



Public-law institution jointly founded by the federal states and the Federation

**European Technical Assessment Body** for construction products



## **European Technical Assessment**

## ETA-25/0482 of 8 August 2025

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the **European Technical Assessment:** 

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system ULEP-585 for concrete

Bonded fastener and bonded expansion fastener for use in concrete

Youluo Precision Technology (Zhejiang) Co. 12# factory building, first floor

No. 19 Haiguan Avenue Xitangqiao Sub-district, Haiyan County

**VOLKSREPUBLIK CHINA** 

German factory

JIAXING CITY

49 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

# **European Technical Assessment ETA-25/0482**

English translation prepared by DIBt



Page 2 of 49 | 8 August 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 49 | 8 August 2025

#### **Specific Part**

#### 1 Technical description of the product

The "Injection system ULEP-585 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar ULEP-585 and a steel element according to Annex A 3 to Annex A 5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                                             |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | See Annex C 1 to C 6, C 8 to C 11,<br>C 13 to C 16, B 3 |
| Characteristic resistance to shear load (static and quasi-static loading)                | See Annex C 1, C 7, C 12, C 17                          |
| Displacements under short-term and long-term loading                                     | See Annex C 18 to C 20                                  |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | See Annex C 21 to C 28                                  |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance            |
|--------------------------|------------------------|
| Reaction to fire         | Class A1               |
| Resistance to fire       | See Annex C 29 to C 31 |

#### 3.3 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

# **European Technical Assessment ETA-25/0482**

English translation prepared by DIBt



Page 4 of 49 | 8 August 2025

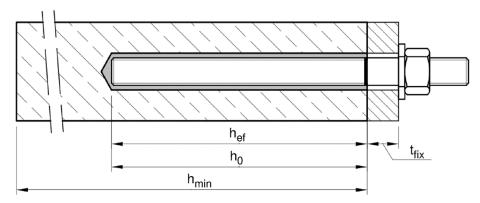
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

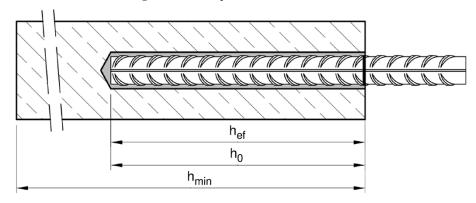
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

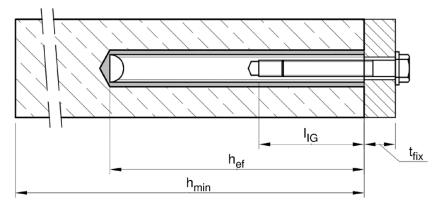
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 8 August 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider




## Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)



### Installation reinforcing bar Ø8 up to Ø40



## Installation internal threaded anchor rod IG-M6 up to IG-M20



 $t_{fix}$  = thickness of fixture

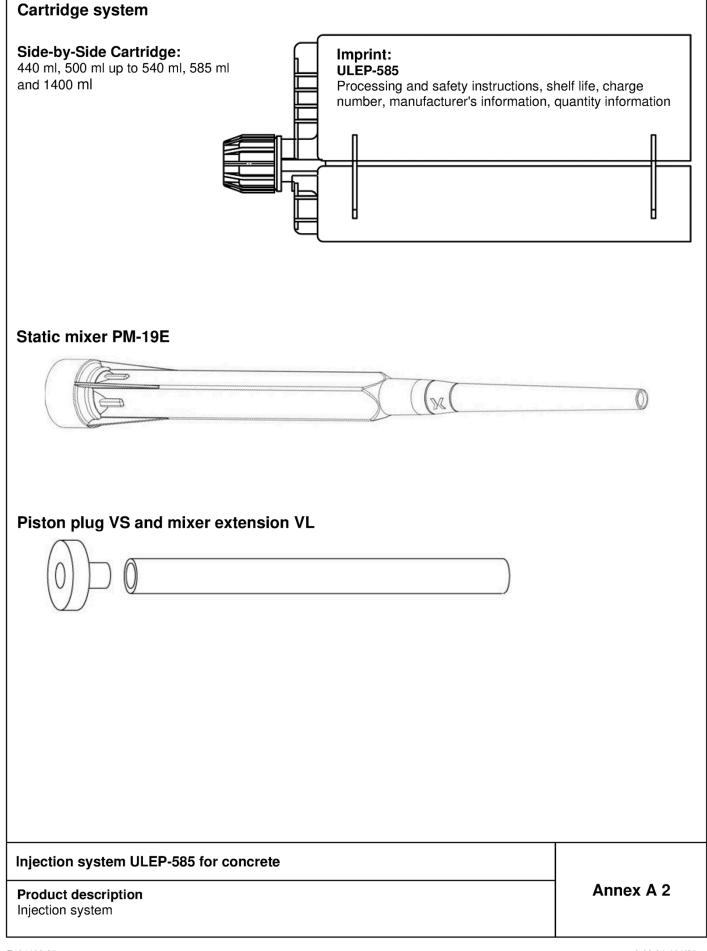
 $h_0$  = drill hole depth

h<sub>ef</sub> = effective embedment depth

= thread engagement length

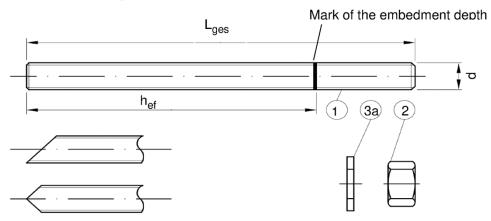
h<sub>min</sub> = minum thickness of member

## Injection system ULEP-585 for concrete


#### **Product description**

Installed condition

Annex A 1

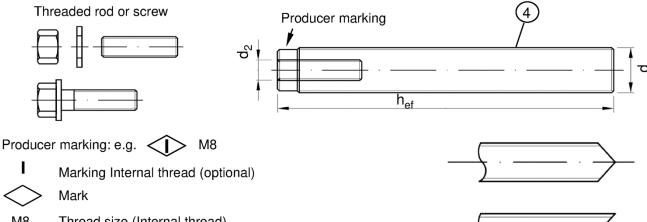

 $I_{IG}$ 







## Threaded rod M8 up to M30 with washer and hexagon nut




Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

For hot dip galvanized elements, the requirements with regards to the combination of nuts and rods according to EN ISO 10684:2004+AC:2009 Annex F shall be considered.

#### Internal threaded rod IG-M6 to IG-M20



M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

-8 additional mark for property class 8.8



## Filling washer VFS

#### Mixer reduction nozzle MR





### Injection system ULEP-585 for concrete

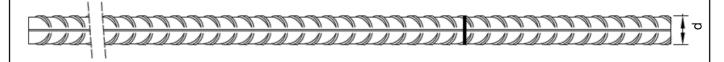
#### **Product description**

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3



| _                        | ble A1: Mate                                                                                                                                               | I                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Designation                                                                                                                                                | Material                                                                                                                                                                                                                                                            | 2010                                                                                             | EN 10000 0017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                          |                                                                                                                                                            | acc. to EN ISO 683-4:2                                                                                                                                                                                                                                              |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
| Z<br>h                   |                                                                                                                                                            | pum acc. to EN ISO                                                                                                                                                                                                                                                  |                                                                                                  | 2:2022 or<br>1:2022 and EN ISO 10684:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2004±4€:2009 or                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                          |                                                                                                                                                            | 5 µm acc. to EN ISO                                                                                                                                                                                                                                                 |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2004+70.2009 01                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                          |                                                                                                                                                            | T                                                                                                                                                                                                                                                                   | .,,                                                                                              | Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Characteristic steel                                                                                                                                                                                                                                                            | Elongation at                                                                                                                                                                                                     |
|                          |                                                                                                                                                            | Property class                                                                                                                                                                                                                                                      |                                                                                                  | ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yield strength                                                                                                                                                                                                                                                                  | fracture                                                                                                                                                                                                          |
|                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                     | 4.6                                                                                              | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>vk</sub> = 240 N/mm <sup>2</sup>                                                                                                                                                                                                                                         | A <sub>5</sub> > 8%                                                                                                                                                                                               |
|                          | Thus a dead we d                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                  | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>Vk</sub> = 320 N/mm <sup>2</sup>                                                                                                                                                                                                                                         | A <sub>5</sub> > 8%                                                                                                                                                                                               |
| 1                        | Threaded rod                                                                                                                                               | acc. to                                                                                                                                                                                                                                                             |                                                                                                  | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>Vk</sub> = 300 N/mm <sup>2</sup>                                                                                                                                                                                                                                         | A <sub>5</sub> > 8%                                                                                                                                                                                               |
|                          |                                                                                                                                                            | EN ISO 898-1:2013                                                                                                                                                                                                                                                   |                                                                                                  | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>VK</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                         | A <sub>5</sub> > 8%                                                                                                                                                                                               |
|                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                     |                                                                                                  | f <sub>uk</sub> = 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>VK</sub> = 640 N/mm <sup>2</sup>                                                                                                                                                                                                                                         | $A_5 \ge 12\%^{3}$                                                                                                                                                                                                |
|                          |                                                                                                                                                            |                                                                                                                                                                                                                                                                     | 4                                                                                                | for anchor rod class 4.6 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l <b>′</b>                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                               |
| 2                        | Hexagon nut                                                                                                                                                | acc. to                                                                                                                                                                                                                                                             |                                                                                                  | for anchor rod class 5.6 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                          |                                                                                                                                                            | EN ISO 898-2:2022                                                                                                                                                                                                                                                   | <u>5</u>                                                                                         | for anchor rod class 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                          | Washer                                                                                                                                                     | Steel, zinc plated, ho                                                                                                                                                                                                                                              | t-dip                                                                                            | galvanised or sherardized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
| 3a                       | Washer                                                                                                                                                     | (e.g.: EN ISO 887:20                                                                                                                                                                                                                                                | 06, E                                                                                            | N ISO 7089:2000, EN ISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7093:2000 or EN ISO                                                                                                                                                                                                                                                             | 7094:2000)                                                                                                                                                                                                        |
| 3b                       | Filling washer                                                                                                                                             | Steel, zinc plated, ho                                                                                                                                                                                                                                              | t-dip                                                                                            | galvanised or sherardized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |
|                          |                                                                                                                                                            | Property class                                                                                                                                                                                                                                                      |                                                                                                  | Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Characteristic steel                                                                                                                                                                                                                                                            | Elongation at                                                                                                                                                                                                     |
|                          | nternal threaded Property class                                                                                                                            |                                                                                                                                                                                                                                                                     | Lultinaata tanaila atranath                                                                      | 1: - 1 - 1 4 4 !-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                          | Internal threaded                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                  | ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yield strength                                                                                                                                                                                                                                                                  | fracture                                                                                                                                                                                                          |
| 1                        | Internal threaded anchor rod                                                                                                                               | acc. to                                                                                                                                                                                                                                                             |                                                                                                  | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>yk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                         | A <sub>5</sub> > 8%                                                                                                                                                                                               |
| 4                        | 1                                                                                                                                                          | acc. to<br>EN ISO 898-1:2013                                                                                                                                                                                                                                        |                                                                                                  | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                 |
|                          | anchor rod                                                                                                                                                 | EN ISO 898-1:2013                                                                                                                                                                                                                                                   | 8.8                                                                                              | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $f_{yk} = 400 \text{ N/mm}^2$<br>$f_{yk} = 640 \text{ N/mm}^2$                                                                                                                                                                                                                  | A <sub>5</sub> > 8%                                                                                                                                                                                               |
| Stai<br>Stai             | anchor rod  nless steel A2 (Mate nless steel A4 (Mate                                                                                                      | EN ISO 898-1:2013<br>rial 1.4301 / 1.4307 / 1<br>rial 1.4401 / 1.4404 / 1                                                                                                                                                                                           | 8.8<br>.431<br>.457                                                                              | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2023)<br>o EN 10088-1:2023)                                                                                                                                                  | A <sub>5</sub> > 8%                                                                                                                                                                                               |
| Stai<br>Stai             | anchor rod  nless steel A2 (Mate nless steel A4 (Mate                                                                                                      | EN ISO 898-1:2013<br>rial 1.4301 / 1.4307 / 1<br>rial 1.4401 / 1.4404 / 1                                                                                                                                                                                           | 8.8<br>.431<br>.457                                                                              | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2023)<br>o EN 10088-1:2023)<br>-1:2023)                                                                                                                                      | A <sub>5</sub> > 8%<br>A <sub>5</sub> > 8%                                                                                                                                                                        |
| Stai<br>Stai             | anchor rod  nless steel A2 (Mate nless steel A4 (Mate                                                                                                      | EN ISO 898-1:2013<br>rial 1.4301 / 1.4307 / 1<br>rial 1.4401 / 1.4404 / 1<br>ce steel (Material 1.45                                                                                                                                                                | 8.8<br>.431<br>.457                                                                              | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088<br>Characteristic steel                                                                                                                                                                                                                                                                                                                                                                                                              | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2023)<br>o EN 10088-1:2023)<br>-1:2023)<br>Characteristic steel                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at                                                                                                                                                                             |
| Stai<br>Stai             | anchor rod  nless steel A2 (Mate nless steel A4 (Mate                                                                                                      | EN ISO 898-1:2013<br>rial 1.4301 / 1.4307 / 1<br>rial 1.4401 / 1.4404 / 1                                                                                                                                                                                           | 8.8<br>.431<br>.457<br>29 o                                                                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088<br>Characteristic steel<br>ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2023)<br>o EN 10088-1:2023)<br>-1:2023)<br>Characteristic steel<br>yield strength                                                                                            | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture                                                                                                                                                   |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate<br>nless steel A4 (Mate<br>n corrosion resistand                                                                                      | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class                                                                                                                                                         | 8.8<br>.431<br>.457                                                                              | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                         | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                                                      | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$                                                                                                                                                      |
| Stai<br>Stai<br>Hig      | anchor rod  nless steel A2 (Mate nless steel A4 (Mate                                                                                                      | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to                                                                                                                                                | 8.8<br>.431<br>.457<br>29 o                                                                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088<br>Characteristic steel<br>ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>o EN 10088-1:2023)<br>o EN 10088-1:2023)<br>-1:2023)<br>Characteristic steel<br>yield strength                                                                                            | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture                                                                                                                                                   |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate<br>nless steel A4 (Mate<br>n corrosion resistand                                                                                      | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class                                                                                                                                                         | 8.8<br>.431<br>.457<br>29 o                                                                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                         | f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                                                      | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$                                                                                                                                                      |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate<br>nless steel A4 (Mate<br>n corrosion resistand                                                                                      | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to  EN ISO 3506-1:2020                                                                                                                            | 8.8<br>.431<br>.457<br>29 o                                                                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                               | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm²                                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^3$                                                                                                                                     |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant                                                                                            | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class  acc. to EN ISO 3506-1:2020 acc. to                                                                                                                      | 8.8<br>.431<br>.457<br>29 o                                                                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                          | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm²                                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^3$                                                                                                                                     |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate<br>nless steel A4 (Mate<br>n corrosion resistand                                                                                      | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to  EN ISO 3506-1:2020                                                                                                                            | 8.8<br>.431<br>.457<br>29 or<br>50<br>70<br>80<br>50<br>70                                       | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50                                                                                                                                                                                                                                                                               | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm²                                                                                                                              | $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^3$                                                                                                                                     |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant                                                                                            | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 /                                                                                                      | 8.8<br>.431<br>.457<br>29 of<br>70<br>80<br>70<br>80<br>1.43                                     | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 / 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80  607 / 1.4311 / 1.4567 or 1.4                                                                                                                                                                  | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²                                                                                                              | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture A <sub>5</sub> $\geq$ 8%  A <sub>5</sub> $\geq$ 12% A <sub>5</sub> $\geq$ 12%  1:2023                                                             |
| Stai<br>Stai<br>High     | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant)  Threaded rod 1)4)  Hexagon nut 1)4)                                          | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 /                                                                                | 8.8<br>.431<br>.457<br>29 o<br>50<br>70<br>80<br>50<br>70<br>80<br>1.43<br>1.44                  | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 / 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  307 / 1.4311 / 1.4567 or 1.4  404 / 1.4571 / 1.4362 or 1.4                                                                                                                                                                         | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²                                                                                                              | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture A <sub>5</sub> $\geq$ 8%  A <sub>5</sub> $\geq$ 12% A <sub>5</sub> $\geq$ 12%  1:2023                                                             |
| Stai<br>Stai<br>Hig      | nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant                                                                                            | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529                                                            | 8.8<br>.431<br>.457<br>29 or 50<br>70<br>80<br>50<br>70<br>80<br>1.43<br>1.44                    | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80  107 / 1.4311 / 1.4567 or 1.4 1.4565, acc. to EN 10088-1                                                                                                                                                                                 | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²                                                                                                              | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture A <sub>5</sub> $\geq$ 8%  A <sub>5</sub> $\geq$ 12%  A <sub>5</sub> $\geq$ 12%  1:2023 1:2023                                                     |
| Stai<br>Stai<br>Hig<br>1 | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant)  Threaded rod 1)4)  Hexagon nut 1)4)  Washer                                  | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452( e.g.: EN ISO 887:20                                       | 8.8<br>.431<br>.457<br>29 o<br>70<br>80<br>.50<br>.70<br>80<br>1.43<br>1.44<br>9 or 1            | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1 / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  107 / 1.4311 / 1.4567 or 1.4  1.4565, acc. to EN 10088-1  EN ISO 7089:2000, EN ISC                                                                                                           | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²                                                                                                              | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture A <sub>5</sub> $\geq$ 8%  A <sub>5</sub> $\geq$ 12%  A <sub>5</sub> $\geq$ 12%  1:2023 1:2023                                                     |
| Stai<br>Stai<br>Hig<br>1 | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant)  Threaded rod 1)4)  Hexagon nut 1)4)                                          | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452( e.g.: EN ISO 887:20                                       | 8.8<br>.431<br>.457<br>29 o<br>70<br>80<br>.50<br>.70<br>80<br>1.43<br>1.44<br>9 or 1            | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1 / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  307 / 1.4311 / 1.4567 or 1.4  1.4565, acc. to EN 10088-1  EN ISO 7089:2000, EN ISC orrosion resistance steel                                                                                                | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²  541, acc. to EN 10088-578, acc. to EN 10088-:2023 0 7093:2000 or EN ISO                                     | A <sub>5</sub> > 8%  A <sub>5</sub> > 8%  Elongation at fracture  A <sub>5</sub> $\geq$ 8%  A <sub>5</sub> $\geq$ 12%  A <sub>5</sub> $\geq$ 12%  1:2023  1:2023  7094:2000)                                      |
| Stai<br>Stai<br>Hig<br>1 | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant)  Threaded rod 1)4)  Hexagon nut 1)4)  Washer  Filling washer                  | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45  Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452( e.g.: EN ISO 887:20                                       | 8.8<br>.431<br>.457<br>29 o<br>70<br>80<br>.50<br>.70<br>80<br>1.43<br>1.44<br>9 or 1            | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1 / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  307 / 1.4311 / 1.4567 or 1.4  4.4565, acc. to EN 10088-1  EN ISO 7089:2000, EN ISC orrosion resistance steel  Characteristic steel                                                           | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²  541, acc. to EN 10088- 578, acc. to EN 10088- :2023 0 7093:2000 or EN ISO                                   | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture A <sub>5</sub> ≥ 8%  A <sub>5</sub> ≥ 12% <sup>3</sup> )  A <sub>5</sub> ≥ 12% <sup>3</sup> )  1:2023 1:2023 7094:2000)                           |
| Stai                     | anchor rod  nless steel A2 (Mate nless steel A4 (Mate corrosion resistant)  Threaded rod 1)4)  Hexagon nut 1)4)  Washer  Filling washer  Internal threaded | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20  Stainless steel A4, H Property class | 8.8<br>.431<br>.457<br>29 or 50<br>70<br>80<br>50<br>70<br>80<br>1.43<br>1.44<br>9 or 1<br>06, E | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1 / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  307 / 1.4311 / 1.4567 or 1.4  404 / 1.4571 / 1.4362 or 1.4  1.4565, acc. to EN 10088-1  EN ISO 7089:2000, EN ISO  orrosion resistance steel  Characteristic steel  ultimate tensile strength | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²  541, acc. to EN 10088- 578, acc. to EN 10088- :2023 7093:2000 or EN ISO Characteristic steel yield strength | A <sub>5</sub> > 8%  A <sub>5</sub> > 8%  Elongation at fracture  A <sub>5</sub> ≥ 8%  A <sub>5</sub> ≥ 12% <sup>3</sup> )  A <sub>5</sub> ≥ 12% <sup>3</sup> )  1:2023 1:2023 7094:2000)  Elongation at fracture |
| Stai<br>Stai<br>High     | anchor rod  nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant)  Threaded rod 1)4)  Hexagon nut 1)4)  Washer  Filling washer                  | EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class  acc. to EN ISO 3506-1:2020  A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452! (e.g.: EN ISO 887:20  Stainless steel A4, H                | 8.8<br>.431.457<br>29 or 10<br>80<br>50<br>70<br>80<br>1.43<br>1.44<br>9 or 10<br>06, Eigh c     | f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> 1 / 1.4567 or 1.4541, acc. to 1 / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088  Characteristic steel ultimate tensile strength  f <sub>uk</sub> = 500 N/mm <sup>2</sup> f <sub>uk</sub> = 700 N/mm <sup>2</sup> f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50  for anchor rod class 70  for anchor rod class 80  307 / 1.4311 / 1.4567 or 1.4  4.4565, acc. to EN 10088-1  EN ISO 7089:2000, EN ISC orrosion resistance steel  Characteristic steel                                                           | fyk = 400 N/mm² fyk = 640 N/mm² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength fyk = 210 N/mm² fyk = 450 N/mm² fyk = 600 N/mm²  541, acc. to EN 10088- 578, acc. to EN 10088- :2023 0 7093:2000 or EN ISO                                   | A <sub>5</sub> > 8% A <sub>5</sub> > 8%  Elongation at fracture A <sub>5</sub> ≥ 8%  A <sub>5</sub> ≥ 12% <sup>3</sup> )  A <sub>5</sub> ≥ 12% <sup>3</sup> )  1:2023 1:2023 7094:2000)                           |


