

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0252 of 11 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	CLR plus concrete screw
Product family to which the construction product belongs	Fasteners for use in concrete for redundant non-structural systems
Manufacturer	Friulsider S.p.A. Via Trieste 1 33048 SAN GIOVANNI AL NATISONE (UD) ITALIEN
Manufacturing plant	Friulsider Plant
This European Technical Assessment contains	16 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330747-00-0601, Edition 06/2018

Page 2 of 16 | 11 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The CLR plus concrete screw of sizes 5 and 6 mm is an anchor made of galvanised steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	See Annex C3	

3.2 Safety in use (BWR 4)

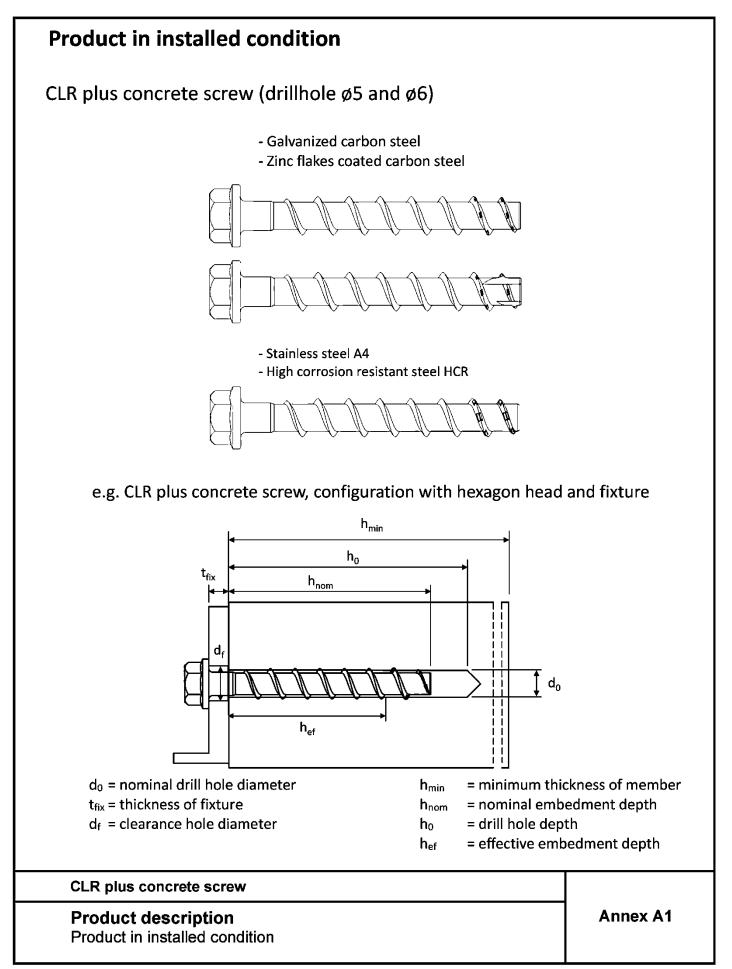
Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, Annex C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

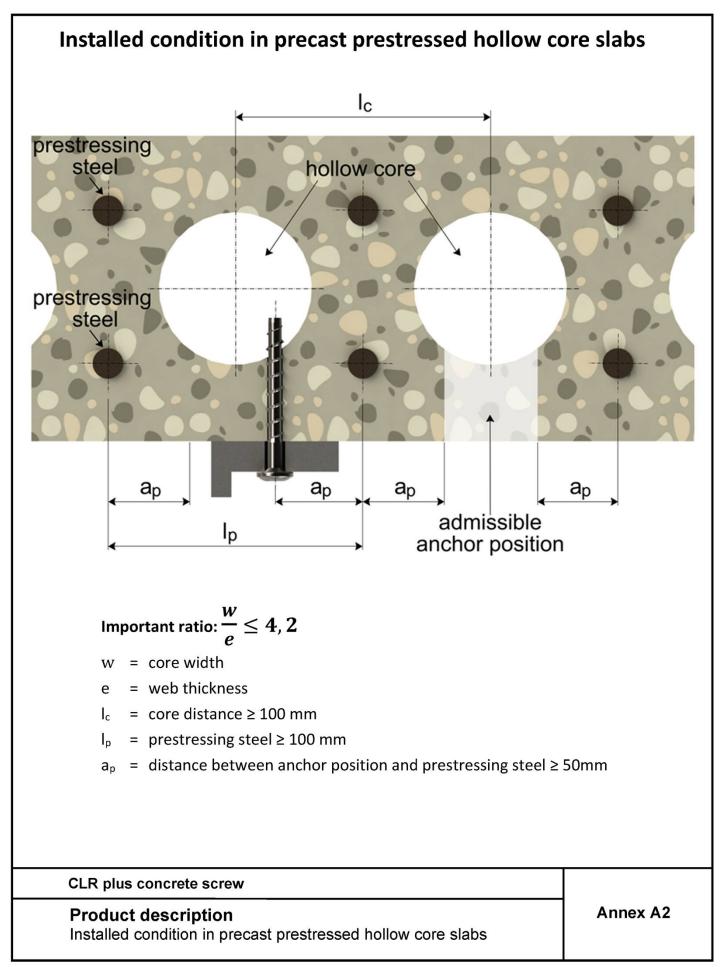
In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

