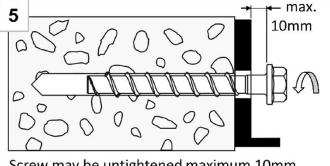

Intended use Installation parameters Annex B3

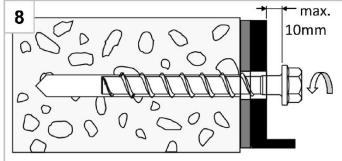
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing


CLR plus concrete screw size			(5		8		10			
Nominal embedment depth		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment	depth	[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	100		1	120		100	100 130		
Minimum edge distance	C _{min}	[mm]	40		40	50		50			
Minimum spacing	S _{min}	[mm]	4	0	40	50		50			

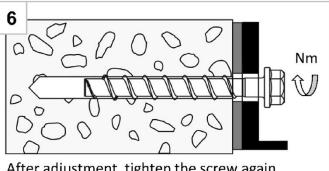
CLR plus concrete sc	rew siz	ze		12		14			
Nominal embedment depth		h _{nom1} h _{nom2}		h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment	иерип	[mm]	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	120 130		150	130	150	170	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	50		70	50	70		

CLR plus concrete screw		
Intended use Minimum thickness of members spacing	er, minimum edge distance and minimum	Annex B4

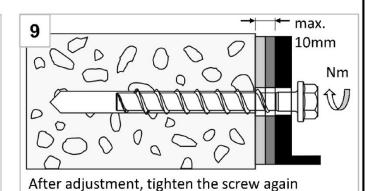


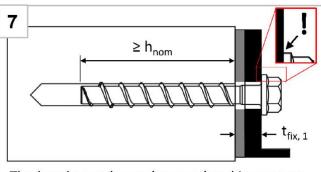

Installation Instructions - Adjustment

1. Adjustment

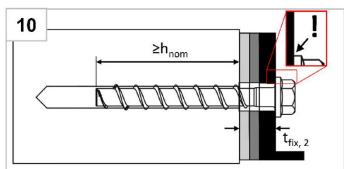


Screw may be untightened maximum 10mm


2. Adjustment



Screw may be untightened maximum 10mm



After adjustment, tighten the screw again

The head must be undamaged and in contact with the fixture

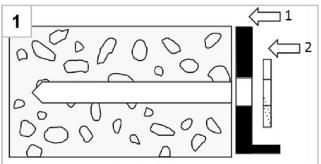
The head must be undamaged and in contact with the fixture

Note:

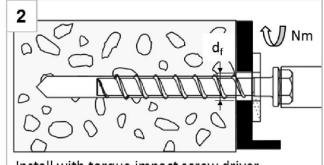
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom}.

CLR plus concrete screw

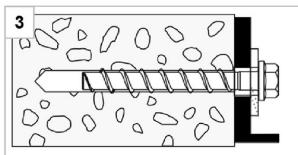
Intended use

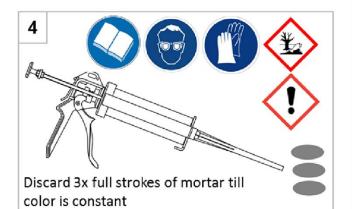

Installation instructions - Adjustment

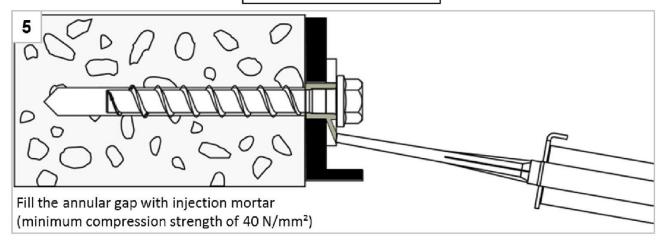
Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