<sup>4)</sup> Property class 80 only for stainless steel A4 and HCR

| Injection system ULEP-585 for concrete                                                       |           |
|----------------------------------------------------------------------------------------------|-----------|
| Product description  Materials threaded rod, Internal threaded anchor rod and filling washer | Annex A 4 |

 <sup>2)</sup> for IG-M20 only property class 50
 3) A<sub>5</sub> > 8% fracture elongation if no use for seismic performance category C2



Reinforcing bar: ø8 up to ø40



Minimum value of related rip area  $f_{R,min}$  according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range  $0.05d \le h_{rib} \le 0.07d$  (d: Nominal diameter of the bar;  $h_{rib}$ : Rib height of the bar)

Table A2: Materials Reinforcing bar

| Part | Designation                                                      | Material                                                                                                                                     |
|------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Reba | ar                                                               |                                                                                                                                              |
|      | Reinforcing steel according to EN 1992-1-1:2004+AC:2010, Annex C | Bars and rebars from ring class B or C $f_{yk}$ and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |

Injection system ULEP-585 for concrete

Product description
Materials reinforcing bar

Annex A 5



| Specification of the inter                                                                                                     | ded use                                     |                                                                            |                                           |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|
| Fasteners subject to (Station                                                                                                  | <u> </u>                                    |                                                                            |                                           |                                                    |
|                                                                                                                                |                                             | fe 50 years<br>0/25 to C90/105                                             |                                           | ng life 100 years<br>e C20/25 to C90/105           |
| Base materi                                                                                                                    | uncracked concrete                          | cracked<br>concrete                                                        | uncracked<br>concrete                     |                                                    |
| HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling                                     | Ø8 to                                       | 0 M30,<br>0 Ø32,<br>0 IG-M20                                               |                                           | M8 to M30,<br>Ø8 to Ø32,<br>M6 to IG-M20           |
| HD: Hammer drilling CD: Compressed air drilling                                                                                | Ø36 to Ø40                                  | No performance assessed                                                    | Ø36 to Ø40                                | No performance assessed                            |
| DD: Diamond drilling                                                                                                           | M8 to M30,<br>Ø8 to Ø40,<br>IG-M6 to IG-M20 | M16 to M30 <sup>4)</sup><br>IG-M10 to IG-M20 <sup>4)</sup>                 | M8 to M30,<br>Ø8 to Ø40,<br>IG-M6 to IG-N | , accessed                                         |
| Temperature Range:                                                                                                             | I: - 40°C<br>II: - 40°C<br>III: - 40°C      | to $+40^{\circ}C^{1)}$<br>to $+72^{\circ}C^{2)}$<br>to $+80^{\circ}C^{3)}$ | l: - 40<br>ll: - 40<br>lll: - 40          | 0°C to +72°C <sup>2)</sup>                         |
| Fasteners subject to (seisn                                                                                                    | nic action):                                |                                                                            |                                           |                                                    |
|                                                                                                                                | Performance                                 | Category C1                                                                | Performa                                  | ance Category C2                                   |
| Base materia                                                                                                                   | l Crac                                      | ked and uncracked c                                                        | oncrete C20/25 t                          | to C50/60                                          |
| HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling                                     | 1                                           | M30,<br>o ⊘32                                                              | M                                         | 112 to M24                                         |
| DD: Diamond drilling                                                                                                           | No performa                                 | nce assessed                                                               | No perfo                                  | rmance assessed                                    |
| Temperature Range:                                                                                                             | l: - 40°C<br>ll: - 40°C<br>lll: - 40°C      | to +40°C¹)<br>to +72°C²)<br>to +80°C³)                                     | II: - 40                                  | 0°C to +40°C¹)<br>0°C to +72°C²)<br>0°C to +80°C³) |
| Fasteners subject to (fire e                                                                                                   | kposure):                                   |                                                                            |                                           |                                                    |
| Base materia                                                                                                                   | l Crac                                      | ked and uncracked co                                                       | oncrete C20/25 t                          | to C50/60                                          |
| HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling                                     |                                             | M8 to<br>⊘8 to<br>IG-M6 to                                                 | Ø32,                                      |                                                    |
| DD: Diamond drilling                                                                                                           |                                             | No performar                                                               | ice assessed                              |                                                    |
| Temperature Range:                                                                                                             |                                             | I: - 40°C :<br>II: - 40°C :<br>III: - 40°C :                               | to +72°C <sup>2)</sup>                    |                                                    |
| 1) (max. long-term temperature +242) (max. long-term temperature +503) (max. long-term temperature +604) C20/25 to C50/60 only | °C and max. short-term                      | temperature +72°C)                                                         |                                           |                                                    |
| Injection system ULEP-585 f                                                                                                    | or concrete                                 |                                                                            |                                           |                                                    |
| Intended use<br>Specifications                                                                                                 |                                             |                                                                            |                                           | Annex B 1                                          |
|                                                                                                                                |                                             |                                                                            |                                           |                                                    |



#### **Base materials:**

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A2:2021.
- Strength classes C20/25 to C90/105 according to EN 206:2013 + A2:2021.

## Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class:
  - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
  - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
  - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
   The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018:
- The fasteners under fire exposure are designed in accordance to Technical Report TR 082, Edition June 2023.

#### Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB), compressed air (CD) or diamond drill mode (DD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

| Injection system ULEP-585 for concrete     |           |
|--------------------------------------------|-----------|
| Intended use<br>Specifications (Continued) | Annex B 2 |



| Table B1:                     | Installation pa   | arameters                   | for thre | eaded | rod                             |                  |     |     |                       |     |     |
|-------------------------------|-------------------|-----------------------------|----------|-------|---------------------------------|------------------|-----|-----|-----------------------|-----|-----|
| Threaded rod                  |                   |                             |          | M8    | M10                             | M12              | M16 | M20 | M24                   | M27 | M30 |
| Diameter of elemen            | t                 | $d = d_{nom}$               | [mm]     | 8     | 10                              | 12               | 16  | 20  | 24                    | 27  | 30  |
| Nominal drill hole di         | ameter            | d <sub>0</sub>              | [mm]     | 10    | 12                              | 14               | 18  | 22  | 28                    | 30  | 35  |
| Effective embedme             | at donth          | h <sub>ef,min</sub>         | [mm]     | 60    | 60                              | 70               | 80  | 90  | 96                    | 108 | 120 |
| Effective embedmer            | п аерт            | h <sub>ef,max</sub>         | [mm]     | 160   | 200                             | 240              | 320 | 400 | 480                   | 540 | 600 |
| Diameter of                   | Prepositioned ins | stallation d <sub>f</sub> ≤ | [mm]     | 9     | 12                              | 14               | 18  | 22  | 26                    | 30  | 33  |
| clearance hole in the fixture | Push through i    | ' '                         | [mm]     | 12    | 14                              | 16               | 20  | 24  | 30                    | 33  | 40  |
| Maximum installatio           | n torque          | max T <sub>inst</sub>       | [Nm]     | 10    | 20                              | 40 <sup>1)</sup> | 60  | 100 | 170                   | 250 | 300 |
| Minimum thickness             | of member         | h <sub>min</sub>            | [mm]     | ١ ~   | <sub>f</sub> + 30 m<br>: 100 mr |                  |     | ŀ   | n <sub>ef</sub> + 2do | )   |     |
| Minimum spacing               |                   | s <sub>min</sub>            | [mm]     | 40    | 50                              | 60               | 75  | 95  | 115                   | 125 | 140 |
| Minimum edge dista            | ınce              | c <sub>min</sub>            | [mm]     | 35    | 40                              | 45               | 50  | 60  | 65                    | 75  | 80  |

<sup>1)</sup> Maximum installation torque for M12 with steel Grade 4.6 is 35 Nm

## Table B2: Installation parameters for reinforcing bar

| <del></del>                 |                         |      | T  | - 4\                  |              | 4\   | T  | 4)               |      |      |      |    | 4\                | T    | 4\               |      |      |      |       |
|-----------------------------|-------------------------|------|----|-----------------------|--------------|------|----|------------------|------|------|------|----|-------------------|------|------------------|------|------|------|-------|
| Reinforcing bar             |                         |      | Ø  | 8 <sup>1)</sup>       | Ø 1          | 10¹) | Ø: | 12 <sup>1)</sup> | Ø 14 | Ø 16 | Ø 20 | Ø2 | 241)              | Ø    | 25 <sup>1)</sup> | Ø 28 | Ø 32 | Ø 36 | Ø 40  |
| Diameter of element         | d =<br>d <sub>nom</sub> | [mm] |    | 8                     | 1            | 0    | 1  | 2                | 14   | 16   | 20   | 2  | 4                 | 2    | 25               | 28   | 32   | 36   | 40    |
| Nominal drill hole diameter | d <sub>0</sub>          | [mm] | 10 | 12                    | 12           | 14   | 14 | 16               | 18   | 20   | 25   | 30 | 32                | 30   | 32               | 35   | 40   | 45   | 52/55 |
| Effective embedment         | h <sub>ef,min</sub>     | [mm] | 6  | 0                     | 6            | 0    | 7  | 0                | 75   | 80   | 90   | 9  | 6                 | 1    | 00               | 112  | 128  | 144  | 160   |
| depth                       | h <sub>ef,max</sub>     | [mm] |    | 60                    |              | 00   | _  | 40               | 280  | 320  | 400  | 48 | 30                | 5    | 00               | 560  | 640  | 720  | 800   |
| Minimum thickness of member | h <sub>min</sub>        | [mm] | h  | ef <sup>+</sup><br>10 | 30 ı<br>00 m |      | 2  |                  |      |      |      | h  | n <sub>ef</sub> + | - 2d | 0                |      |      |      |       |
| Minimum spacing             | s <sub>min</sub>        | [mm] | 4  | 10                    | 5            | 0    | 6  | 0                | 70   | 75   | 95   | 12 | 20                | 1:   | 20               | 130  | 150  | 180  | 200   |
| Minimum edge distance       | c <sub>min</sub>        | [mm] | 3  | 35                    | 4            | 0    | 4  | 5                | 50   | 50   | 60   | 7  | 0                 | 7    | '0               | 75   | 85   | 180  | 200   |

<sup>1)</sup> both nominal drill hole diameter can be used

## Table B3: Installation parameters for Internal threaded anchor rod

| Internal threaded anchor rod              |                       |      | IG-M6 | IG-M8         | IG-M10 | IG-M12            | IG-M16            | IG-M20 |
|-------------------------------------------|-----------------------|------|-------|---------------|--------|-------------------|-------------------|--------|
| Internal diameter of anchor rod           | d <sub>2</sub>        | [mm] | 6     | 8             | 10     | 12                | 16                | 20     |
| Outer diameter of anchor rod1)            | $d = d_{nom}$         | [mm] | 10    | 12            | 16     | 20                | 24                | 30     |
| Nominal drill hole diameter               | d <sub>0</sub>        | [mm] | 12    | 14            | 18     | 22                | 28                | 35     |
| Effective embedment depth                 | h <sub>ef,min</sub>   | [mm] | 60    | 70            | 80     | 90                | 96                | 120    |
| Effective embedment depth                 | h <sub>ef,max</sub>   | [mm] | 200   | 240           | 320    | 400               | 480               | 600    |
| Diameter of clearance hole in the fixture | d <sub>f</sub> ≤      | [mm] | 7     | 9             | 12     | 14                | 18                | 22     |
| Maximum installation torque               | max T <sub>inst</sub> | [Nm] | 10    | 10            | 20     | 40                | 60                | 100    |
| Thread engagement length min/max          | l <sub>IG</sub>       | [mm] | 8/20  | 8/20          | 10/25  | 12/30             | 16/32             | 20/40  |
| Minimum thickness of member               | h <sub>min</sub>      | [mm] | ١ .   | 30 mm<br>0 mm |        | h <sub>ef</sub> - | - 2d <sub>0</sub> |        |
| Minimum spacing                           | s <sub>min</sub>      | [mm] | 50    | 60            | 75     | 95                | 115               | 140    |
| Minimum edge distance                     | c <sub>min</sub>      | [mm] | 40    | 45            | 50     | 60                | 65                | 80     |
| 1) 14 (1)                                 | •                     |      |       |               | •      |                   |                   | •      |