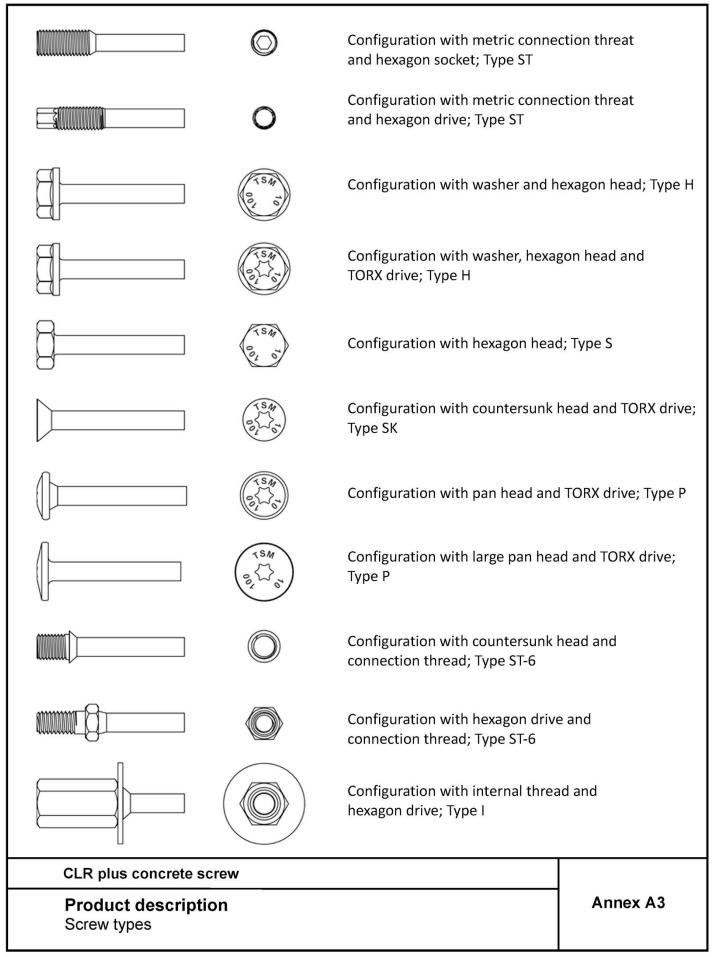
Page 4 of 16 | 11 March 2025


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 11 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Tempel



Page 7 of European Technical Assessment ETA-25/0252 of 11 March 2025

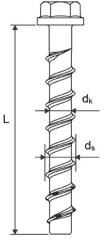
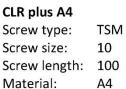


Table 1: Material									
Part	Product name		Material						
	CLR plus	Steel EN 10263-4:202	17 galvanized acc. to E	N ISO 4042:2018					
all	CLR plus ZF	Zinc flake coating acc	ording to EN ISO 1068	3:2018 (≥5µm)					
types	CLR plus A4	1.4401; 1.4404; 1.4571; 1.4578							
	CLR plus HCR	1.4529							
		Nominal chara	acteristic steel	Rupture					
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]					
	CLR plus								
all	CLR plus ZF		700	< 9					
types	CLR plus A4	560	700	≤ 8					
	CLR plus HCR								

Table 2: Dimensions


Anchor size			5 6			
Screw length	≤L	[mm]		200		
Core diameter	d _k	[mm]	4,0	5,1		
Thread outer diameter	ds	[mm]	6,5	7,5		

Marking:

CLR plus (ZF)Screw type:TSMScrew size:10Screw length:100

CLR plus HCRScrew type:TSMScrew size:10Screw length:100Material:HCR

Marking "k" or "x" for anchors with connection thread and h_{nom}= 35mm

CLR plus concrete screw

Product description Material, Dimensions and markings

Annex A4

Specification of Intended use

Anchorages subject to:

- static and guasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 5 and 6
 - Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A4, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A4, screw with marking HCR: CRC V

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

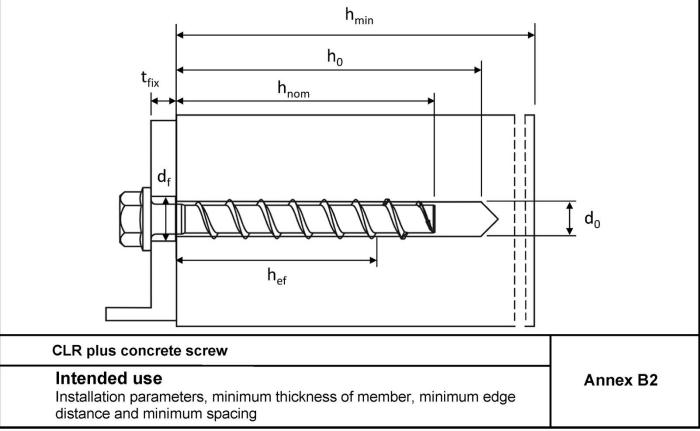
Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

CLR plus concrete screw

Intended use

Annex B1


Specification

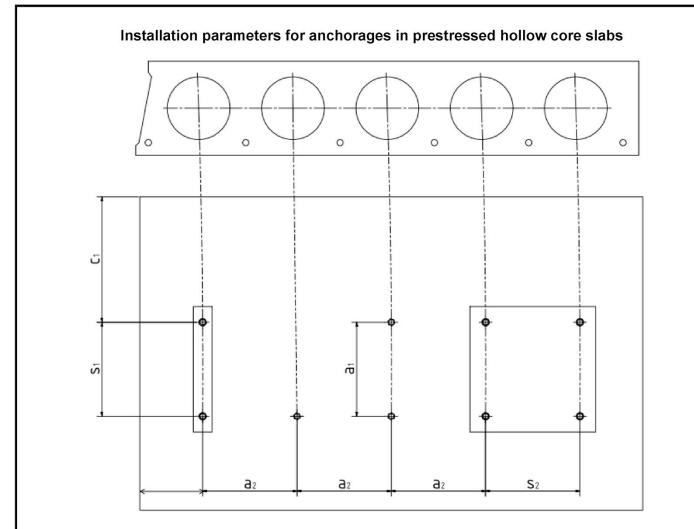
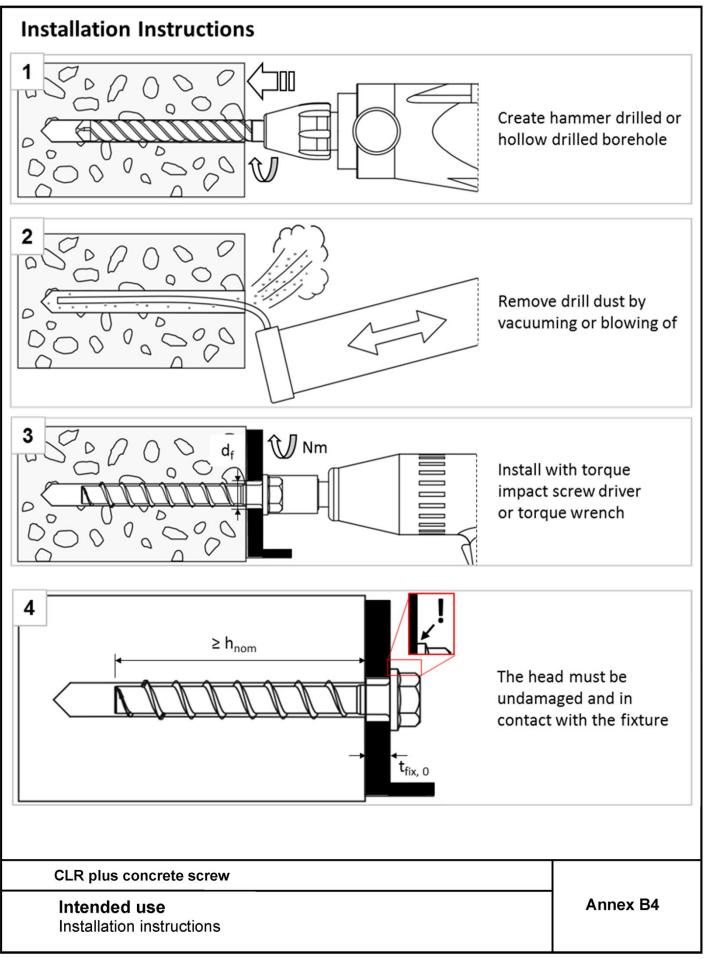