CLR	nlu	s co	nere	Δta	SCI	'AVA'
OLIV	piu	3 66	111016	,,,	361	CAA

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 6: Characteristic values for static and quasi-static loading, sizes 6-10													
CLR plus cor	cret	e screw siz	e		(5		8			10		
Noneinal and	له م	والمرام المرام		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal emb	eam 	ent depth		[mm]	40	55	45	55	65	55	75	85	
Steel failure	for t	ension and	shear	loadin	g								
Characteristic			N _{Rk,s}	[kN]		l,0		27,0		45,0			
Partial safety			γMs,N	[-]		1,5							
Characteristic resistance			$V^{0}_{Rk,s}$	[kN]	7.	,0	13	3,5	17,0	22,5	34	ļ,0	
Partial safety		30-00-0 ABANS AND COST (100 ABANS 100	γ Ms,V	[-]	10000			250	25		aprilia yegili. Id		
Ductility factor k ₇ [-] 0,8													
Characteristic	5-200	ding load	M ⁰ _{Rk,s}	[Nm]	10),9		26,0			56,0		
Pull-out failu	ıre												
Characteristic	:	cracked	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾	
resistance in C20/25		uncracked	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0	
020/23	C25/30 1,12												
Increasing		1,12											
factor for N_{Rk} = $N_{Rk,p(C20/25)}$ *		C30/37 C40/50	Ψ_{c}	[-]				7.	41				
1 • πκ,ρ(U2U/25)	Ψυ	C50/60						1,	58				
Concrete failure: Splitting failure, concrete cone failure and pry-out failure													
Effective embedment depth hef [mm] 31 44 35 43 52 43 60							60	68					
L. C.	cra	cked	k _{cr}	[-]		-		7,	,7	-	-		
k-factor	unc	cracked	k _{ucr}	[-]				11	1,0				
Concrete	spa	cing	S _{cr,N}	[mm]				3 x	h _{ef}				
cone failure	edg	ge distance	C _{cr,N}	[mm]				1,5	x h _{ef}				
	resi	istance	N ⁰ Rk,sp	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0	
Splitting failure	spa	cing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210	
Tallare	edg	ge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105	
Factor for pry	-out	failure	k ₈	[-]			1,	,0			2,	,0	
Installation fa	ctor		γinst	[-]				1,	,0				
Concrete ed	ge fa	ailure											
Effective leng			I _f = h _{ef}	[mm]	31	44	35	43	52	43	60	68	
Nominal oute	Ř.												
screw	ALVO TERMINATION		d _{nom}	[mm]		5		8			10		
1) N ⁰ _{Rk,c} according	ng to	EN 1992-4:20	018										
CLR p	lus c	oncrete sc	rew]			
Perfo Chara		n ces stic values	for sta	tic and	quasi-	static lo	pading,	sizes 6	6-10	A	nnex (C1	
178240 25							3000						