<sup>1)</sup> With metric threads

### Injection system ULEP-585 for concrete

#### Intended use

Installation parameters

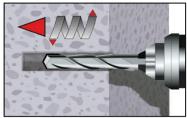
Annex B 3



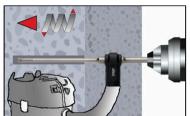
|                                        |                                                       |                      |                                        | mound                               | Markey Mark                                                                          |                                                                  |                                               |                           |              |
|----------------------------------------|-------------------------------------------------------|----------------------|----------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|---------------------------|--------------|
| hreaded<br>Rod                         | Re-<br>inforcing                                      | Internal<br>threaded | d <sub>0</sub><br>Drill bit - Ø<br>HD, | d <sub>b</sub><br>Brush - Ø         | d <sub>b,min</sub><br>min.                                                           | Piston<br>plug                                                   | 1                                             | n directior<br>piston plu |              |
|                                        | bar                                                   | anchor rod           | DD HDB,                                |                                     | Brush - Ø                                                                            | piug                                                             | 1                                             | <b></b>                   | 1            |
| [mm]                                   | [mm]                                                  | [mm]                 | [mm]                                   | [mm                                 |                                                                                      |                                                                  |                                               |                           |              |
| M8                                     | 8                                                     |                      | 10                                     | RB10 11,5                           | <del></del>                                                                          | -                                                                |                                               |                           |              |
| M10                                    | 8 / 10                                                | IG-M6                | 12                                     | RB12 13,5                           |                                                                                      | 4                                                                | No plua                                       | required                  |              |
| M12                                    | 10 / 12                                               | IG-M8                | 14                                     | RB14 15,5                           |                                                                                      | 1                                                                | p.ag                                          | ,                         |              |
| -                                      | 12                                                    | -                    | 16                                     | RB16 17,5                           |                                                                                      |                                                                  |                                               | ,                         |              |
| M16                                    | 14                                                    | IG-M10               | 18                                     | RB18 20,0                           |                                                                                      | VS18                                                             | _                                             |                           |              |
| -                                      | 16                                                    | -                    | 20                                     | RB20 22,0                           |                                                                                      | VS20                                                             |                                               |                           |              |
| M20                                    | -                                                     | IG-M12               | 22                                     | RB22 24,0                           |                                                                                      | VS22                                                             |                                               |                           |              |
| -                                      | 20                                                    | -                    | 25                                     | RB25 27,0                           | 25,5                                                                                 | VS25                                                             | h                                             | h                         |              |
| M24                                    | -                                                     | IG-M16               | 28                                     | RB28 30,0                           | 28,5                                                                                 | VS28                                                             | h <sub>ef</sub> >                             | h <sub>ef</sub> > 250 mm  | all          |
| M27                                    | 24 / 25                                               | -                    | 30                                     | RB30 31,8                           |                                                                                      | VS30                                                             | 250 mm                                        |                           |              |
| -                                      | 24 / 25                                               | -                    | 32                                     | RB32 34,0                           |                                                                                      | VS32                                                             | 1                                             |                           |              |
| M30                                    | 28                                                    | IG-M20               | 35                                     | RB35 37,0                           |                                                                                      | VS35                                                             | 1                                             |                           |              |
|                                        | 32                                                    | -                    | 40                                     | RB40 43,5                           |                                                                                      | VS40                                                             | 1                                             |                           |              |
| -                                      | J 32                                                  |                      |                                        |                                     |                                                                                      |                                                                  | _                                             |                           |              |
| -                                      |                                                       | _                    | 45                                     | RB45   47 0                         | 45.5                                                                                 | VS45                                                             |                                               |                           |              |
| -                                      | 36                                                    | -                    | 45<br>52 -                             | RB45 47,0                           |                                                                                      | VS45<br>VS52                                                     | <br>  all                                     | <sub>all</sub>            | all          |
| -<br>-<br>Cleanin                      | 36<br>40<br>g and inst                                | allation to          | 52 -<br>- 55                           | RB45 47,0<br>RB52 54,0<br>RB55 58,5 | 52,5                                                                                 | VS45<br>VS52<br>VS55                                             | all                                           | all                       | all          |
| Cleaning HDB – Ho Compress (min 6 bar) | 36<br>40<br>g and installow drill bit<br>sed air tool | allation to          | 52 -<br>- 55                           | RB52 54,0                           | 52,5<br>55,5<br>The hollow drill hollow drill bit inegative press<br>150 m³/h (42 l/ | VS52<br>VS55<br>Il system c<br>and a clas<br>sure of 253<br>(s). | onsists of He                                 | eller Duster E            | ım           |
| Compress (min 6 bar)                   | g and installow drill bit                             | allation to          | 52 -<br>- 55                           | RB52 54,0                           | 52,5<br>55,5<br>The hollow drill hollow drill bit negative press                     | VS52<br>VS55<br>Il system c<br>and a clas<br>sure of 253<br>(s). | onsists of He                                 | eller Duster E            | Expert<br>im |
| Compress (min 6 bar)  Brush RB         | g and installow drill bit sed air tool                | allation to          | 52 -<br>- 55<br>ols                    | RB52 54,0<br>RB55 58,5              | 52,5<br>55,5<br>The hollow drill hollow drill bit inegative press<br>150 m³/h (42 l/ | VS52<br>VS55                                                     | onsists of Hes M hoover with the hood and a f | eller Duster E            | Expert<br>im |



| Table B5:                    | Worki          | ng and curing | ı time               |                                   |
|------------------------------|----------------|---------------|----------------------|-----------------------------------|
| Temperature in base material |                |               | Maximum working time | Minimum curing time <sup>1)</sup> |
|                              | Т              |               | t <sub>work</sub>    | t <sub>cure</sub>                 |
| + 0 °C                       | to             | + 4°C         | 80 min               | 144 h                             |
| + 5°C                        | to             | + 9°C         | 80 min               | 48 h                              |
| + 10°C                       | to + 14 °C     |               | 60 min               | 28 h                              |
| + 15°C                       | 15°C to + 19°C |               | 40 min               | 18 h                              |
| + 20 °C                      | to             | + 24 °C       | 30 min               | 12 h                              |
| + 25 °C                      | to             | + 34 °C       | 12 min               | 9 h                               |
| + 35 °C                      | to             | + 39 °C       | 8 min                | 6 h                               |
|                              | + 40 °C        |               | 8 min                | 4 h                               |
| Cartr                        | idge tempe     | erature       | +5°C to              | +40°C                             |


The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

| Injection system ULEP-585 for concrete    |           |
|-------------------------------------------|-----------|
| Intended use Working time and curing time | Annex B 5 |

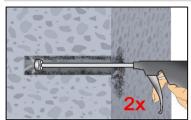



#### Installation instructions

#### Drilling of the bore hole (HD, HDB, CD)



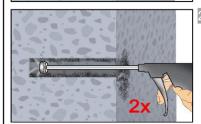
1a. Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole to the required embedment depth. Drill bit diameter according to Table B1, B2 or B3. Aborted drill holes shall be filled with mortar. Proceed with Step 2.




Hollow drill bit system (HDB) (see Annex B 4)
Drill a hole to the required embedment depth.
Drill bit diameter according to Table B1, B2 or B3.
The hollow drilling system removes the dust and cleans the bore hole.
Proceed with Step 3.

Attention! Standing water in the bore hole must be removed before cleaning.

#### Compressed Air Cleaning (CAC):


All diameter in cracked and uncracked concrete



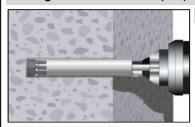
Blow the bore hole clean minimum 2x with compressed air (min. 6 bar, oil-free) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



Brush the bore hole minimum 2x with brush RB according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)



Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar, oil-free) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)


Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

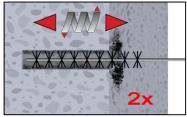
| Injection system ULEP-585 for concrete |           |
|----------------------------------------|-----------|
| Intended use Installation instructions | Annex B 6 |



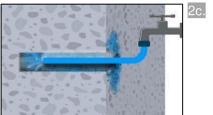
#### Installation instructions (continuation)

#### Drilling of the bore hole (DD)



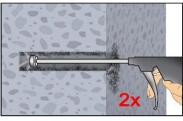

Diamond drilling (DD)
Drill a hole to the required embedment depth required
Drill bit diameter according to Table B1, B2 or B3.
Aborted drill holes shall be filled with mortar.
Proceed with Step 2.

#### Flush & Compressed Air Cleaning (SPCAC):

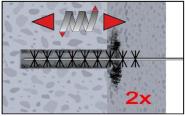

All diameter in uncracked concrete



2a. Flushing with water until clear water comes out.




Brush the bore hole minimum 2x with brush RB according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)




Flushing again with water until clear water comes out.

#### Attention! Standing water in the bore hole must be removed before proceeding.

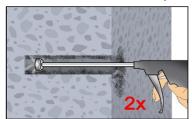


Blow the bore hole clean minimum 2x with compressed air (min. 6 bar, oil-free) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



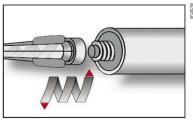
Brush the bore hole minimum 2x with brush RB according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

#### Injection system ULEP-585 for concrete


#### Intended use

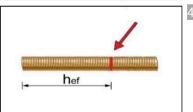
Installation instructions (continuation)

Annex B 7



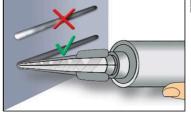

#### Installation instructions (continuation)




Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar, oil-free) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.




Screw on static-mixing nozzle PM-19E and load the cartridge into an appropriate dispensing tool.

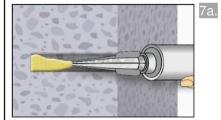
For every working interruption longer than the maximum working time  $t_{work}$  (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.



Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.




Not proper mixed mortar is not sufficient for fastening.

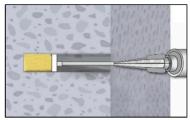
Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes).



Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø  $d_0 \ge 18$  mm and embedment depth  $h_{ef} > 250$ mm
- Vertical upwards direction: Drill bit- $\emptyset$  d<sub>0</sub>  $\ge$  18 mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

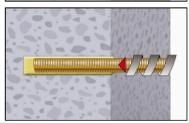



#### Injecting mortar without piston plug VS:

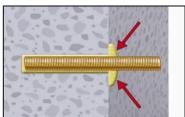
Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time  $t_{work}$  (Annex B 5).

| Injection system ULEP-585 for concrete                |           |
|-------------------------------------------------------|-----------|
| Intended use Installation instructions (continuation) | Annex B 8 |



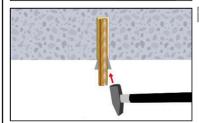

#### Installation instructions (continuation)



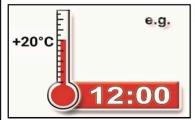

## 7b. Injecting mortar with piston plug VS:

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time t<sub>work</sub> (Annex B 5).




Insert the anchor rod while turning slightly up to the embedment mark.




Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.

Otherwise, the installation must be repeated starting from step 7 before the maximum working time  $t_{\rm work}$  has expired.



For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).



11. Temperature related curing time t<sub>cure</sub> (Annex B 5) must be observed. Do not move or load the fastener during curing time.



Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 2). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

| Injection system ULEP-585 for concrete                |           |
|-------------------------------------------------------|-----------|
| Intended use Installation instructions (continuation) | Annex B 9 |



| T             | Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods |                                |       |         |         |      |     |     |     |      |      |  |
|---------------|----------------------------------------------------------------------------------------------------------|--------------------------------|-------|---------|---------|------|-----|-----|-----|------|------|--|
| Tł            | readed rod                                                                                               |                                | M8    | M10     | M12     | M16  | M20 | M24 | M27 | M30  |      |  |
| Cr            | oss section area                                                                                         | A <sub>s</sub>                 | [mm²] | 36,6    | 58      | 84,3 | 157 | 245 | 353 | 459  | 561  |  |
| CI            | naracteristic tension resistance, Steel failu                                                            | re <sup>1)</sup>               |       |         |         |      |     |     |     |      |      |  |
| St            | eel, Property class 4.6 and 4.8                                                                          | N <sub>Rk,s</sub>              | [kN]  | 15 (13) | 23 (21) | 34   | 63  | 98  | 141 | 184  | 224  |  |
| St            | eel, Property class 5.6 and 5.8                                                                          | N <sub>Rk,s</sub>              | [kN]  | 18 (17) | 29 (27) | 42   | 78  | 122 | 176 | 230  | 280  |  |
| St            | eel, Property class 8.8                                                                                  | N <sub>Rk,s</sub>              | [kN]  | 29 (27) | 46 (43) | 67   | 125 | 196 | 282 | 368  | 449  |  |
| St            | ainless steel A2, A4 and HCR, class 50                                                                   | N <sub>Rk,s</sub>              | [kN]  | 18      | 29      | 42   | 79  | 123 | 177 | 230  | 281  |  |
| St            | ainless steel A2, A4 and HCR, class 70                                                                   | N <sub>Rk,s</sub>              | [kN]  | 26      | 41      | 59   | 110 | 171 | 247 | _3)  | _3)  |  |
|               | ainless steel A4 and HCR, class 80                                                                       | N <sub>Rk,s</sub>              | [kN]  | 29      | 46      | 67   | 126 | 196 | 282 | _3)  | _3)  |  |
|               | naracteristic tension resistance, Partial fac                                                            | tor <sup>2)</sup>              |       |         |         |      |     |     |     |      |      |  |
|               | eel, Property class 4.6 and 5.6                                                                          | γ <sub>Ms,N</sub>              | [-]   |         |         |      | 2,0 |     |     |      |      |  |
| ├─            | eel, Property class 4.8, 5.8 and 8.8                                                                     | γ <sub>Ms,N</sub>              | [-]   |         |         |      | 1,5 |     |     |      |      |  |
|               | ainless steel A2, A4 and HCR, class 50                                                                   | γ <sub>Ms,N</sub>              | [-]   |         |         |      | 2,8 |     |     |      |      |  |
|               | ainless steel A2, A4 and HCR, class 70                                                                   | γ <sub>Ms,N</sub>              | [-]   | 1,87    |         |      |     |     |     |      |      |  |
|               | ainless steel A4 and HCR, class 80                                                                       | γ <sub>Ms,N</sub>              | [-]   | 1,6     |         |      |     |     |     |      |      |  |
| CI            | naracteristic shear resistance, Steel failure                                                            | 1)                             |       |         |         |      |     |     |     |      |      |  |
| arm           | Steel, Property class 4.6 and 4.8                                                                        | V <sup>0</sup> Rk,s            | [kN]  | 9 (8)   | 14 (13) | 20   | 38  | 59  | 85  | 110  | 135  |  |
|               | Steel, Property class 5.6 and 5.8                                                                        | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 11 (10) | · , ,   | 25   | 47  | 74  | 106 | 138  | 168  |  |
| leve          | Steel, Property class 8.8                                                                                | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 15 (13) | 23 (21) | 34   | 63  | 98  | 141 | 184  | 224  |  |
| ont           | Stainless steel A2, A4 and HCR, class 50                                                                 | V <sup>0</sup> Rk,s            | [kN]  | 9       | 15      | 21   | 39  | 61  | 88  | 115  | 140  |  |
| Without lever | Stainless steel A2, A4 and HCR, class 70                                                                 | V <sup>0</sup> Rk.s            | [kN]  | 13      | 20      | 30   | 55  | 86  | 124 | _3)  | _3)  |  |
| >             | Stainless steel A4 and HCR, class 80                                                                     | V <sup>0</sup> Rk,s            | [kN]  | 15      | 23      | 34   | 63  | 98  | 141 | _3)  | _3)  |  |
|               | Steel, Property class 4.6 and 4.8                                                                        | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]  | 15 (13) | 30 (27) | 52   | 133 | 260 | 449 | 666  | 900  |  |
| arm           | Steel, Property class 5.6 and 5.8                                                                        | M <sup>0</sup> Rk,s            | [Nm]  | 19 (16) | 37 (33) | 65   | 166 | 324 | 560 | 833  | 1123 |  |
|               |                                                                                                          | M <sup>0</sup> Rk,s            | [Nm]  | 30 (26) | 60 (53) | 105  | 266 | 519 | 896 | 1333 | 1797 |  |
| th lever      | Stainless steel A2, A4 and HCR, class 50                                                                 | M <sup>0</sup> Rk,s            | [Nm]  | 19      | 37      | 66   | 167 | 325 | 561 | 832  | 1125 |  |
|               | Stainless steel A2, A4 and HCR, class 70                                                                 | M <sup>0</sup> Rk,s            | [Nm]  | 26      | 52      | 92   | 232 | 454 | 784 | _3)  | _3)  |  |
|               | Stainless steel A4 and HCR, class 80                                                                     | M <sup>0</sup> Rk,s            | [Nm]  | 30      | 59      | 105  | 266 | 519 | 896 | _3)  | _3)  |  |
| CI            | naracteristic shear resistance, Partial facto                                                            |                                |       |         |         |      |     |     |     |      |      |  |
| St            | eel, Property class 4.6 and 5.6                                                                          | γ <sub>Ms,V</sub>              | [-]   | 1,67    |         |      |     |     |     |      |      |  |
| St            | eel, Property class 4.8, 5.8 and 8.8                                                                     | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 1,2 | 5   |     |      |      |  |
| St            | ainless steel A2, A4 and HCR, class 50                                                                   | γ <sub>Ms,V</sub>              | [-]   | 2,38    |         |      |     |     |     |      |      |  |
| St            | ainless steel A2, A4 and HCR, class 70                                                                   | γ <sub>Ms,V</sub>              | [-]   | 1,56    |         |      |     |     |     |      |      |  |
| St            | ainless steel A4 and HCR, class 80                                                                       | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 1,3 | 3   |     |      |      |  |

<sup>1)</sup> Values are only valid for the given stress area A<sub>s</sub>. Values in brackets are valid for undersized threaded rods with smaller stress area A<sub>s</sub> for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

<sup>3)</sup> Fastener type not part of the ETA

| naracteristic values for steel tension resistance and steel shear resistance of threaded                    |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods | Annex C 1 |

<sup>2)</sup> in absence of national regulation

Axial distance



2 c<sub>cr,sp</sub>

| Table C2: Characteristic values of tension loads under static and quasi-static action for a working life of 50 and 100 years |                         |                               |      |                                                        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|------|--------------------------------------------------------|--|--|--|--|--|--|
| Fastener                                                                                                                     |                         |                               |      | All Fastener type and sizes                            |  |  |  |  |  |  |
| Concrete cone fa                                                                                                             | ailure                  |                               |      |                                                        |  |  |  |  |  |  |
| Uncracked concrete                                                                                                           |                         | k <sub>ucr,N</sub>            | [-]  | 11,0                                                   |  |  |  |  |  |  |
| Cracked concrete                                                                                                             |                         | k <sub>cr,N</sub>             | [-]  | 7,7                                                    |  |  |  |  |  |  |
| Edge distance                                                                                                                |                         | c <sub>cr,N</sub>             | [mm] | 1,5 h <sub>ef</sub>                                    |  |  |  |  |  |  |
| Axial distance                                                                                                               |                         | s <sub>cr,N</sub>             | [mm] | 2 c <sub>cr,N</sub>                                    |  |  |  |  |  |  |
| Splitting                                                                                                                    |                         |                               |      |                                                        |  |  |  |  |  |  |
|                                                                                                                              | h/h <sub>ef</sub> ≥ 2,0 |                               |      | 1,0 h <sub>ef</sub>                                    |  |  |  |  |  |  |
| Edge distance                                                                                                                | $2.0 > h/h_{ef} > 1.3$  | 2,0 > h/h <sub>ef</sub> > 1,3 |      | $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ |  |  |  |  |  |  |
|                                                                                                                              | h/h <sub>ef</sub> ≤ 1,3 |                               |      | 2,4 h <sub>ef</sub>                                    |  |  |  |  |  |  |