Table 3: Installation parameters								
CLR plus concrete screw siz	e		5	(5			
Nominal embedment depth		h_{nom}	h _{nom1}	h _{nom1}	h _{nom2}			
Nominal embedment depth		[mm]	35	35	55			
Nominal drill hole diameter	do	[mm]	5	(6			
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,40				
Drill hole depth	h₀ ≥	[mm]	40	40 60				
Clearance hole diameter	d _f ≤	[mm]	7	8				
Installation torque (version with connection thread)	T _{inst} ≤	[Nm]	8	10				
Recommended torque impact screw driver		[Nima]	Max. torque according to manufacturer's instruction		rer's instructions			
		[Nm]	110	160				

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

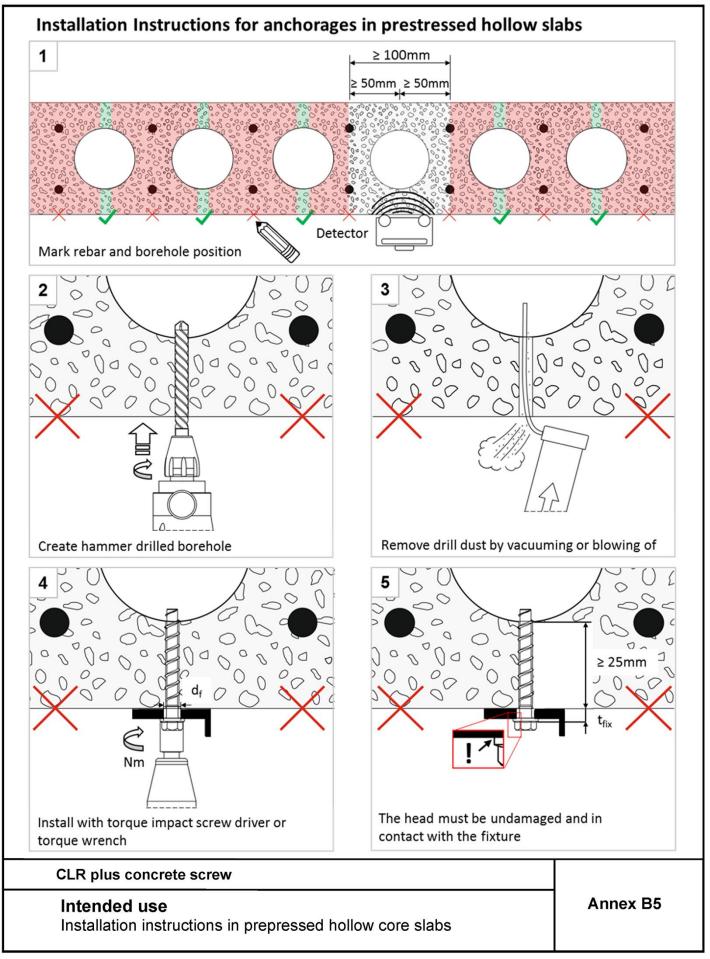
CLR plus concrete screw size			5	6		
h _{nom1}			h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment de	eptn	[mm]	35	35	55	
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	C _{min}	[mm]	35	35	40	
Minimum spacing	S _{min}	[mm]	35	35	40	

 $c_1, c_2 = edge distance$

- s_1, s_2 = anchor spacing
- a₁, a₂ = distance between anchor groups
- c_{min} = minimum edge distance \ge 100 mm
- s_{min} = minimum anchor spacing $\ge 100 \text{ mm}$
- a_{min} = minimum distance between anchor groups \ge 100 mm