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	94,0 56,0 185,0	h _{nom} 3						
$ \begin{array}{ c c c c c c } \hline Nominal embedment depth & & & & & & & & & & & & & & & & & & &$	94,0 56,0 185,0	101 - 004177-141						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56,0 185,0							
Partial safety factor $γ_{Ms,N}$ [-] 1,5 Characteristic shear load $V^0_{Rk,s}$ [kN] 33,5 42,0 Partial safety factor $γ_{Ms,V}$ [-] 1,25 Ductility factor k_7 [-] 0,8 Characteristic bending load $M^0_{Rk,s}$ [Nm] 113,0 Pull-out failure Characteristic cracked $N_{Rk,p}$ [kN] 12,0 Pull-out failure Characteristic cracked $N_{Rk,p}$ [kN] 16,0 Increasing factor for $N_{Rk,p}$ [c30/37 1,22 $N_{Rk,p(C20/25)} * Ψ_c$ C40/50 $N_{Rk,p(C20/25)} * Ψ_c$ [-]	56,0 185,0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	185,0							
Partial safety factor $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	185,0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Characteristic bending load $M^0_{Rk,s}$ [Nm] 113,0 Pull-out failure Characteristic resistance in C20/25 $C25/30$ $C30/37$ $C40/50$ V_c $V_$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s,c ¹⁾							
resistance in C20/25 uncracked $N_{Rk,p}$ [kN] 16,0 $\geq N^0_{Rk}$ Increasing factor for $N_{Rk,p}$ = $N_{Rk,p(C20/25)} * \psi_c$ [-] [-] [-] 1,41	s,c ¹⁾							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ς,c ¹⁾							
factor for $N_{Rk,p}$ = $N_{Rk,p(C20/25)} * \psi_c$ C40/50 Ψ_c [-] 1,41								
$= N_{Rk,p(C20/25)} * \psi_c$ 1,41								
	*							
Concrete failure: Splitting failure, concrete cone failure and pry-out failure								
Effective embedment depth hef [mm] 50 67 80 58	79	92						
k -factor $k_1 = k_{cr}$ [-] 7,7								
uncracked k ₁ =k _{ucr} [-] 11,0								
Concrete spacing s _{cr,N} [mm] 3 x h _{ef}								
cone failure edge distance c _{cr,N} [mm] 1,5 x h _{ef}								
resistance N ⁰ _{Rk,sp} [kN] 16,0 27,0 35,0 21,0	5 34,5	43,5						
failure spacing s _{cr,Sp} [mm] 150 210 240 180		280						
edge distance c _{cr,Sp} [mm] 75 105 120 90	25. 25. 25.25	140						
Factor for pry-out failure k ₈ [-] 1,0 2,0 1,0	2,0							
Installation factor γ_{inst} [-] 1,0								
Concrete edge failure								
Effective length in concrete $I_f = h_{ef}$ [mm] 50 67 80 58	79	92						
Nominal outer diameter of screw d _{nom} [mm] 12	14							
¹⁾ N ⁰ _{Rk,c} according to EN 1992-4:2018								
CLR plus concrete screw								
Performances	Annex C2							
Characteristic values for static and quasi-static loading, sizes 12-14								

Table 8: Seismic category C1 – Characteristic load values (type H/S, type SK, type ST	,
type ST-6 ¹⁾ , type P and type I ¹⁾)	

CLR plus concrete screw size		•	5	8	1	0	12	14
Nominal embedment depth		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}
3.5	[mm]	40	55	65	55	85	100	115

Steel failure for tension and shear load (version type H/S, type SK, type ST, type ST-61), type P, type I1)										
Characteristic resistance	N _{Rk,s,C1}	[kN]	14,0 27,0 45,0		,0	67,0	94,0			
Partial safety factor	γ _{Ms,N}	[-]	-] 1,5							
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4	
Partial safety factor	γ _{Ms,V}	[-]	1,25							
With filling of the annular gap ²⁾	$\alpha_{\sf gap}$	[-]	1,0							
Without filling of the annular gap ³⁾	$\alpha_{\sf gap}$	[-]	0,5							

Pull-out failure (version type H/S, type SK, type ST, type ST-61), type P, type I1)										
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	2,0	4,0	12,0	9,0	≥ N ⁰ _{Rk,c} ⁴⁾			

Concrete cone failure (version type	Concrete cone failure (version type H/S, type SK, type ST, type ST-61), type P, type I1)										
Effective embedment depth	h _{ef} [mm] 31 44 52 43 68 80 92										
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}								
Spacing	S _{cr,N}	[mm]	3 x h _{ef}								
Installation factor	γinst	[-]	1,0								

Concrete pry-out failure (version type H/S, type SK, type ST, type P)										
Factor for pry-out failure	k ₈	[-]	1,0	2,0						

Concrete edge failure (version type	H/S, typ	e SK, t	ype ST,	type P)					
Effective length in concrete	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92
Nominal outer diameter of screw	d_{nom}	[mm]	6	6	8	10	10	12	14

¹⁾ only tension load

CLR plus concrete screw	
Performances Seismic category C1 – Characteristic load values	Annex C3