[mm]

s<sub>cr,sp</sub>

| Injection system ULEP-585 for concrete                                                   |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 2 |
| for a working life of 50 and 100 years                                                   |           |



|                                                            | racteristic va<br>a working life  |                       |                      | ls und                                | der st    | atic a             | nd q                 | uasi-               | static     | actio      | on     |
|------------------------------------------------------------|-----------------------------------|-----------------------|----------------------|---------------------------------------|-----------|--------------------|----------------------|---------------------|------------|------------|--------|
| Threaded rod                                               |                                   |                       |                      | M8                                    | M10       | M12                | M16                  | M20                 | M24        | M27        | M30    |
| Steel failure                                              | niatanas                          | N <sub>-</sub> .      | FI-NIT               |                                       |           | Δ - f              | . /or o              | oo Tah              | la (°1)    |            |        |
| Characteristic tension res                                 | sistance                          | N <sub>Rk,s</sub>     | [kN]                 |                                       |           | A <sub>S</sub> · I |                      | ee Tab              | ie CT)     |            |        |
| Partial factor  Combined pull-out and                      | concrete failure                  | γ <sub>Ms,N</sub>     | [-]                  |                                       |           |                    | see 18               | able C1             |            |            |        |
| Characteristic bond resis                                  |                                   | d concrete C20        | )/25 in hamr         | ner dril                              | led (HD   | ) and              | compre               | essed a             | ir drille  | d holes    | (CD)   |
|                                                            | Dry, wet concrete or flooded bore |                       |                      | 20                                    | 20        | 19                 | 19                   | 18                  | 17         | 16         | 16     |
| Cemperature                                                |                                   | <sup>τ</sup> Rk,ucr   | [N/mm²]              | 15                                    | 15        | 15                 | 14                   | 13                  | 13         | 12         | 12     |
| 년 III:60°C/80°C                                            | hole                              |                       |                      | 6,5                                   | 6,5       | 6,5                | 6,0                  | 6,0                 | 5,5        | 5,5        | 5,5    |
| Characteristic bond resis                                  | tance in uncracke                 | d concrete C20        | )/25 in hamr         | mer dril                              | led hol   | es with            | hollow               | drill bi            | t (HDB)    | )          |        |
| ტ I: 24°C/40°C                                             |                                   |                       |                      | 17                                    | 16        | 16                 | 16                   | 15                  | 14         | 14         | 13     |
| 1: 24°C/40°C                                               | Dry or wet concrete               |                       |                      | 14                                    | 14        | 14                 | 13                   | 13                  | 12         | 12         | 11     |
| 일 III:60°C/80°C                                            |                                   | _                     | [N]/mamm2]           | 6,5                                   | 6,5       | 6,5                | 6,0                  | 6,0                 | 5,5        | 5,5        | 5,5    |
| I: 24°C/40°C                                               |                                   | <sup>τ</sup> Rk,ucr   | [N/mm <sup>2</sup> ] | 16                                    | 16        | 16                 | 15                   | 15                  | 14         | 14         | 13     |
| <u>।।: 50°C/72°C</u>                                       | flooded bore<br>hole              |                       |                      | 14                                    | 14        | 14                 | 13                   | 13                  | 12         | 12         | 11     |
| <sup>Φ</sup> III:60°C/80°C                                 | Tiole                             |                       |                      | 6,5                                   | 6,5       | 6,5                | 6,0                  | 6,0                 | 5,5        | 5,5        | 5,5    |
| Characteristic bond resis and in hammer drilled ho         |                                   |                       | 5 in hamme           | r drilled                             | holes     | (HD) ,             | compre               | essed a             | air drille | d hole:    | s (CD) |
| 일 I: 24°C/40°C                                             | Dry, wet                          |                       | [N/mm²]              | 7,0                                   | 7,0       | 8,5                | 8,5                  | 8,5                 | 8,5        | 8,5        | 8,5    |
| Cemperature                                                | concrete or flooded bore          | <sup>τ</sup> Rk,cr    |                      | 6,0                                   | 6,0       | 7,0                | 7,0                  | 7,0                 | 7,0        | 7,0        | 7,0    |
| 旧:60°C/80°C                                                | hole                              |                       |                      | 5,0                                   | 5,0       | 5,0                | 4,5                  | 4,5                 | 4,5        | 4,5        | 4,5    |
| Reduction factor $\psi^0_{sus}$ in holes (CD) and in hamme |                                   |                       |                      | hamme                                 | er drille | d holes            | (HD),                | compre              | essed a    | air drille | ed     |
|                                                            | Dry, wet                          |                       |                      |                                       |           |                    | 0.                   | 80                  |            |            |        |
| II: 20°C/72°C                                              | concrete or                       | $\psi^0$ sus          | [-]                  | 0,68                                  |           |                    |                      |                     |            |            |        |
| 世<br>日<br>記<br>III:60°C/80°C                               | flooded bore hole                 | Ψ <sup>*</sup> sus    |                      | 0,70                                  |           |                    |                      |                     |            |            |        |
| Increasing factors for                                     | ≤ C50/60                          |                       |                      | (f <sub>ck</sub> / 20) <sup>0,1</sup> |           |                    |                      |                     |            |            |        |
| concrete                                                   | > C50/60                          | $\Psi_{c}$            | [-]                  | 1,1                                   |           |                    |                      |                     |            |            |        |
| Characteristic bond resis                                  |                                   | τ <sub>Rk,ucr</sub> = |                      | Ψc • τRk,ucr,(C20/25)                 |           |                    |                      |                     |            |            |        |
| on the concrete strength                                   |                                   | τ <sub>Rk,cr</sub> =  |                      |                                       |           | Ψ                  | c <sup>• τ</sup> Rk, | cr,(C20/2           | 25)        |            |        |
| Concrete cone failure o Relevant parameter                 | or Splitting                      |                       |                      |                                       |           |                    | 200 T                | able C2             |            |            |        |
| Installation factor                                        |                                   |                       |                      | <u> </u>                              |           |                    | 300 T                | 101 <del>0</del> 02 |            |            |        |
| for dry and wet concrete                                   | (HD; HDB, CD)                     | ν                     | r 1                  | 1,0<br>1,2                            |           |                    |                      |                     |            |            |        |
| for flooded bore hole (HD                                  | ; HDB, CD)                        | γinst                 | [-]                  |                                       |           |                    |                      |                     |            |            |        |
|                                                            |                                   |                       |                      |                                       |           |                    |                      |                     |            |            |        |
| Performances Characteristic values of                      | of tension loads u                | nder static and       | d quasi-stat         | tic actio                             | on        |                    |                      | _                   | Anne       | х С 3      | 3      |
| for a working life of 50                                   | years (threaded                   | rod)                  |                      |                                       |           |                    |                      |                     |            |            |        |



| Table                      |                           | racteristic va<br>working life            |                           |                      | ls und                                | der st   | atic a                          | and q               | uasi-              | static     | actic       | n       |
|----------------------------|---------------------------|-------------------------------------------|---------------------------|----------------------|---------------------------------------|----------|---------------------------------|---------------------|--------------------|------------|-------------|---------|
| Threade                    |                           |                                           |                           |                      | M8                                    | M10      | M12                             | M16                 | M20                | M24        | M27         | M30     |
| Steel fai                  |                           | intanac                                   | N <sub>-</sub> .          | FL-N 17              |                                       |          | ٧٠.                             | 1000                | 00 Tab             | lo C1)     |             |         |
|                            | eristic tension res       | sistance                                  | N <sub>Rk,s</sub>         | [kN]                 |                                       |          | A <sub>S</sub> • I <sub>l</sub> |                     | ee Tab             | U ( )      |             |         |
| Partial fa                 |                           | concrete failure                          | γ <sub>Ms,N</sub>         | [-]                  |                                       |          |                                 | see Ta              | ible C1            |            |             |         |
|                            | •                         | tance in uncracke                         | d concrete C20            | )/25 in hamr         | ner dril                              | led (HD  |                                 |                     | ssed a             | ir drilled | <br>d holes | (CD     |
|                            | I: 24°C/40°C              | Dry, wet                                  |                           |                      | 20                                    | 20       | 19                              | 19                  | 18                 | 17         | 16          | 16      |
| Temperature<br>range       | II: 50°C/72°C             | concrete or flooded bore                  | τ <sub>Rk,ucr,100</sub>   | [N/mm <sup>2</sup> ] | 15                                    | 15       | 15                              | 14                  | 13                 | 13         | 12          | 12      |
| Ten                        | III:60°C/80°C             | hole                                      |                           |                      | 6,5                                   | 6,5      | 6,5                             | 6,0                 | 6,0                | 5,5        | 5,5         | 5,5     |
| Characte                   | eristic bond resist       | tance in uncracke                         | d concrete C20            | )/25 in hamr         | ner dril                              | led hole | es with                         | hollow              | drill bit          | t (HDB)    |             |         |
| <u>e</u>                   | I: 24°C/40°C              |                                           |                           |                      | 17                                    | 16       | 16                              | 16                  | 15                 | 14         | 14          | 13      |
| ang                        | II: 50°C/72°C             | Dry or wet concrete                       |                           |                      | 14                                    | 14       | 14                              | 13                  | 13                 | 12         | 12          | 11      |
| urer                       | III:60°C/80°C             | CONTOLOGIC                                |                           | INI/ CT              | 6,5                                   | 6,5      | 6,5                             | 6,0                 | 6,0                | 5,5        | 5,5         | 5,5     |
| Temperaturerange           | I: 24°C/40°C              | <sup>τ</sup> Rk,ucr,100                   | [N/mm <sup>2</sup> ]      | 16                   | 16                                    | 16       | 15                              | 15                  | 14                 | 14         | 13          |         |
| mp.                        | II: 50°C/72°C             | flooded bore                              |                           |                      | 14                                    | 14       | 14                              | 13                  | 13                 | 12         | 12          | 11      |
| Te -                       | III:60°C/80°C             | hole                                      |                           |                      | 6,5                                   | 6,5      | 6,5                             | 6,0                 | 6,0                | 5,5        | 5,5         | 5,5     |
|                            |                           | tance in cracked c<br>les with hollow dri |                           | 5 in hamme           |                                       |          |                                 | compre              | essed a            |            |             |         |
|                            | I: 24°C/40°C              | Dry, wet                                  | <sup>τ</sup> Rk,cr,100    |                      | 6,5                                   | 6,5      | 7,5                             | 7,5                 | 7,5                | 7,5        | 7,5         | 7,5     |
| Temperature<br>range       | II: 50°C/72°C             | concrete or flooded bore                  |                           | [N/mm²]              | 5,5                                   | 5,5      | 6,5                             | 6,5                 | 6,5                | 6,5        | 6,5         | 6,5     |
| Ten                        | III:60°C/80°C             | hole                                      |                           |                      | 5,0                                   | 5,0      | 5,0                             | 4,5                 | 4,5                | 4,5        | 4,5         | 4,5     |
| holes (C                   |                           | in cracked and ι<br>er drilled holes wit  |                           |                      | ō in har                              | mmer d   | rilled h                        | oles (H             | D), cor            | npresse    | ed air c    | Irilled |
|                            | I: 24°C/40°C              | Dry, wet                                  |                           |                      |                                       |          |                                 | 0,                  | 80                 |            |             |         |
| perat<br>ange              | II: 50°C/72°C             | concrete or<br>flooded bore               | Ψ <sup>0</sup> sus,100    | [-]                  |                                       | 0,68     |                                 |                     |                    |            |             |         |
| <u> </u>                   | III:60°C/80°C             | hole                                      |                           |                      | 0,70                                  |          |                                 |                     |                    |            |             |         |
| Increasir                  | ng factors for            | ≤ C50/60                                  | 716                       | r_1                  | (f <sub>ck</sub> / 20) <sup>0,1</sup> |          |                                 |                     |                    |            |             |         |
| concrete                   | •                         | > C50/60                                  | Ψc                        | [-]                  | 1,1                                   |          |                                 |                     |                    |            |             |         |
|                            | eristic bond resist       |                                           | τ <sub>Rk,ucr,100</sub> = |                      |                                       |          |                                 |                     | k,ucr,100,(C20/25) |            |             |         |
|                            | oncrete strength          |                                           | τ <sub>Rk,cr,100</sub> =  |                      |                                       |          | Ψ <sub>C</sub> •                | <sup>τ</sup> Rk,cr, | 100,(C2            | 0/25)      |             |         |
|                            | e cone failure o          | r Splitting                               |                           |                      |                                       |          |                                 |                     | ıbla Oo            |            |             |         |
|                            | t parameter<br>ion factor |                                           |                           |                      | L                                     |          |                                 | see 18              | able C2            |            |             |         |
|                            | nd wet concrete (         | (HD; HDB, CD)                             | 74.                       | r.1                  | 1,0                                   |          |                                 |                     |                    |            |             |         |
| for flooded bore hole (HD; |                           | ,                                         | γinst                     | [-]                  | 1,2                                   |          |                                 |                     |                    |            |             |         |
|                            |                           |                                           |                           |                      |                                       |          |                                 |                     |                    |            |             |         |
| Injection                  | on system ULE             | EP-585 for cond                           | crete                     |                      |                                       |          |                                 |                     | ]                  |            |             |         |
| Charac                     |                           | f tension loads u                         |                           | d quasi-stat         | ic actio                              | on       |                                 |                     |                    | Anne       | x C 4       |         |
| 701 a W                    | 5.1.11g 1110 01 100       | , Jan tineaded                            |                           |                      |                                       |          |                                 |                     |                    |            |             |         |



|                      |                                        | a working life           | 01 00 yea                |               |                                       |           |                  |                      |          |        |     |     |
|----------------------|----------------------------------------|--------------------------|--------------------------|---------------|---------------------------------------|-----------|------------------|----------------------|----------|--------|-----|-----|
| Thread               |                                        |                          |                          |               | M8                                    | M10       | M12              | M16                  | M20      | M24    | M27 | M30 |
| Steel fa             |                                        | .1.4                     | N                        | FL-N IZ       |                                       |           | Λ . f            | (or s                | oo Tob   | lo C1) |     |     |
|                      | teristic tension res                   | sistance                 | N <sub>Rk,s</sub>        | [kN]          |                                       |           |                  | <sub>ık</sub> (or so |          |        |     |     |
| Partial              |                                        |                          | γ <sub>Ms,N</sub>        | [-]           |                                       |           |                  | see Ta               | ible C1  |        |     |     |
|                      | ned pull-out and                       |                          | d aanarata Ci            | 20/25 in diam |                                       | اامط امما | 00 (DD           | ١                    |          |        |     |     |
|                      |                                        | tance in uncracke        |                          | 20/25 in diam |                                       |           |                  |                      |          |        |     |     |
| ature<br>e           | I: 24°C/40°C                           | Dry, wet                 |                          |               | 15                                    | 14        | 14               | 13                   | 12       | 12     | 11  | 11  |
| Temperature<br>range | II: 50°C/72°C                          | concrete or flooded bore | <sup>τ</sup> Rk,ucr      | [N/mm²]       | 12                                    | 12        | 11               | 10                   | 9,5      | 9,5    | 9,0 | 9,0 |
| Ten                  | III:60°C/80°C                          | hole                     |                          |               | 5,5                                   | 5,5       | 5,0              | 4,5                  | 4,5      | 4,5    | 4,0 | 4,0 |
| Charac               | teristic bond resis                    | tance in cracked o       | oncrete C20/             | /25 in diamon | d drille                              | d holes   | (DD)             |                      |          |        |     |     |
| ture                 | I: 24°C/40°C                           | Dry, wet                 |                          |               |                                       |           |                  | 5,5                  | 5,5      | 5,5    | 5,5 | 5,4 |
| Femperature<br>range | II: 50°C/72°C                          | concrete or flooded bore | τ <sub>Rk,cr</sub> [N/mm | [N/mm²]       | 1)                                    |           |                  | 4,6                  | 4,6      | 4,6    | 4,6 | 4,5 |
| Tem                  | III:60°C/80°C                          | hole                     |                          |               |                                       |           |                  | 2,4                  | 2,3      | 2,4    | 2,4 | 2,3 |
| Reduct               | ion factor ψ <sup>0</sup> sus in       | uncracked concre         | ete C20/25 in            | diamond drill | ed hole                               | es (DD)   |                  |                      |          |        |     |     |
| iure                 | I: 24°C/40°C                           | Dry, wet                 |                          |               | 0,77                                  |           |                  |                      |          |        |     |     |
| Temperature<br>range | II: 50°C/72°C                          | concrete or flooded bore | $\Psi^0_{sus}$           | [-]           | 0,72                                  |           |                  |                      |          |        |     |     |
| Tem                  | III:60°C/80°C                          | hole                     |                          |               | 0,72                                  |           |                  |                      |          |        |     |     |
|                      |                                        | ≤ C50/60                 |                          |               | (f <sub>ck</sub> / 20) <sup>0,2</sup> |           |                  |                      |          |        |     |     |
| Increas              | ing factors for                        | > C50/60                 | Ψc,ucr                   | [-]           | 1,2                                   |           |                  |                      |          |        |     |     |
|                      | -                                      | ≤ C50/60                 | Ψ <sub>c,cr</sub>        | [-]           |                                       |           |                  | (f <sub>ck</sub> / 2 | 20) 0,4  |        |     |     |
| Charac               | teristic bond resis                    | tance depending          | τ <sub>Rk,ucr</sub> =    | <b>I</b>      |                                       |           | Ψ <sub>c,u</sub> | cr • τ <sub>Rk</sub> | ucr,(C2  | 20/25) |     |     |
| on the               | concrete strength                      | class                    | τ <sub>Rk,cr</sub> =     |               |                                       |           | Ψ <b>c</b> ,     | cr • <sup>τ</sup> Rk | ,cr,(C20 | /25)   |     |     |
| Concre               | te cone failure o                      | r Splitting              |                          |               |                                       |           |                  |                      |          |        |     |     |
|                      | nt parameter                           |                          |                          |               |                                       |           |                  | see Ta               | ble C2   |        |     |     |
|                      | tion factor                            |                          |                          |               |                                       |           |                  |                      |          |        |     |     |
|                      | and wet concrete                       | · ·                      | γ <sub>inst</sub>        | [-]           |                                       |           |                  | 1                    | ,0       |        |     |     |
|                      | ded bore hole (DD<br>erformance assess | <u>′</u>                 | - 11131                  |               |                                       | 1,2       |                  |                      |          | 1,4    |     |     |