CLR plus concrete screw

Intended use


Installation parameters in prestressed hollow core slabs

Annex B3

CLR plus con	crete screw siz	ze		5	6			
			h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}		
Nominal embedment depth		[mm]	35	35	55			
Steel failure for tension and shear loadir				g				
Characteristic	resistance	N _{Rk,s}	[kN]	8,7	14	.,0		
Partial safety	factor	γ _{Ms,N}	[-]		1,5			
Characteristic	resistance	V _{Rk,s}	[kN]	4,4	7,	0		
Partial safety	factor	γ _{Ms,V}	[-]		1,25			
Ductility facto	r	k7	[-]		0,8			
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]	5,3	10	,9		
Pull-out failu	re							
Characteristic	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5		
resistance in C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5		
Increasing C25/30				1,12				
factor for C N _{Rk,p p} = C	C30/37	Ψ _c	[-]	1,22				
	C40/50			1,41				
N _{Rk,p} (C20/25) * Ψc	C50/60			1,58				
Concrete fail	ure: Splitting f	ailure,	concret	te cone failure and	e cone failure and pry-out failure			
Effective emb	edment depth	h _{ef}	[mm]	27 27 44				
k-factor	cracked	k1=kcr	[-]	7,7				
	uncracked	k1=kucr	[-]		11,0			
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}			
Culitting	resistance	N ⁰ Rk,Sp	[kN]		min(N ⁰ Rk,c; NRk,p)			
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160		
	edge distance	C _{cr,Sp}	[mm]	60	60	80		
Factor for pry	-out failure	k ₈	[-]		1,0			
Installation fa	ctor	γinst	[-]	1,2	1,0	1,0		
Concrete ed	ge failure							
Effective leng	th in concrete	$I_f = h_{ef}$	[mm]	27	27	44		
Nominal outer diameter of		d _{nom}	[mm]	5 6		5		

CLR plus concrete screw

Performances

Characteristic values for static and quasi-static loading

Annex C1

Table 6: Characteristic values of resistance in prestressed hollow core slabs C30/37 to C50/60									
CLR plus concrete screw size 6									
Bottom flange thickness	db	[mm]	≥ 25 ≥ 30 ≥ 35						
Characteristic resistance	aracteristic resistance F ⁰ _{Rk} [kN] 1 2 3								
Edge distance	Ccr	[mm]		100					
Spacing	Spacing s _{cr} [mm] 200								
Installation factor γ _{inst} [-] 1,0									

Table 7: Limiting distances for application in prestressed hollow core slabs

Distances for application in prestressed hollow core slabs							
Minimum edge distance	C _{min}	[mm]	≥ 100				
Minimum anchor spacing	S _{min}	[mm]	≥ 100				
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100				
Distance of core	lc	[mm]	≥ 100				
Distance of prestressing steel	lp	[mm]	≥ 100				
Distance between anchor position and prestressing ap [mm] ≥ 50 steel							

CLR plus concrete screw

Performances Characteristic values and limiting distances in prestressed hollow core slabs

Annex C2

Table 8: Fire exposure – characteristic values of resistance ¹⁾								
CLR plus conc				5		6		
Material				CLR plus (ZF)	CLR plus (ZF)		CLR plus A4/HCR	
Nominal ombo	Nominal embedment depth				h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
	-		[mm]	35	35	55	35	55
Steel failure fo				$_{k,s,fi} = N_{Rk,s,fi} = V_{Rk,s}$			1	
	R30	F _{Rk,s,fi30}	[kN]	0,8		,9	1,2	
	R60	F _{Rk,s,fi60}	[kN]	0,6	0	,8	1,2	2
	R90	F _{Rk,s,fi90}	[kN]	0,4	0	,6	1,2	2
Characteristic	R120	F _{Rk,s,fi120}	[kN]	0,3	0	,4	0,8	3
Resistance	R30	M ⁰ Rk,s,fi30	[Nm]	0,5	0	,7	0,9)
	R60	M ⁰ Rk,s,fi60	[Nm]	0,4	0	,6	0,9)
	R90	M ⁰ Rk,s,fi90	[Nm]	0,2	0	,5	0,9)
	R120	M ⁰ Rk,s,fi120	[Nm]	0,2	0	,3	0,6	5
Pull-out failur	e						I	
Characteristic	R30-R90	N _{Rk,p,fi}	[kN]	0,375	0,75	1,875	0,75	1,875
Resistance	R120	N _{Rk,p,fi}	[kN]	0,3	0,6	1,5	0,6	1,5
Concrete cone	e failure							
Characteristic	R30-R90	N ⁰ Rk,c,fi	[kN]	0,65	0,65	2,21	0,65	2,21
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,52	0,52	1,76	0,52	1,76
Edge distance								
R30 - R120		C _{cr,fi}	[mm]			x h _{ef}		
	ttack from	more than o	ne side,	the minimum edg	ge distanc	e shall be	≥300mm.	
Spacing				[-			
R30 - R120	denth has	S _{cr,fi}	[mm]	vet concrete by at		x h _{ef}	ared to the	given
value.	ueptii nas	to be increas			icast SU I	nin comp		BIVEII
¹⁾ Not for application in prestressed hollow core slabs								
CLR plus	s concrete	screw						
Performances Characteristic values under fire exposure							Annex C3	