²⁾ With filling of the annular gap according to annex B7, figure 5

³⁾ Without filling of the annular gap according to annex B5

 $^{^{4)}}$ $N^0_{Rk,c}$ according to EN 1992-4:2018

Table 9: Seismic category C2 1) – Characteristic load values with filled annular gap
according to annex B7, figure 5 (type H/S, type ST, type P)

according to annex B7, figure 5	(type H	S, type	e ST, type F	P)				
CLR plus concrete screw size			8	10	12	14		
Nominal embedment depth		h _{nom}						
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension and shear	load (ve	rsion ty	oe H/S, type S	T, type P)				
Characteristic resistance	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0		
Partial safety factor	γ _{Ms,N}	[-]		1,	,5			
Characteristic resistance	$V_{Rk,s,C2}$	[kN]	9,9	18,5	31,6	40,7		
Partial safety factor	γ _{Ms,V}	[-]		1,	25			
With filling of the annular gap	$lpha_{\sf gap}$	[-]	1,0					
Pull-out failure (version type H/S, typ	e ST, type	e P)						
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5		
Concrete cone failure (version type	H/S, type	ST, type	e P)					
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5 :	x h _{ef}			
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}			
Installation factor	γinst	[-]		1,	,0			
Concrete pry-out failure (version ty	pe H/S, ty	pe ST, t	ype P)					
Factor for pry-out failure	k ₈	[-]	1,0		2,0			
Concrete edge failure (version type	H/S, type	ST, type	e P)					
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92		

Concrete edge failure (version type	H/S, type	ST, type	e P)			
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14

¹⁾ A4 and HCR not suitable

CLR	plus	concrete	screw

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

Table 10: Seismic category C2 ¹⁾ – Characteristic load values **without filled annular gap according to annex B5** (type H/S, type ST, type P and type SK)

ccording to annex B5 (type H/S	s, type S	I, type	e P and typ	e SK)		
CLR plus concrete screw size			8	10	12	14
Name in all and a share and all and b		h _{nom}		h _{no}	om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension and shea	ar load (v	ersion t	ype H/S, type	ST, type P)		
Characteristic resistance	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0
Partial safety factor	γ _{Ms,N}	[-]		1,	,5	
Characteristic resistance	$V_{Rk,s,C2}$	[kN]	10,3	21,9	24,4	23,3
Partial safety factor	γ _{Ms,V}	[-]		1,	25	
Without filling of the annular gap	$lpha_{\sf gap}$	[-]		0	,5	
Pull-out failure (version type H/S, ty	ype ST, ty	pe P)				
Characteristic resistance in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5
Steel failure for tension and shea	ar load (v	ersion t	ype SK)			
Characteristic resistance	N _{Rk,s,C2}	[kN]	27,0	45,0		
Partial safety factor	γ _{Ms,N}	[-]	1,	,5		
Characteristic resistance	V _{Rk,s,C2}	[kN]	3,6	13,7	no performance assessed	
Partial safety factor	γ _{Ms,V}	[-]	1,2	25		
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	0,	,5		
Pull-out failure (version type SK)						
Characteristic resistance in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	no performa	nce assessed
Concrete cone failure (version type	e H/S, typ	e SK, typ	pe ST, type P)			
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}	
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}	
Installation factor	γinst	[-]		1,	,0	
Concrete pry-out failure (version t	ype H/S,	type SK,	type ST, type	e P)		
Factor for pry-out failure	k ₈	[-]	1,0		2,0	
Concrete edge failure (version type	e H/S, typ	e SK, ty	pe ST, type P)			
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14

¹⁾ A4 and HCR not suitable

CLR plus concrete screw	
Performances Seismic category C2 – Characteristic load values without filled annular gap	Annex C5