| Injection system ULEP-585 for concrete                                                                                                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action for a working life of 50 years (threaded rod) | Annex C 5 |



| Tabl                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | racteristic va<br>a working life |                           |                      | s und                                 | der st  | tatic a       | and q               | uasi-   | static | actio | n<br>n |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|----------------------|---------------------------------------|---------|---------------|---------------------|---------|--------|-------|--------|
| Threac               | led rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                           |                      | M8                                    | M10     | M12           | M16                 | M20     | M24    | M27   | M30    |
| Steel f              | ailure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                           |                      |                                       |         | •             |                     |         |        |       |        |
| Charac               | teristic tension res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sistance                         | N <sub>Rk,s</sub>         | [kN]                 |                                       |         | $A_s \cdot f$ | <sub>uk</sub> (or s | ee Tab  | le C1) |       |        |
| Partial              | Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                           | [-]                  |                                       |         |               | see Ta              | ıble C1 |        |       |        |
| Combi                | ned pull-out and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | concrete failure                 |                           | •                    |                                       |         |               |                     |         |        |       |        |
| Charac               | teristic bond resis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tance in uncracke                | d concrete C20            | /25 in diam          | ond dri                               | lled ho | les (DD       | ))                  |         |        |       |        |
| ture                 | I: 24°C/40°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet                         |                           |                      | 15                                    | 14      | 14            | 13                  | 12      | 12     | 11    | 11     |
| nperat<br>range      | II: 50°C/72°C   III: 60°C/80°C   III: | concrete or flooded bore         | <sup>τ</sup> Rk,ucr,100   | [N/mm <sup>2</sup> ] | 11                                    | 11      | 10            | 10                  | 9,5     | 9,0    | 8,5   | 8,5    |
| Terr                 | III:60°C/80°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hole                             |                           |                      | 5,5                                   | 5,5     | 5,0           | 4,5                 | 4,5     | 4,5    | 4,0   | 4,0    |
| Reduct               | tion factor ψ <sup>0</sup> sus,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o in uncracked co                | ncrete C20/25             | in diamond           | drilled                               | holes ( | DD)           |                     |         |        |       |        |
| ture                 | I: 24°C/40°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet                         |                           |                      | 0,73                                  |         |               |                     |         |        |       |        |
| Temperature<br>range | II: 50°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | concrete or flooded bore         | Ψ <sup>0</sup> sus,100    | [-]                  | 0,70                                  |         |               |                     |         |        |       |        |
| Terr                 | III:60°C/80°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hole                             |                           |                      | 0,72                                  |         |               |                     |         |        |       |        |
| Increas              | sing factors for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≤ C50/60                         |                           | r1                   | (f <sub>ck</sub> / 20) <sup>0,2</sup> |         |               |                     |         |        |       |        |
| concre               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > C50/60                         | $\Psi_{c}$                | [-]                  | 1,2                                   |         |               |                     |         |        |       |        |
|                      | teristic bond resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | τ <sub>Rk,ucr,100</sub> = |                      | Ψc * <sup>τ</sup> Rk,ucr,100,(C20/25) |         |               |                     |         |        |       |        |
| Concre               | ete cone failure o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Splitting                      |                           |                      |                                       |         |               |                     |         |        |       |        |
|                      | nt parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                           |                      |                                       |         |               | see Ta              | ble C2  |        |       |        |
|                      | ation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                           |                      |                                       |         |               |                     |         |        |       |        |
|                      | and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · ·                            | γ <sub>inst</sub>         | [-]                  |                                       |         |               | 1                   | ,0      |        |       |        |
| for floo             | ded bore hole (DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                | .11121                    | [,                   |                                       | 1,2     |               |                     |         | 1,4    |       |        |

| Injection system ULEP-585 for concrete                                                                                                  |           |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action for a working life of 100 years (threaded rod) | Annex C 6 |



| Table C7: Characteristic for a working I                                                                                |                                |       |                                                          |     | nder s                  | tatic a                           | ınd qu  | asi-sta | atic acti             | on     |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|----------------------------------------------------------|-----|-------------------------|-----------------------------------|---------|---------|-----------------------|--------|
| Threaded rod                                                                                                            |                                |       | M8                                                       | M10 | M12                     | M16                               | M20     | M24     | M27                   | M30    |
| Steel failure without lever arm                                                                                         |                                | '     |                                                          |     |                         |                                   |         |         |                       |        |
| Characteristic shear resistance<br>Steel, strength class 4.6, 4.8 and 5.6,<br>5.8                                       | V <sup>0</sup> Rk,s            | [kN]  |                                                          |     | 0,6 •                   | A <sub>s</sub> ·f <sub>uk</sub>   | (or see | Table C | 1)                    |        |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A2, A4 and HCR, all<br>strength classes | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 0,5 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1) |     |                         |                                   |         |         |                       |        |
| Partial factor                                                                                                          | γ <sub>Ms,V</sub>              | [-]   | see Table C1                                             |     |                         |                                   |         |         |                       |        |
| Ductility factor                                                                                                        | k <sub>7</sub>                 | [-]   | 1,0                                                      |     |                         |                                   |         |         |                       |        |
| Steel failure with lever arm                                                                                            |                                |       |                                                          |     |                         |                                   |         |         |                       |        |
| Characteristic bending moment                                                                                           | M <sup>0</sup> Rk,s            | [Nm]  |                                                          |     | 1,2 • \                 | W <sub>el</sub> • f <sub>uk</sub> | (or see | Table C | (1)                   |        |
| Elastic section modulus                                                                                                 | W <sub>el</sub>                | [mm³] | 31                                                       | 62  | 109                     | 277                               | 541     | 935     | 1387                  | 1874   |
| Partial factor                                                                                                          | γ <sub>Ms,V</sub>              | [-]   |                                                          |     |                         | see                               | Table C | :1      |                       |        |
| Concrete pry-out failure                                                                                                |                                |       |                                                          |     |                         |                                   |         |         |                       |        |
| Factor                                                                                                                  | k <sub>8</sub>                 | [-]   |                                                          |     |                         |                                   | 2,0     |         |                       |        |
| Installation factor                                                                                                     | γ <sub>inst</sub>              | [-]   |                                                          |     |                         |                                   | 1,0     |         |                       |        |
| Concrete edge failure                                                                                                   |                                | '     |                                                          |     |                         |                                   |         |         |                       |        |
| Effective length of fastener                                                                                            | I <sub>f</sub>                 | [mm]  |                                                          | m   | nin(h <sub>ef</sub> ; 1 | 2 · d <sub>nor</sub>              | m)      |         | min(h <sub>ef</sub> ; | 300mm) |
| Outside diameter of fastener                                                                                            | d <sub>nom</sub>               | [mm]  | 8 10 12 16 20 24 27                                      |     |                         |                                   |         | 30      |                       |        |
| Installation factor                                                                                                     | γinst                          | [-]   |                                                          |     |                         |                                   | 1,0     |         |                       |        |

| Injection system ULEP-585 for concrete                                                                                                       |           |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action for a working life of 50 and 100 years (threaded rod) | Annex C 7 |

**Performances** 



| Internal threa                                                                                 | ded anchor rods                             | S                        |                     |                       | IG-M6      | IG-M8       | IG-M10                 | IG-M12             | IG-M16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IG-M20   |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|---------------------|-----------------------|------------|-------------|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Steel failure1)                                                                                | 1                                           |                          |                     |                       |            |             | •                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Characteristic                                                                                 | tension resistanc                           | e, 5.8                   | $N_{Rk,s}$          | [kN]                  | 10         | 17          | 29                     | 42                 | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123      |  |
| Steel, strength                                                                                | n class                                     | 8.8                      | N <sub>Rk,s</sub>   | [kN]                  | 16         | 27          | 46                     | 67                 | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196      |  |
| Partial factor,                                                                                | strength class 5.8                          | 3 and 8.8                | γMs,N               | [-]                   |            |             | 1                      | ,5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 <sup>2)</sup> |                                             |                          | N <sub>Rk,s</sub>   | [kN]                  | 14         | 26          | 41                     | 59                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124      |  |
| Partial factor                                                                                 | Tori, orlangin ac                           | 200 7 0                  | γMs,N               | [-]                   |            | l           | 1,87                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,86     |  |
|                                                                                                | ıll-out and concr                           | ete cone failui          |                     |                       |            |             | ,                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|                                                                                                | bond resistance                             |                          |                     | 20/25 in h            | ammer dr   | illed (HD)  | and comp               | ressed air         | r drilled ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | les (CD) |  |
|                                                                                                | I: 24°C/40°C                                | Dry, wet                 |                     |                       | 20         | 19          | 19                     | 18                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16       |  |
| Temperature                                                                                    | II: 50°C/72°C                               | concrete or              | τ <sub>Rk,ucr</sub> | [N/mm²]               | 15         | 15          | 14                     | 13                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12       |  |
| range                                                                                          | III:60°C/80°C                               | flooded bore hole        | T IK, UCI           | [[]                   | 6,5        | 6,5         | 6,0                    | 6,0                | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,5      |  |
| Characteristic                                                                                 | bond resistance                             |                          | ncrete C            | ⊥<br>20/25 in h       | -          |             | <u> </u>               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0      |  |
| Characteristic                                                                                 | I: 24°C/40°C                                |                          |                     |                       | 16         | 16          | 16                     | 15                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       |  |
|                                                                                                | II: 50°C/72°C                               | Dry or wet               |                     |                       | 14         | 14          | 13                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11       |  |
| Temperature                                                                                    | III:60°C/80°C                               | concrete                 |                     | [ FA.1 / GT           | 6,5        | 6,5         | 6,0                    | 6,0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,5      |  |
| range                                                                                          | I: 24°C/40°C                                |                          | <sup>τ</sup> Rk,ucr | [N/mm²]               | 16         | 16          | 15                     | 15                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       |  |
|                                                                                                | II: 50°C/72°C                               | flooded bore<br>hole     |                     |                       | 14         | 14          | 13                     | 13                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11       |  |
|                                                                                                | III:60°C/80°C                               |                          |                     |                       | 6,5        | 6,5         | 6,0                    | 6,0                | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,5      |  |
|                                                                                                | bond resistance<br>er drilled holes wit     |                          |                     | /25 in ham            | mer drille | ed holes (F | HD), comp              | ressed air         | drilled ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | les (CD) |  |
| Tomporeture =                                                                                  | I: 24°C/40°C                                | Dry, wet                 |                     |                       | 7,0        | 8,5         | 8,5                    | 8,5                | 8,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,5      |  |
| Temperature                                                                                    | II: 50°C/72°C                               | concrete or flooded bore | <sup>τ</sup> Rk,cr  | [N/mm <sup>2</sup> ]  | 6,0        | 7,0         | 7,0                    | 7,0                | 7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,0      |  |
| range                                                                                          | III:60°C/80°C                               | hole                     |                     |                       | 5,0        | 5,0         | 4,5                    | 4,5                | 4,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,5      |  |
| Reduction fac                                                                                  | tor w <sup>0</sup> aug in crack             | ked and uncrac           | ked conci           | rete C20/2            | 5 in hamı  | mer drilled | holes (H[              | D), compre         | essed air o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | drilled  |  |
|                                                                                                | d in hammer drille                          |                          |                     |                       |            |             | (                      | ,,                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| (=, =, =, =, =, =, =, =, =, =, =, =, =, =                                                      | I: 24°C/40°C                                | Dry, wet                 |                     |                       | 0,80       |             |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Temperature                                                                                    | II: 50°C/72°C                               | concrete or              | $\Psi^0_{sus}$      | [-]                   |            |             |                        | 68                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| range                                                                                          | III:60°C/80°C                               | flooded bore             | y sus               | ',                    |            |             | -                      | 70                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|                                                                                                | 111.00 0/00 0                               | hole                     |                     |                       |            |             |                        |                    | 6,0 5,5 5,15 14 13 13 12 13 6,0 5,5 5,5 5,5 5,5 5,5 5,6 6 air drilled holes (C 8,5 8,5 8,5 8,5 7,0 7,0 7,0 4,5 4,5 4,5 4,5 5,5 6 compressed air drilled c 6,11 c 6, |          |  |
| Increasing fac                                                                                 | tors for concrete                           | ≤ C50/60                 | Ψς                  | [-]                   |            |             |                        | 20) <sup>0,1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|                                                                                                |                                             | > C50/60                 | _                   |                       |            |             | 1                      | ,1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|                                                                                                | bond resistance                             | depending on             |                     | τ <sub>Rk,ucr</sub> = |            |             | Ψc • τ <sub>Rk,ι</sub> | ucr,(C20/25)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| the concrete s                                                                                 | trength class                               |                          |                     | τ <sub>Rk,cr</sub> =  |            |             | Ψc • τ <sub>Rk,</sub>  | cr,(C20/25)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Concrete cor                                                                                   | ne failure or Split                         | tting                    |                     |                       |            |             |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Relevant para                                                                                  |                                             |                          |                     |                       |            |             | see Ta                 | able C2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| Installation fa                                                                                |                                             |                          |                     |                       |            |             |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
| <u> </u>                                                                                       | et concrete (HD; F                          |                          | γ <sub>inst</sub>   | [-]                   |            |             |                        | ,0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|                                                                                                | re hole (HD; HDB                            | <del>, ,</del>           |                     |                       |            |             |                        | ,2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ala.al   |  |
| The charac                                                                                     | (incl. nut and was<br>steristic tension res | istance for steel        |                     |                       |            |             |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ea roa.  |  |
| -) For IG-M20                                                                                  | strength class 50                           | is valid                 |                     |                       |            |             |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|                                                                                                |                                             |                          |                     |                       |            |             |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |

Characteristic values of tension loads under static and quasi-static action for a working life of 50 years (Internal threaded anchor rod)