CLR plus cor	crete s	screw size		6	5		8			10			12			14	
Naminal amb		t donth	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal emb	eamen	it depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11
Steel failure	for ter	sion and s	hear l	load													
	R30	N _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3	i	10,3		
	R60	N _{Rk,s,fi60}	[kN]	0,	,8	1,7			3,3			5,8			8,2		
	R90	N _{Rk,s,fi90}	[kN]	0,	,6		1,1			2,3			4,2	8		5,9	
	R120	N _{Rk,s,fi120}	[kN]	0,	,4	0,7			1,7			3,4			4,8		
	R30	V _{Rk,s,fi30}	[kN]	0,			2,4			4,4			7,3			10,3	
Characteristic		V _{Rk,s,fi60}	[kN]	0,		1,7		3,3			5,8			8,2			
Resistance	R90	V _{Rk,s,fi90}	[kN]	0,		1,1		2,3		4,2		5,9					
	R120	V _{Rk,s,fi120}	[kN]	0,	_	0,7		1,7			3,4		4,8				
	R30	M ⁰ _{Rk,s,fi30}			0,7 0,6		2,4		5,9		12,3		20,4				
	R60	M ⁰ Rk,s,fi60		_			1,8		4,5		9,7		15,9				
	R90	M ⁰ Rk,s,fi90		0,			1,2		3,0		7,0		11,6				
	R120	M ⁰ Rk,s,fi120	[Nm]	0,	,3		0,9			2,3			5,7	*	9,4		
Pull-out fail	ıre																
Characteristic	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete co	ne failu	ıre					2 2					760					
Characteristic	R30-	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,7	1.8	1,0	1.7	2.7	1.7	3.8	5.3	2.4	5.1	7,9	3,5	7,6	11
		11 111,0,11	[]	-,-		_/-	_,.	_,,	-/-	-,-			-/-	- ,-	-/-	.,-	
Edge distance	ce																
R30 to R120		C _{cr,fi}	[mm]		X00 20		70				x he			1000000000	200		
In case of fire	attack	from more	than	one s	side,	the i	minir	num	edg	e dis	tanc	e sha	all be	≥300)mm	•	
Spacing		_		ı													
R30 to R120		S _{cr,fi}	[mm]								x he						
The anchorage value.	ge dept	h has to be	increa	sed t	for w	et co	oncre	ete b	y at	least	30 r	nm d	comp	ared	to th	e give	en

CLR plus concrete screw	
Performances Fire exposure – characteristic values of resistance	Annex C6

CLR plus co	oncrete screw s	ize		6	5			8			10		
Naminal on	shadmant danth		h _{nom}	h _{nom1}	h _{nom2}	hno	iom1	h _{nom}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
Nominai en	nbedment depth		[mm]	40	55	-	15	55	65	55	75	85	
6	tension load	N	[kN]	0,95	1,9	2,	.,4	4,3	5,7	4,3	7,9	9,6	
Cracked concrete	displacement	δ_{NO}	[mm]	0,3	0,6	0	,6	0,7	0,8	0,6	0,5	0,9	
COTTOT CTC	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0	,6	1,0	0,9	0,4	1,2	1,2	
l la sus slus d	tension load	N	[kN]	1,9	4,3	3	,6	5,7	7,6	5,7	9,5	11,9	
Uncracked concrete	displacement	δ_{NO}	[mm]	0,4	0,6	0),7	0,9	0,5	0,7	1,1	1,0	
	изрічестісті	δ _{N∞}	[mm]	0,4	0,4	0	,6	1,0	0,9	0,4	1,2	1,2	
CLR plus co	oncrete screw s	ize		12				14					
Nominal en	nbedment depth		h _{nom}	h _{nom1}	h _{nom2}		h _{no}	m3	h _{nom1}	h _{nom}	2	h _{nom3}	
Norminal en			[mm]	65	85	\perp	10	0	75	100		115	
Cracked	tension load	N	[kN]	5,7	9,4	\perp	12,	,3	7,6	12,0		15,1	
concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,9	0,5	\perp	1,0	0	0,5	0,8		0,7	
	алартиветте	δ _{N∞}	[mm]	1,0	1,2		1,	2	0,9	1,2		1,0	
I formania aliandi	tension load	N	[kN]	7,6	13,2		17,	,2	10,6	16,9		21,2	
Uncracked	concrete displacement	$\delta_{ extsf{N0}}$	[mm]	1,0	1,1		1,	2	0,9	1,2		0,8	
Concrete	displacement	δ_{N^∞}	[mm]	1,0	1,2		1,	2	0,9	1,2		1,0	
	splacements ur		atic and			hea	ar loa						
CLR plus co	oncrete screw s	ize		6				8			10	_	
Nominal en	nbedment depth		h _{nom} [mm]	h _{nom1}	h _{nom2}			h _{nom} 55			h _{nom2} 75	h _{nor}	
Cracked	shear load	V	[kN]		,3			8,6		16,2			
and		δ_{V0}	[mm]		55	2,7				2,7			
uncracked concrete	displacement	δ _V ∞	[mm]	3,	,1			4,1		4,3			
CLR plus co	oncrete screw s	ize			12					14			
			h _{nom}	h _{nom1}	h _{nom2}		h _{no}	m3	h _{nom1}	h _{nom} ;	2	h _{nom3}	
Nominai en	nbedment depth		[mm]	65	85		10	0	75	100		115	
Cracked	shear load	V	[kN]		20,0)				30,5	5		
and		δ_{V0}	[mm]		4,0					3,1			
uncracked	displacement	$\delta_{V^{\infty}}$	[mm]		6,0					4,7			
concrete													