Annex C 8



| Characteristic tension resistance,   5.8   N <sub>Rk,s</sub>   [kN]   10   17   29   42   76   123   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196   196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | eristic value<br>rking life of |                                  |                            |                           |                        |                                      | ,                         |                        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|----------------------------------|----------------------------|---------------------------|------------------------|--------------------------------------|---------------------------|------------------------|----------|
| Characteristic tension resistance,   5.8   N <sub>Rk,s</sub>   [kN]   10   17   29   42   76   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | S                              |                                  |                            | IG-M6                     | IG-M8                  | IG-M10                               | IG-M12                    | IG-M16                 | IG-M20   |
| Steel, strength class   8.8   N <sub>RIk,S</sub>   [kN]   16   27   46   67   121   196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Steel failure <sup>1)</sup>        |                                |                                  |                            |                           |                        |                                      |                           |                        |          |
| Partial factor, strength class 5.8 and 8.8   YMS, N   [-]   1,5   1,5   1,0   1,2   1,2   1,2   1,5   1,5   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6   1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Characteristic tension resistand   | ce, <u>5.8</u>                 | N <sub>Rk,s</sub>                | [kN]                       | 10                        | 17                     | 29                                   | 42                        | 76                     | 123      |
| Characteristic tension resistance, Stainless   Steel A4 and HCR, Strength class 70²   NRk,s   [kN]   14   26   41   59   110   124   27   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,86   2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Steel, strength class              | 8.8                            | N <sub>Rk,s</sub>                | [kN]                       | 16                        | 27                     | 46                                   | 67                        | 121                    | 196      |
| Steel A4 and HCR, Strength class 70 <sup>2</sup>   NRk,   IRN   14   26   41   59   110   124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Partial factor, strength class 5.8 |                                | [-]                              |                            |                           | 1                      | ,5                                   |                           |                        |          |
| Characteristic bond resistance in uncracked concrete C20/25 in hammer drilled (HD) and compressed air drilled holes (CI remperature finds)   18   24°C/40°C   Concrete or flooded bore hole   Tak,ucr,100   Tak,uc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | N <sub>Rk,s</sub>              | [kN]                             | 14                         | 26                        | 41                     | 59                                   | 110                       | 124                    |          |
| Characteristic bond resistance in uncracked concrete C20/25 in hammer drilled (HD) and compressed air drilled holes (CI arrange)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Partial factor                     |                                | γMs,N                            | [-]                        |                           |                        | 1,87                                 |                           |                        | 2,86     |
| Temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Combined pull-out and conc         | rete cone failu                | re                               |                            |                           |                        |                                      |                           |                        |          |
| Temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Characteristic bond resistance     | in uncracked c                 | oncrete C20                      | )/25 in ha                 | mmer dril                 | led (HD) a             | and comp                             | ressed air                | drilled ho             | les (CD) |
| Figure   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | 1 .                            |                                  |                            | 20                        | 19                     | 19                                   | 18                        | 17                     | 16       |
| III:60°C/80°C   hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                                | τ <sub>Bk ucr 100</sub>          | [N/mm²]                    | 15                        | 15                     | 14                                   | 13                        | 13                     | 12       |
| Characteristic bond resistance in uncracked concrete C20/25 in hammer drilled holes with hollow drill bit (HDB)    1. 24°C/40°C   II: 50°C/72°C   III: 50°C/72°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                | 1111,001,100                     |                            | 6.5                       | 6.5                    | 6.0                                  | 6.0                       | 5.5                    | 5.5      |
| Temperature range   Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                | oncrete C20                      | )/25 in ha                 |                           |                        |                                      |                           |                        |          |
| Temperature range    II: 50°C/72°C   Hi: 60°C/80°C   E24°C/40°C   Hi: 50°C/72°C   Hi: 50°C/72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                |                                  |                            |                           |                        |                                      |                           | ì í                    | 13       |
| Temperature range   His 60°C/80°C   Hoole   Hool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                  | 1 *                            |                                  |                            |                           |                        |                                      |                           | 12                     |          |
| Concrete concrete Strength Class   Concrete Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature III:60°C/80°C          | concrete                       |                                  | [N 1 /v== 27]              | 6,5                       | 6,5                    | 6,0                                  | 6,0                       | 5,5                    | 5,5      |
| 15.0°C/72°C   Nole   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | range I: 24°C/40°C                 | flandad bass                   | Rk,ucr,100                       | [IN/MM²]<br>               | 16                        | 16                     | 15                                   | 15                        | 14                     | 13       |
| Ill: $60^{\circ}C/80^{\circ}C$   6,5   6,5   6,0   6,0   5,5   5,5   5,5   Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CE and in hammer drilled holes with hollow drill bit (HDB)  Temperature range   I: $24^{\circ}C/40^{\circ}C$   Dry, wet concrete or flooded bore hole   $\tau_{Rk,cr,100}$   $\tau_{Rk,cr,100,(C20/25)}$   $\tau_{Rk,cr,100,(C20/25)}$   $\tau_{Rk,cr,100}$   $\tau_{Rk,cr,100}$   $\tau_{Rk,cr,100}$   $\tau_{Rk,cr,100,(C20/25)}$   $\tau_{Rk,cr,100,(C20/25)}$   $\tau_{Rk,cr,100}$   $\tau_{Rk,cr,100}$   $\tau_{Rk,cr,100,(C20/25)}$   $\tau_{Rk,cr,100,($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | II: 50°C/72°C                      |                                |                                  |                            | 14                        | 14                     | 13                                   | 13                        | 12                     | 11       |
| Temperature range   1: 24°C/40°C     Dry, wet concrete or flooded bore hole   Tak,cr,100   Tak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                |                                  |                            |                           |                        | <u> </u>                             |                           |                        |          |
| Temperature range $ \frac{ I : 50^{\circ}\text{C}/72^{\circ}\text{C}}{ II : 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{ I : 50^{\circ}\text{C}/72^{\circ}\text{C}}{ II : 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{ I : 50^{\circ}\text{C}/72^{\circ}\text{C}}{ II : 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{ I : 50^{\circ}\text{C}/80^{\circ}\text{C}}{ II : 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{ I : 50^{\circ}\text{C}/72^{\circ}\text{C}}{ II : 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{ I : 50^{\circ}\text{C}/7$                                                                                     |                                    |                                |                                  | 5 in hamr                  | ner drilled               | l holes (H             | D), compr                            | essed air                 | drilled ho             | les (CD) |
| range    II: 50°C/72°C   flooded bore hole   flooded bore flooded bore hole   flooded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                | <sup>τ</sup> Rk,cr,100           |                            | 6,5                       | 7,5                    | 7,5                                  | 7,5                       | 7,5                    | 7,5      |
| Reduction factor $\psi^0_{SuS,100}$ in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)  Temperature range    I: 24°C/40°C   Dry, wet concrete or flooded bore hole   $\psi^0_{SuS,100}$   [-]   0,80   0,80   0,70   0,70   0,68   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70   0,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 50 (7/2)                        |                                |                                  | [N/mm <sup>2</sup> ]       | 5,5                       | 6,5                    | 6,5                                  | 6,5                       | 6,5                    | 6,5      |
| $ \frac{\text{drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)}}{\text{II: } 24^{\circ}\text{C}/40^{\circ}\text{C}} \frac{\text{II: } 50^{\circ}\text{C}/72^{\circ}\text{C}}{\text{III: } 50^{\circ}\text{C}/72^{\circ}\text{C}} \frac{\text{III: } 50^{\circ}\text{C}/72^{\circ}\text{C}}{\text{III: } 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{\text{III: } 50^{\circ}\text{C}/80^{\circ}\text{C}}{\text{III: } 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{\text{III: } 60^{\circ}\text{C}/80^{\circ}\text{C}}{\text{III: } 60^{\circ}\text{C}/80^{\circ}\text{C}} \frac{\text{III: } 60^{\circ}\text$ | III:60°C/80°C                      |                                |                                  |                            | 5,0                       | 5,0                    | 4,5                                  | 4,5                       | 4,5                    | 4,5      |
| Temperature range $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                |                                  |                            |                           | ammer dr               | illed holes                          | (HD), co                  | mpressed               | air      |
| Temperature range $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                | 1                              | With Hollow                      |                            | (סטו                      |                        |                                      | 00                        |                        |          |
| range $\frac{\text{II: 50°C/72°C}}{\text{III: 60°C/80°C}}$ flooded bore hole $\frac{\text{Flooded bore}}{\text{hole}}$ flooded bore hole $\frac{\text{Flooded bore}}{\text{Flooded bore}}$ flooded bore hole (HD; HDB, CD) $\frac{\text{Flooded bore}}{\text{Flooded bore}}$ flooded bore hole (HD; HDB, CD) $\frac{\text{Flooded bore}}{\text{Flooded bore}}$ flooded bore hole (HD; HDB, CD) $\frac{\text{Flooded bore}}{\text{Flooded bore}}$ for steel failure is valid for the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tomporature -                      |                                |                                  | .,                         |                           |                        |                                      |                           |                        |          |
| Increasing factors for concrete $\frac{\leq C50/60}{> C50/60}$ $\forall_C$ $\psi_C$ $\psi_$                                                                                                                                                                                                                                                                                                                           | range III. 50°C/72°C               |                                | Ψ <sup>0</sup> sus,100           | [-]                        |                           |                        |                                      |                           |                        |          |
| Characteristic bond resistance depending on the concrete strength class  Concrete cone failure or Splitting  Relevant parameter  For dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  Takk, cr, 100 = Takk, ur, 100, (C20/25)  Takk, ur, 100 = Takk, ur, 100, ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | III:60°C/80°C                      | hole                           |                                  |                            |                           |                        |                                      |                           |                        |          |
| Characteristic bond resistance depending on the concrete strength class   τ <sub>Rk,cr,100</sub> =   Ψ <sub>c</sub> • τ <sub>Rk,cr,100,(C20/25)</sub>     Concrete cone failure or Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Increasing factors for concrete    | ≤ C50/60                       | 111                              |                            |                           |                        | (f <sub>ck</sub> / :                 | 20) <sup>0,1</sup>        |                        |          |
| the concrete strength class $\tau_{Rk,cr,100} = \frac{\psi_c \cdot \tau_{Rk,cr,100,(C20/25)}}{\psi_c \cdot \tau_{Rk,cr,100,(C20/25)}}$ Concrete cone failure or Splitting  Relevant parameter  see Table C2  Installation factor  for dry and wet concrete (HD; HDB, CD)  for flooded bore hole (HD; HDB, CD)  1,0  1,2  1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | increasing factors for concrete    | > C50/60                       | $\int_{0}^{1} \Psi_{c}$          | [-]                        |                           |                        | 1                                    | ,1                        |                        |          |
| Concrete cone failure or Splitting  Relevant parameter see Table C2  Installation factor  for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | depending on                   | τ <sub>Rk,</sub>                 | ucr,100 =                  |                           | Ψ                      | <sup>/</sup> c <sup>• τ</sup> Rk,ucr | ,100,(C20/2               | 25)                    |          |
| Relevant parameter  Installation factor  for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the concrete strength class        |                                | τ <sub>Rl</sub>                  | k,cr,100 =                 |                           | 1                      | Ψc • τ <sub>Rk,cr,</sub>             | ,100,(C20/2               | (5)                    |          |
| Installation factor for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  1,2  1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concrete cone failure or Spli      | tting                          |                                  |                            |                           |                        |                                      |                           |                        |          |
| for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)  1,0  1,2  1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                |                                  |                            |                           |                        | see Ta                               | able C2                   |                        |          |
| for flooded bore hole (HD; HDB, CD)  Yinst  1,2  1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                |                                  |                            |                           |                        |                                      |                           |                        |          |
| 1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod.  The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                  |                                | γ <sub>inst</sub>                | [-]                        |                           |                        |                                      |                           |                        |          |
| The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                  | · ,                            |                                  |                            |                           |                        |                                      | ,                         |                        |          |
| <sup>2)</sup> For IG-M20 strength class 50 is valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The characteristic tension res     | sistance for stee              | ly with the a<br>I failure is va | ppropriate<br>alid for the | material a<br>internal th | and prope<br>readed ro | rty class of<br>od and the           | f the intern<br>fastening | al threade<br>element. | ed rod.  |

| Injection system ULEP-585 for concrete                                      |           |
|-----------------------------------------------------------------------------|-----------|
| Performances                                                                | Annex C 9 |
| Characteristic values of tension loads under static and quasi-static action |           |
| for a working life of 100 years (Internal threaded anchor rod)              |           |



1,0

1,4

| Table C10                                                                                      |                                     | eristic value<br>rking life of                  |                     |                       | nds und                                      | ler stat   | ic and o             | quasi-s | tatic ac | tion   |
|------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------|-----------------------|----------------------------------------------|------------|----------------------|---------|----------|--------|
| Internal threa                                                                                 | ded anchor rod                      | <br>S                                           |                     |                       | IG-M6                                        | IG-M8      | IG-M10               | IG-M12  | IG-M16   | IG-M20 |
| Steel failure1)                                                                                |                                     |                                                 |                     |                       |                                              |            |                      |         |          |        |
| Characteristic                                                                                 | tension resistanc                   | e, <u>5.8</u>                                   | N <sub>Rk,s</sub>   | [kN]                  | 10                                           | 17         | 29                   | 42      | 76       | 123    |
| Steel, strength                                                                                | class                               | 8.8                                             | N <sub>Rk,s</sub>   | [kN]                  | 16                                           | 27         | 46                   | 67      | 121      | 196    |
| Partial factor,                                                                                | strength class 5.8                  | 3 and 8.8                                       | $\gamma_{Ms,N}$     | [-]                   |                                              |            | 1                    | ,5      |          |        |
| Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 <sup>2)</sup> |                                     |                                                 | N <sub>Rk,s</sub>   | [kN]                  | 14                                           | 26         | 41                   | 59      | 110      | 124    |
| Partial factor                                                                                 |                                     |                                                 | γ <sub>Ms,N</sub>   | [-]                   |                                              |            | 1,87                 |         |          | 2,86   |
| Combined pu                                                                                    | Il-out and concr                    | ete cone failu                                  | re                  |                       |                                              |            |                      |         |          |        |
| Characteristic                                                                                 | bond resistance                     | in uncracked co                                 | oncrete C20         | 0/25 in dia           | mond dril                                    | led holes  | (DD)                 |         |          |        |
|                                                                                                | I: 24°C/40°C                        | I HOOGEG DOIC                                   | <sup>τ</sup> Rk,ucr |                       | 14                                           | 14         | 13                   | 12      | 12       | 11     |
| Temperature range                                                                              | II: 50°C/72°C                       |                                                 |                     | [N/mm²]               | 12                                           | 11         | 10                   | 9,5     | 9,5      | 9,0    |
|                                                                                                | III:60°C/80°C                       | hole                                            |                     |                       | 5,5                                          | 5,0        | 4,5                  | 4,5     | 4,5      | 4,0    |
| Characteristic I                                                                               | bond resistance i                   | n cracked cond                                  | rete C20/2          | 5 in diamo            | nd drilled                                   | l holes (D | D)                   |         |          |        |
|                                                                                                | I: 24°C/40°C                        | Dry, wet<br>concrete or<br>flooded bore<br>hole |                     |                       | 3)                                           |            | 5,5                  | 5,5     | 5,5      | 5,4    |
| Temperature range                                                                              | II: 50°C/72°C                       |                                                 | <sup>τ</sup> Rk,cr  | [N/mm²]               |                                              |            | 4,6                  | 4,6     | 4,6      | 4,5    |
|                                                                                                | III:60°C/80°C                       |                                                 |                     |                       |                                              |            | 2,4                  | 2,3     | 2,4      | 2,3    |
| Reduction fact                                                                                 | or ${\psi^0}_{	t sus}$ in uncra     | acked concrete                                  | C20/25 in 6         | diamond d             | rilled hole                                  | es (DD)    |                      |         |          |        |
|                                                                                                | I: 24°C/40°C                        | Dry, wet                                        |                     |                       | 0,77                                         |            |                      |         |          |        |
| Temperature range                                                                              | II: 50°C/72°C                       | concrete or flooded bore                        | $\Psi^0_{sus}$      | [-]                   |                                              |            | 0,                   | 72      |          |        |
|                                                                                                | III:60°C/80°C                       | hole                                            |                     |                       | 0,72                                         |            |                      |         |          |        |
|                                                                                                |                                     | ≤ C50/60                                        | Ψ <sub>c,ucr</sub>  | [-]                   |                                              |            | (f <sub>ck</sub> / 2 | 20) 0,2 |          |        |
| Increasing fact                                                                                | ors for concrete                    | > C50/60                                        | ₹C,ucr              | 1.1                   |                                              |            |                      | ,2      |          |        |
|                                                                                                |                                     | ≤ C50/60                                        | Ψ <sub>c,cr</sub>   | [-]                   |                                              |            | (f <sub>ck</sub> / 2 | 20) 0,4 |          |        |
|                                                                                                | bond resistance                     | depending on                                    |                     | τ <sub>Rk,ucr</sub> = | Ψc,ucr * <sup>τ</sup> Rk,ucr,(C20/25)        |            |                      |         |          |        |
| the concrete st                                                                                |                                     |                                                 |                     | τ <sub>Rk,cr</sub> =  | Ψ <b>c</b> ,cr • <sup>τ</sup> Rk,cr,(C20/25) |            |                      |         |          |        |
| Relevant para                                                                                  | <b>e failure or Spli</b> t<br>meter | tting                                           |                     |                       |                                              |            | see Ta               | able C2 |          |        |
| Installation fa                                                                                |                                     |                                                 |                     |                       |                                              |            |                      |         |          |        |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

 $\gamma_{\text{inst}}$ 

[-]

1,2

for dry and wet concrete (DD)

for flooded bore hole (DD)

| Injection system ULEP-585 for concrete                                                                                                    |            |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances                                                                                                                              | Annex C 10 |
| Characteristic values of tension loads under static and quasi-static action for a working life of 50 years (Internal threaded anchor rod) |            |

<sup>2)</sup> For IG-M20 strength class 50 is valid

<sup>3)</sup> no performance assessed



| Table C11:        | Characteristic values of tension loa<br>for a working life of 100 years | ads und | der stat | ic and o | quasi-s | tatic ac | tion |
|-------------------|-------------------------------------------------------------------------|---------|----------|----------|---------|----------|------|
| Internal threaded | i anchor rods                                                           | IG-M6   | IG-M8    | IG-M10   | IG-M12  | IG-M16   | IG-M |

| Internal threa                          | ded anchor rods                            | S                                 |                         |             | IG-M6                                         | IG-M8     | IG-M10               | IG-M12             | IG-M16 | IG-M20 |  |
|-----------------------------------------|--------------------------------------------|-----------------------------------|-------------------------|-------------|-----------------------------------------------|-----------|----------------------|--------------------|--------|--------|--|
| Steel failure1)                         |                                            |                                   |                         |             |                                               |           |                      |                    |        |        |  |
| Characteristic                          | tension resistanc                          | e, 5.8                            | N <sub>Rk,s</sub>       | [kN]        | 10                                            | 17        | 29                   | 42                 | 76     | 123    |  |
| Steel, strength                         | Steel, strength class 8.8                  |                                   | N <sub>Rk,s</sub>       | [kN]        | 16                                            | 27        | 46                   | 67                 | 121    | 196    |  |
| Partial factor, s                       | strength class 5.8                         | 3 and 8.8                         | γ <sub>Ms,N</sub>       | [-]         |                                               |           | 1                    | ,5                 |        |        |  |
|                                         | tension resistand<br>ICR, Strength cla     | ,                                 | N <sub>Rk,s</sub>       | [kN]        | 14                                            | 26        | 41                   | 59                 | 110    | 124    |  |
| Partial factor                          |                                            |                                   | γ <sub>Ms,N</sub>       | [-]         |                                               |           | 1,87                 |                    |        | 2,86   |  |
| Combined pu                             | II-out and concr                           | ete cone failu                    | re                      |             |                                               |           |                      |                    |        |        |  |
| Characteristic                          | bond resistance                            | in uncracked co                   | oncrete C20             | )/25 in dia | mond dril                                     | led holes | (DD)                 |                    |        |        |  |
| Temperature range _                     | I: 24°C/40°C                               | Dry, wet concrete or flooded bore | <sup>τ</sup> Rk,ucr,100 | [N/mm²]     | 14                                            | 14        | 13                   | 12                 | 12     | 11     |  |
|                                         | II: 50°C/72°C                              |                                   |                         |             | 11                                            | 10        | 10                   | 9,5                | 9,0    | 8,5    |  |
|                                         | III:60°C/80°C                              | hole                              |                         |             | 5,5                                           | 5,0       | 4,5                  | 4,5                | 4,5    | 4,0    |  |
| Reduction factor                        | or ${\psi^0}_{	extsf{sus},100}$ in $\iota$ | ıncracked cond                    | rete C20/25             | in diamo    | nd drilled                                    | holes (D  | D)                   |                    |        |        |  |
|                                         | I: 24°C/40°C                               | Dry, wet                          |                         | [-]         | 0,73                                          |           |                      |                    |        |        |  |
| Temperature range                       | II: 50°C/72°C                              | concrete or flooded bore          | Ψ <sup>0</sup> sus,100  |             | 0,70                                          |           |                      |                    |        |        |  |
|                                         | III:60°C/80°C                              | hole                              |                         |             | 0,72                                          |           |                      |                    |        |        |  |
|                                         |                                            | ≤ C50/60                          |                         |             |                                               |           | (f <sub>ck</sub> / : | 20) <sup>0,2</sup> |        |        |  |
| ncreasing factors for concrete > C50/60 |                                            | > C50/60                          | Ψc                      | [-]         | 1,2                                           |           |                      |                    |        |        |  |
| Characteristic l<br>he concrete st      | oond resistance o                          | depending on                      | <sup>τ</sup> Rk,        | ucr,100 =   | Ψ <b>c</b> * <sup>τ</sup> Rk,ucr,100,(C20/25) |           |                      |                    |        |        |  |
|                                         | e failure or Split                         | tting                             | •                       | '           |                                               |           |                      |                    |        |        |  |
| Relevant parar                          | meter                                      |                                   |                         |             | see Table C2                                  |           |                      |                    |        |        |  |

| for dry and wet concrete (DD) | γ      | ,   | 1,0 |     |  |  |  |  |
|-------------------------------|--------|-----|-----|-----|--|--|--|--|
| for flooded bore hole (DD)    | 7 inst | [-] | 1.2 | 1.4 |  |  |  |  |

1) Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Installation factor

| Injection system ULEP-585 for concrete                                                                                                     |            |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances                                                                                                                               | Annex C 11 |
| Characteristic values of tension loads under static and quasi-static action for a working life of 100 years (Internal threaded anchor rod) |            |

<sup>2)</sup> For IG-M20 strength class 50 is valid



| teel failure without lever arm<br>characteristic shear resistance,<br>teel, strength class      | 1)      |                                | Internal threaded anchor rods IG-M6   IG-M8   IG-M10   IG-M12   IG-M16 |               |               |    |     |     |     |  |  |  |  |
|-------------------------------------------------------------------------------------------------|---------|--------------------------------|------------------------------------------------------------------------|---------------|---------------|----|-----|-----|-----|--|--|--|--|
| ,                                                                                               |         |                                |                                                                        |               |               |    |     |     |     |  |  |  |  |
| teel, strength class                                                                            | 5.8     | V <sup>0</sup> Rk,s            | [kN]                                                                   | 5             | 9             | 15 | 21  | 38  | 61  |  |  |  |  |
|                                                                                                 | 8.8     | V <sup>0</sup> <sub>Rk,s</sub> | [kN]                                                                   | 8             | 14            | 23 | 34  | 60  | 98  |  |  |  |  |
| artial factor, strength class 5.8                                                               | and 8.8 | γ <sub>Ms,V</sub>              | [-]                                                                    | 1,25          |               |    |     |     |     |  |  |  |  |
| haracteristic shear resistance,<br>tainless Steel A4 and HCR,<br>trength class 70 <sup>2)</sup> |         | V <sup>0</sup> Rk,s            | [kN]                                                                   | 7             | 7 13 20 30 55 |    |     |     |     |  |  |  |  |
| artial factor                                                                                   |         | $\gamma_{Ms,V}$                | [-]                                                                    | [-] 1,56 2,0  |               |    |     |     |     |  |  |  |  |
| uctility factor                                                                                 |         | k <sub>7</sub>                 | [-]                                                                    | [-] 1,0       |               |    |     |     |     |  |  |  |  |
| teel failure with lever arm1)                                                                   |         | •                              |                                                                        |               |               |    |     |     |     |  |  |  |  |
| haracteristic bending moment,                                                                   | 5.8     | M <sup>0</sup> Rk,s            | [Nm]                                                                   | 8             | 19            | 37 | 66  | 167 | 325 |  |  |  |  |
| teel, strength class                                                                            | 8.8     | M <sup>0</sup> Rk,s            | [Nm]                                                                   | 12            | 30            | 60 | 105 | 267 | 519 |  |  |  |  |
| artial factor, strength class 5.8                                                               | and 8.8 | γ <sub>Ms,V</sub>              | [-]                                                                    | 1,25          |               |    |     |     |     |  |  |  |  |
| characteristic bending moment, tainless Steel A4 and HCR, trength class 70 <sup>2)</sup>        |         | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]                                                                   | 11            | 26            | 52 | 92  | 233 | 456 |  |  |  |  |
| artial factor                                                                                   |         | γ <sub>Ms,V</sub>              | [-]                                                                    | [-] 1,56 2,38 |               |    |     |     |     |  |  |  |  |
| oncrete pry-out failure                                                                         |         |                                |                                                                        |               |               |    |     |     |     |  |  |  |  |
| actor                                                                                           |         | k <sub>8</sub>                 | [-]                                                                    | [-] 2,0       |               |    |     |     |     |  |  |  |  |
| nstallation factor                                                                              |         | γ <sub>inst</sub>              | [-]                                                                    | [-] 1,0       |               |    |     |     |     |  |  |  |  |

10

12

[mm]

[mm]

[-]

 $d_{nom}$ 

 $\gamma_{\mathsf{inst}}$ 

 $min(h_{ef}; 12 \cdot d_{nom})$ 

16

20

1,0

24

min(h<sub>ef</sub>; 300mm)

30

Effective length of fastener

Outside diameter of fastener

Installation factor

| Injection system ULEP-585 for concrete                                                                                                                       |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under static and quasi-static action for a working life of 50 and 100 years (Internal threaded anchor rod) | Annex C 12 |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

<sup>2)</sup> For IG-M20 strength class 50 is valid



| Table C13:                                                       | Characte for a wor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                      |          |         | load     | s un     | der s    | statio               | and                | qua      | si-st     | atic      | actio    | n               |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|----------|---------|----------|----------|----------|----------------------|--------------------|----------|-----------|-----------|----------|-----------------|
| Reinforcing bar                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                      | Ø8       | Ø 10    | Ø 12     | Ø 14     | Ø 16     | Ø 20                 | Ø 24               | Ø 25     | Ø 28      | Ø 32      | Ø 36     | Ø 40            |
| Steel failure                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                      |          |         |          |          |          |                      |                    |          |           |           |          |                 |
| Characteristic tensi resistance                                  | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N <sub>Rk,s</sub>   | [kN]                 |          |         |          |          |          |                      | f <sub>uk</sub> 1) |          |           |           |          |                 |
| Cross section area                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A <sub>s</sub>      | [mm <sup>2</sup> ]   | 50       | 79      | 113      | 154      | 201      | 314                  |                    | 491      | 616       | 804       | 1018     | 1256            |
| Partial factor                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | γ <sub>Ms,N</sub>   | [-]                  |          |         |          |          |          | 1,                   | 4 <sup>2)</sup>    |          |           |           |          |                 |
| Combined pull-ou                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                      |          |         |          |          |          |                      |                    |          |           |           |          |                 |
| Characteristic bond                                              | resistance i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n uncracked         | concret              | e C20    | )/25 in | hamn     | er (H    | D) and   | comp                 | resse              | d air d  | Irilled I | noles (   | (CD)     |                 |
| I: 24°C/40°C<br>II: 50°C/72°C                                    | Dry, wet concrete or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.01                | [N/mm <sup>2</sup> ] | 16<br>12 | 16      | 16<br>12 | 16<br>12 | 16<br>12 | 16<br>12             | 15<br>12           | 15<br>12 | 15<br>11  | 15<br>11  | 15<br>11 | 15<br>11        |
| E E III: 80°C\80°C                                               | flooded<br>bore hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>τ</sup> Rk,ucr | [[14/11111-]         | 5,5      | 5,5     | 5,5      | 5,5      | 5,5      | 5,5                  | 5,0                | 5,0      | 5,0       | 5,0       | 4,5      | 4,5             |
| Characteristic bond                                              | resistance i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n uncracked         | d concret            | e C20    | )/25 in | hamm     | er dri   | lled ho  | les wi               | th holl            | ow dri   | ll bit (F | HDB)      |          |                 |
| I: 24°C/40°C                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                      | 14       | 14      | 13       | 13       | 13       | 13                   | 13                 | 13       | 13        | 13        |          |                 |
| II: 50°C/72°C                                                    | Dry, wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                      | 12       | 12      | 12       | 11       | 11       | 11                   | 11                 | 11       | 11        | 11        |          |                 |
| Ti: 50°C/72°C    Ii: 50°C/72°C    Ii: 50°C/72°C    Ii: 50°C/72°C | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TDI                 | <br> [N/mm²]         | 5,5      | 5,5     | 5,5      | 5,5      | 5,5      | 5,5                  | 5,0                | 5,0      | 5,0       | 5,0       |          | 3)              |
| ਵੇਂ ਫ਼ੁ <u>I: 24°C/40°C</u>                                      | flooded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>τ</sup> Rk,ucr | [14/11111]           | 13       | 13      | 13       | 13       | 13       | 13                   | 13                 | 13       | 13        | 13        |          | ,               |
| II: 50°C/72°C                                                    | bore hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                      | 11       | 11      | 11       | 11       | 11       | 11                   | 11                 | 11       | 11        | 11        | -        |                 |
| III: 60°C/80°C                                                   | 60°C/80°C   5,5   5,5   5,5   5,5   5,5   5,5   5,0   5,0   5,5   5,5   5,5   5,5   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0   5,0 |                     |                      |          |         |          |          |          |                      |                    | 5,0      | 5,0       | 5,0       | <u> </u> | (OD)            |
| and in hammer drill                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                      |          | 5 in na | ımmer    | arilled  | a noies  | · HD)                | , com              | resse    | a air c   | irillea i | noies    | (CD)            |
| i: 24°C/40°C                                                     | Dry, wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                      | 7,0      | 7,0     | 8,5      | 8,5      | 8,5      | 8,5                  | 8,5                | 8,5      | 8,5       | 8,5       |          |                 |
| E 24°C/40°C   II: 50°C/72°C   II: 60°C/80°C                      | concrete or flooded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | τ <sub>Rk,cr</sub>  | [N/mm <sup>2</sup> ] | 6,0      | 6,0     | 7,0      | 7,0      | 7,0      | 7,0                  | 7,0                | 7,0      | 7,0       | 7,0       | 3)       |                 |
| <sup>™</sup> <sup>™</sup> III:60°C/80°C                          | hore hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                   |                      | 4,5      | 4,5     | 4,5      | 4,5      | 4,5      | 4,5                  | 4,5                | 4,5      | 4,5       | 4,5       | 1        |                 |
| holes (CD) and in h                                              | Ψ <sup>0</sup> sus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nollow              | 0,80                 |          |         |          |          |          |                      |                    |          |           |           |          |                 |
| III: 60°C/80°C                                                   | flooded<br>bore hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ψ sus               | [7]                  | 0,70     |         |          |          |          |                      |                    |          |           |           |          |                 |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                      |          |         |          |          |          | (f <sub>ck</sub> / 2 |                    |          |           |           |          |                 |
| Increasing factors for concrete                                  | > C50/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ψс                  | [-]                  |          |         |          |          |          |                      | ,1                 |          |           |           |          |                 |
| Characteristic bond                                              | l resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | τ                   | Rk,ucr =             |          |         |          |          | Wa       | • TDk                | or (CO)            | )/OE)    |           |           |          |                 |
| depending on the c                                               | oncrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | -                    |          |         |          |          |          | • τ <sub>Rk,u</sub>  |                    |          |           |           |          |                 |
| strength class                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | <sup>τ</sup> Rk,cr = |          |         |          |          | Ψс       | • τ <sub>Rk,</sub>   | cr,(C20            | /25)     |           |           |          |                 |
| Concrete cone fai                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ung                 |                      |          |         |          |          |          | 200 T                | bla O              | 2        |           |           |          |                 |
| Relevant paramete<br>Installation factor                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | יחי                 |                      |          |         |          |          |          | see Ta               | ible C             |          |           |           |          |                 |
| for dry and wet con                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ر <i>و</i> ر        |                      |          |         |          |          | 1        | ,0                   |                    |          |           |           | 1        | ,2              |
| for flooded bore ho                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | γinst               | [-]                  |          |         |          |          |          | <u>,0</u><br>,2      |                    |          |           |           |          | <u>,∠</u><br>3) |
| 1) f <sub>uk</sub> shall be take                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecifications of     | of reinforc          | ina ba   | ars     |          |          | '        | , <b>_</b>           |                    |          |           |           | `        | - /             |
| 2) in absence of na<br>3) no performance                         | itional regulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 51 TOILIIOT          | onig Sc  |         |          |          |          |                      |                    |          |           |           |          |                 |
| Injection syster                                                 | m ULEP-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 for cond          | crete                |          |         |          |          |          |                      |                    |          |           |           |          |                 |
| Performances Characteristic va for a working life                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                      | tic an   | d quas  | si-stat  | ic acti  | on       |                      |                    |          | Ar        | nnex      | C 13     | 3               |



| Table C14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Characte for a wor   |                         |                      |          |        | load    | s un     | der s            | tatic                | and                     | qua      | si-st    | atic a  | actio    | n          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|----------------------|----------|--------|---------|----------|------------------|----------------------|-------------------------|----------|----------|---------|----------|------------|--|--|
| Reinforcing bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         |                      | Ø8       | Ø 10   | Ø 12    | Ø 14     | Ø 16             | Ø 20                 | Ø 24                    | Ø 25     | Ø 28     | Ø 32    | Ø 36     | Ø 40       |  |  |
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                         |                      |          |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| Characteristic tensi resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on                   | N <sub>Rk,s</sub>       | [kN]                 |          |        |         |          |                  | A <sub>s</sub> ·     | f <sub>uk</sub> 1)      |          |          |         |          |            |  |  |
| Cross section area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | A <sub>s</sub>          | [mm <sup>2</sup> ]   | 50       | 79     | 113     | 154      | 201              | 314                  | 452                     | 491      | 616      | 804     | 1018     | 1256       |  |  |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | γ <sub>Ms,N</sub>       | [-]                  |          |        |         |          |                  | 1,4                  | <b>4</b> <sup>2</sup> ) |          |          |         |          |            |  |  |
| Combined pull-ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t and concre         |                         |                      |          |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| Characteristic bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | resistance i         | n uncracked             | d concret            | e C20    | /25 in | hamm    | ner (HI  | D) and           | comp                 | resse                   | d air d  | rilled ł | noles ( | CD)      |            |  |  |
| 1: 24°C/40°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry, wet             |                         |                      | 16       | 16     | 16      | 16       | 16               | 16                   | 15                      | 15       | 15       | 15      | 15       | 15         |  |  |
| I: 50°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | concrete or          | τ <sub>Rk,ucr,100</sub> | [N/mm²]              | 12       | 12     | 12      | 12       | 12               | 12                   | 12                      | 12       | 11       | 11      | 11       | 11         |  |  |
| ☐ ☐ ☐ III:60°C\80°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flooded              | TRK,UCI, 100            | [, ]                 | 5,5      | 5,5    | 5,5     | 5,5      | 5,5              | 5,5                  | 5,0                     | 5,0      | 5,0      | 5,0     | 4,5      | 4,5        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         | 1                    |          |        |         |          |                  |                      |                         |          |          |         | 4,5      | 4,5        |  |  |
| Characteristic bond<br>I: 24°C/40°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | resistance ii        | n uncracked             |                      | e 020    | 14     | 13      | 13       | 13               | 13                   | 13                      | 13       | 13       | 13      |          |            |  |  |
| 1: 50°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry or wet           |                         |                      | 12       | 12     | 12      | 11       | 11               | 11                   | 11                      | 11       | 11       | 11      |          |            |  |  |
| a III. 60°C/80°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | concrete             |                         |                      | 5.5      | 5,5    | 5,5     | 5,5      | 5,5              | 5,5                  | 5,0                     | 5,0      | 5,0      | 5,0     |          |            |  |  |
| emperature   II: 50°C/72°C   I |                      | <sup>τ</sup> Rk,ucr,100 | [N/mm <sup>2</sup> ] | 13       | 13     | 13      | 13       | 13               | 13                   | 13                      | 13       | 13       | 13      | 3        | 3)         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nooaea               |                         |                      | 11       | 11     | 11      | 11       | 11               | 11                   | 11                      | 11       | 11       | 11      |          |            |  |  |
| III: 60°C/80°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bore hole            |                         |                      | 5,5      | 5,5    | 5,5     | 5,5      | 5,5              | 5,5                  | 5,0                     | 5,0      | 5,0      | 5,0     |          |            |  |  |
| Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                         |                      |          |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| 1. 0400/4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry wet              | THORIOW GITT            |                      | 6,5      | 6,5    | 7,5     | 7,5      | 7,5              | 7,5                  | 7,5                     | 7,5      | 7,5      | 7,5     |          |            |  |  |
| I: 50°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | concrete or          | _                       | [N]/mama21           | <u> </u> |        |         |          |                  |                      |                         |          |          |         | ,        | <b>)</b> \ |  |  |
| E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flooded              | <sup>τ</sup> Rk,cr,100  | [N/mm <sup>2</sup> ] | ⊢ ´      | 5,5    | 6,5     | 6,5      | 6,5              | 6,5                  | 6,5                     | 6,5      | 6,5      | 6,5     | $\dashv$ |            |  |  |
| ⊢ _ III:60°C/80°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bore hole            |                         |                      | 4,5      | 4,5    | 4,5     | 4,5      | 4,5              | 4,5                  | 4,5                     | 4,5      | 4,5      | 4,5     |          |            |  |  |
| Reduction factor ψ <sup>0</sup> <sub>sus,100</sub> in cracked and uncracked concrete C20/25 in ham drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)    So C/72°C   Dry, wet concrete or flooded   ψ <sup>0</sup> <sub>sus,100</sub>   [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                         |                      |          | amme   | 0,      | 80<br>68 | S (ND)           | ), COIII             | presse                  | eu air   |          |         |          |            |  |  |
| <u> III:60°C\80°C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | flooded<br>bore hole | 303,100                 |                      |          |        |         |          |                  | 0,                   | 70                      |          |          |         |          |            |  |  |
| Increasing factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤ C50/60             |                         | ļ ,,                 |          |        |         |          |                  | (f <sub>ck</sub> / 2 | 20) <sup>0,1</sup>      |          |          |         |          |            |  |  |
| for concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > C50/60             | Ψc                      | [-]                  |          |        |         |          |                  |                      | ,1                      |          |          |         |          |            |  |  |
| Characteristic bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 7.51                    |                      |          |        |         |          | 317 • 3          |                      |                         | 00 (0.5) |          |         |          |            |  |  |
| depending on the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         | cr,100 =             |          |        |         |          |                  |                      | ,100,(C                 |          |          |         |          |            |  |  |
| strength class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                         | cr,100 =             |          |        |         |          | Ψ <sub>c</sub> • | <sup>τ</sup> Rk,cr,  | 100,(C2                 | 20/25)   |          |         |          |            |  |  |
| Concrete cone fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | ting                    |                      |          |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| Relevant paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                         |                      |          |        |         |          |                  | see Ta               | ıble C2                 | 2        |          |         |          |            |  |  |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | ;D)<br>⊤                | 1                    | 1        |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| for dry and wet con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | γ <sub>inst</sub>       | [-]                  |          |        |         |          |                  | ,0                   |                         |          |          |         |          | ,2         |  |  |
| for flooded bore ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                         |                      | ina ha   |        |         |          | 1                | ,2                   |                         |          |          |         |          | 3)         |  |  |
| 1) f <sub>uk</sub> shall be take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                    |                         | n reilliof(          | ang ba   | 115    |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| 2) in absence of national regulation 3) no performance assessed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         |                      |          |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| Injection system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m ULEP-58            | 5 for cond              | rete                 |          |        |         |          |                  |                      |                         |          |          |         |          |            |  |  |
| Performances Characteristic va for a working life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                         |                      | tic and  | d quas | si-stat | ic acti  | on               |                      |                         |          | Ar       | nex     | C 14     | ļ.         |  |  |