CLR plus concrete screw size			8	10	12	14		
Name's all and a dual and denth		h _{nom}	h _{nom3}					
Nominal embedment depth		[mm]	65	85	100	115		
Displacements under tension	loads (version	n type H/	S, type ST, t	ype P)				
Displacement DLS	δ _{N,C2(DLS)}	[mm]	0,66	0,32	0,57	1,16		
Displacement ULS	$\delta_{N,C2(ULS)}$	[mm]	1,74	1,36	2,36	4,39		
Displacements under shear lo	oads (version	type H/S,	type ST, typ	e P with hole	clearance)			
Displacement DLS	δ _{V,C2(DLS)}	[mm]	1,68	2,91	1,88	2,42		
Displacement ULS	δ _{V,C2(ULS)}	[mm]	5,19	6,72	5,37	9,27		
CLR plus concrete screw size	version typ	oe H/S, t	10 h			14		
CLR plus concrete screw size	for	8	10	12	14			
Nominal embedment depth				h _r	nom3			
Nominal embedment depth		[mm]	65	85	100	115		
Displacements under tension	loads (version	n type H/	S, type ST, t	ype P)				
Displacement DLS	δ _{N,C2(DLS)}	[mm]	0,66	0,32	0,57	1,16		
Displacement ULS	δ _{N,C2(ULS)}	[mm]	1,74	1,36	2,36	4,39		
Displacements under tension	loads (version	n type SK)					
Displacement DLS	$\delta_{N,C2(DLS)}$	[mm]	0,66	0,32	no performa	nco 2550550		
Displacement ULS	$\delta_{N,C2(ULS)}$	[mm]	1,74	1,36	no periorna	nce assessed		
Displacements under shear lo	oads (version	type H/S,	type ST, typ	e P with hole	clearance)			
Displacement DLS	δ _{V,C2(DLS)}	[mm]	4,21	4,71	4,42	5,60		
Displacement ULS	δ _{V,C2(ULS)}	[mm]	7,13	8,83	6,95	12,63		
Displacements under shear lo	oads (version	type SK w	ith hole clea	rance)	*	.		
	$\delta_{\text{V,C2(DLS)}}$	[mm]	2,51	2,98				
Displacement DLS		[mm]	7,76	6,25	no performance assesse			

CLR plus concrete screw	
Performances Displacements under seismic loads	Annex C8