| Table C15:                                                  | Characte for a wor        |                     |                    |                                             |        | load     | s un   | der s   | tatic                | and                | qua  | si-st | atic a | actio | n    |
|-------------------------------------------------------------|---------------------------|---------------------|--------------------|---------------------------------------------|--------|----------|--------|---------|----------------------|--------------------|------|-------|--------|-------|------|
| Reinforcing bar                                             |                           |                     |                    | Ø8                                          | Ø 10   | Ø 12     | Ø 14   | Ø 16    | Ø 20                 | Ø 24               | Ø 25 | Ø 28  | Ø 32   | Ø 36  | Ø 40 |
| Steel failure                                               |                           |                     |                    |                                             |        |          |        |         |                      |                    |      |       |        |       |      |
| Characteristic tens<br>resistance                           | ion                       | N <sub>Rk,s</sub>   | [kN]               |                                             |        |          |        |         | A <sub>s</sub> ·     | f <sub>uk</sub> 1) |      |       |        |       |      |
| Cross section area                                          |                           | A <sub>s</sub>      | [mm <sup>2</sup> ] | 50                                          | 79     | 113      | 154    | 201     | 314                  | 452                | 491  | 616   | 804    | 1018  | 1256 |
| Partial factor                                              |                           | γ <sub>Ms,N</sub>   | [-]                | 1,42)                                       |        |          |        |         |                      |                    |      |       |        |       |      |
| Combined pull-ou                                            | t and concre              | ete failure         |                    |                                             |        |          |        |         |                      |                    |      |       |        |       |      |
| Characteristic bond                                         | d resistance i            | n uncracked         | concret            | e C20                                       | /25 in | diamo    | nd dri | lled ho | oles (C              | D)                 |      |       |        |       |      |
| 일 I: 24°C/40°C                                              | Dry, wet                  |                     |                    | 14                                          | 13     | 13       | 13     | 12      | 12                   | 11                 | 11   | 11    | 11     | 11    | 10   |
| III: 60°C/80°C                                              | concrete or flooded       | <sup>τ</sup> Rk,ucr | [N/mm²]            | 11                                          | 11     | 10       | 10     | 10      | 9,5                  | 9,5                | 9,5  | 9,0   | 9,0    | 8,5   | 8,5  |
| 년 III:60°C/80°C                                             |                           |                     |                    | 5,0                                         | 5,0    | 5,0      | 4,5    | 4,5     | 4,5                  | 4,0                | 4,0  | 4,0   | 4,0    | 4,0   | 4,0  |
| Reduction factor $\psi$                                     | o <sub>sus</sub> in uncra | cked concr          | ete C20/2          | 25 in c                                     | diamor | nd drill | ed hol | es (D[  | D)                   |                    |      |       |        |       |      |
| <u>9</u> I: 24°C/40°C                                       |                           |                     |                    | 0,77                                        |        |          |        |         |                      |                    |      |       |        |       |      |
| III: 50°C/72°C                                              | concrete or flooded       | $\Psi^0$ sus        | [-]                | 0,72                                        |        |          |        |         |                      |                    |      |       |        |       |      |
| 트 III:60°C/80°C                                             | bore hole                 |                     |                    |                                             |        |          |        |         | 0,                   | 72                 |      |       |        |       |      |
| Increasing factors                                          | ≤ C50/60                  |                     |                    |                                             |        |          |        |         | (f <sub>ck</sub> / 2 | 20) <sup>0,2</sup> | 2    |       |        |       |      |
| for concrete                                                | > C50/60                  | Ψc,ucr              | [-]                |                                             |        |          |        |         | 1                    | ,2                 |      |       |        |       |      |
| Characteristic bond<br>depending on the d<br>strength class |                           | τ                   | Rk,ucr =           | $\Psi_{c,ucr} \cdot \tau_{Rk,ucr,(C20/25)}$ |        |          |        |         |                      |                    |      |       |        |       |      |
| Concrete cone fai                                           | lure or Split             | ting                |                    |                                             |        |          |        |         |                      |                    |      |       |        |       |      |
| Relevant paramete                                           | Relevant parameter        |                     |                    |                                             |        |          |        | 5       | see Ta               | ıble C             | 2    |       |        |       |      |
| Installation factor                                         | (DD)                      |                     |                    |                                             |        |          |        |         |                      |                    |      |       |        |       |      |
|                                                             | for dry and wet concrete  |                     | [_1                | 1,0 1,2                                     |        |          |        |         |                      |                    |      |       |        |       |      |
| for flooded bore hole $\gamma_{\text{inst}}$                |                           |                     | [-]                |                                             | 1      | ,2       |        |         |                      | 1                  | ,4   |       |        | 3     | 3)   |

 $<sup>^{1)}\,</sup>f_{uk}$  shall be taken from the specifications of reinforcing bars

| Injection system ULEP-585 for concrete                                      |            |
|-----------------------------------------------------------------------------|------------|
| Performances                                                                | Annex C 15 |
| Characteristic values of tension loads under static and quasi-static action |            |
| for a working life of 50 years (reinforcing bar)                            |            |

<sup>2)</sup> in absence of national regulation

<sup>3)</sup> no performance assessed



| Table C16:                                                  | Characte for a wor        |                        |                    |                                                 |          | load  | s un   | der s   | tatic                | and                | qua  | si-st | atic a | actio | n    |
|-------------------------------------------------------------|---------------------------|------------------------|--------------------|-------------------------------------------------|----------|-------|--------|---------|----------------------|--------------------|------|-------|--------|-------|------|
| Reinforcing bar                                             |                           |                        |                    | Ø8                                              | Ø 10     | Ø 12  | Ø 14   | Ø 16    | Ø 20                 | Ø 24               | Ø 25 | Ø 28  | Ø 32   | Ø 36  | Ø 40 |
| Steel failure                                               |                           |                        |                    |                                                 |          |       |        |         |                      |                    |      |       |        |       |      |
| Characteristic tensi<br>resistance                          | ion                       | N <sub>Rk,s</sub>      | [kN]               |                                                 |          |       |        |         | A <sub>s</sub> ·     | f <sub>uk</sub> 1) |      |       |        | _     |      |
| Cross section area                                          |                           | $A_s$                  | [mm <sup>2</sup> ] | 50                                              | 79       | 113   | 154    | 201     | 314                  | 452                | 491  | 616   | 804    | 1018  | 1256 |
| Partial factor                                              |                           | γ <sub>Ms,N</sub>      | [-]                | 1,4 <sup>2</sup> )                              |          |       |        |         |                      |                    |      |       |        |       |      |
| Combined pull-ou                                            | it and concre             | ete failure            |                    |                                                 |          |       |        |         |                      |                    |      |       |        |       |      |
| Characteristic bond                                         | d resistance i            | n uncracked            | concret            | e C20                                           | /25 in   | diamo | nd dri | lled ho | oles (C              | D)                 |      |       |        |       |      |
| 일 I: 24°C/40°C                                              |                           |                        |                    | 14                                              | 13       | 13    | 13     | 12      | 12                   | 11                 | 11   | 11    | 11     | 11    | 10   |
| II: 50°C/72°C                                               | concrete or flooded       | τRk,ucr,100            | [N/mm²]            | 11                                              | 10       | 10    | 10     | 9,5     | 9,0                  | 9,0                | 9,0  | 8,5   | 8,5    | 8,0   | 8,0  |
| हिं III:60°C/80°C                                           | 0°C/80°C bore hole        |                        |                    | 5,0                                             | 5,0      | 5,0   | 4,5    | 4,5     | 4,5                  | 4,0                | 4,0  | 4,0   | 4,0    | 4,0   | 4,0  |
| Reduction factor $\psi'$                                    | <sup>0</sup> sus,100 in ս | ncracked c             | oncrete (          | 220/25                                          | 5 in dia | amond | drille | d holes | s (DD)               |                    |      |       |        |       |      |
| 일 I: 24°C/40°C                                              |                           |                        | [-]                | 0,73                                            |          |       |        |         |                      |                    |      |       |        |       |      |
| III: 50°C/72°C                                              | concrete or flooded       | Ψ <sup>0</sup> sus,100 |                    | 0,70                                            |          |       |        |         |                      |                    |      |       |        |       |      |
| 티:60°C/80°C                                                 |                           |                        |                    |                                                 |          |       |        |         | 0,                   | 72                 |      |       |        |       |      |
| Increasing factors                                          | ≤ C50/60                  |                        |                    |                                                 |          |       |        |         | (f <sub>ck</sub> / 2 | 20) <sup>0,2</sup> | 2    |       |        |       |      |
| for concrete                                                | > C50/60                  | Ψc,ucr                 | [-]                |                                                 |          |       |        |         | 1                    | ,2                 |      |       |        |       |      |
| Characteristic bond<br>depending on the c<br>strength class |                           | <sup>τ</sup> Rk,u      | cr,100 =           | $\Psi_{c,ucr} \cdot \tau_{Rk,ucr,100,(C20/25)}$ |          |       |        |         |                      |                    |      |       |        |       |      |
| Concrete cone fai                                           | <b>.</b>                  | ting                   |                    |                                                 |          |       |        |         |                      |                    |      |       |        |       |      |
|                                                             | Relevant parameter        |                        |                    |                                                 |          |       |        | 5       | see Ta               | ble C              | 2    |       |        |       |      |
| Installation factor                                         | <u> </u>                  |                        |                    |                                                 |          |       |        |         |                      |                    |      |       |        |       |      |
|                                                             | r dry and wet concrete    |                        | [-]                | 1,0 1,2                                         |          |       |        |         |                      |                    |      |       |        |       |      |
| for flooded bore hole                                       |                           | 11101                  | .,                 |                                                 | 1        | ,2    |        |         |                      | 1                  | ,4   |       |        |       | 3)   |

 $<sup>^{1)}\,</sup>f_{uk}$  shall be taken from the specifications of reinforcing bars

| Injection system ULEP-585 for concrete                                      |            |
|-----------------------------------------------------------------------------|------------|
| Performances                                                                | Annex C 16 |
| Characteristic values of tension loads under static and quasi-static action |            |
| for a working life of 100 years (reinforcing bar)                           |            |

<sup>2)</sup> in absence of national regulation

<sup>3)</sup> no performance assessed



| Table C17: Character a working  |                                |       |                                                             |      |      | uno  | der s | tatio | and                  | quas               | si-sta | tic a | ction | for  |
|---------------------------------|--------------------------------|-------|-------------------------------------------------------------|------|------|------|-------|-------|----------------------|--------------------|--------|-------|-------|------|
| Reinforcing bar                 |                                |       | Ø8                                                          | Ø 10 | Ø 12 | Ø 14 | Ø 16  | Ø 20  | Ø 24                 | Ø 25               | Ø 28   | Ø 32  | Ø 36  | Ø 40 |
| Steel failure without lever arm |                                |       |                                                             |      |      |      | •     | •     |                      |                    |        |       |       |      |
| Characteristic shear resistance | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  |                                                             |      |      |      |       | 0,5   | · A <sub>s</sub> · f | uk <sup>1)</sup>   |        |       |       |      |
| Cross section area              | A <sub>s</sub>                 | [mm²] | 2] 50 79 113 154 201 314 452 491 616 804                    |      |      |      |       |       |                      | 1018               | 1256   |       |       |      |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]   |                                                             |      |      |      |       |       | 1,5 <sup>2)</sup>    |                    |        |       |       |      |
| Ductility factor                | k <sub>7</sub>                 | [-]   | 1,0                                                         |      |      |      |       |       |                      |                    |        |       |       |      |
| Steel failure with lever arm    |                                |       |                                                             |      |      |      |       |       |                      |                    |        |       |       |      |
| Characteristic bending moment   | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]  |                                                             |      |      |      |       | 1,2 • | W <sub>el</sub> ·    | f <sub>uk</sub> 1) |        |       |       |      |
| Elastic section modulus         | W <sub>el</sub>                | [mm³] | 50                                                          | 98   | 170  | 269  | 402   | 785   | 1357                 | 1534               | 2155   | 3217  | 4580  | 6283 |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]   |                                                             |      |      |      |       |       | 1,5 <sup>2)</sup>    |                    |        |       |       |      |
| Concrete pry-out failure        |                                |       | •                                                           |      |      |      |       |       |                      |                    |        |       |       |      |
| Factor                          | k <sub>8</sub>                 | [-]   |                                                             |      |      |      |       |       | 2,0                  |                    |        |       |       |      |
| Installation factor             | γinst                          | [-]   |                                                             |      |      |      |       |       | 1,0                  |                    |        |       |       |      |
| Concrete edge failure           |                                |       |                                                             |      |      |      |       |       |                      |                    |        |       |       |      |
| Effective length of fastener    | I <sub>f</sub>                 | [mm]  | $\min(h_{ef}; 12 \cdot d_{nom}) \qquad \min(h_{ef}; 300mm)$ |      |      |      |       |       |                      |                    |        |       |       |      |
| Outside diameter of fastener    | d <sub>nom</sub>               | [mm]  | 1] 8 10 12 14 16 20 24 25 28 32 36                          |      |      |      |       | 36    | 40                   |                    |        |       |       |      |
| Installation factor             | γ <sub>inst</sub>              | [-]   | 1,0                                                         |      |      |      |       |       |                      |                    |        |       |       |      |

 $<sup>^{1)}</sup>$   $f_{uk}$  shall be taken from the specifications of reinforcing bars

| Injection system ULEP-585 for concrete                                    |            |
|---------------------------------------------------------------------------|------------|
| Performances                                                              | Annex C 17 |
| Characteristic values of shear loads under static and quasi-static action |            |
| for a working life of 50 and 100 years (reinforcing bar)                  |            |

<sup>2)</sup> in absence of national regulation



| Table C18: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD), comp. air |
|------------|----------------------------------------------------------------------------------------|
|            | drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)             |

| Threaded rod                                                                                   |                                                                                              |                           |       | M10   | M12   | M16   | M20   | M24   | M27   | M30   |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Uncracked concrete under static and quasi-static action for a working life of 50 and 100 years |                                                                                              |                           |       |       |       |       |       |       |       |       |
| Temperature range I:                                                                           | $\delta_{N0}$ -factor                                                                        | [mm/(N/mm²)]              | 0,028 | 0,029 | 0,030 | 0,033 | 0,035 | 0,038 | 0,039 | 0,041 |
| 24°C/40°C                                                                                      | $\delta_{N\infty}$ -factor                                                                   | [mm/(N/mm²)]              | 0,028 | 0,029 | 0,030 | 0,033 | 0,035 | 0,038 | 0,039 | 0,041 |
| Temperature range II: 50°C/72°C                                                                | $\delta_{\text{N0}}$ -factor                                                                 | [mm/(N/mm²)]              | 0,038 | 0,039 | 0,040 | 0,044 | 0,047 | 0,051 | 0,052 | 0,055 |
|                                                                                                | $\delta_{N\infty}$ -factor                                                                   | [mm/(N/mm²)]              | 0,047 | 0,049 | 0,051 | 0,055 | 0,059 | 0,064 | 0,067 | 0,070 |
| Temperature range III:                                                                         | $\delta_{N0}$ -factor                                                                        | [mm/(N/mm²)]              | 0,038 | 0,039 | 0,040 | 0,044 | 0,047 | 0,051 | 0,052 | 0,055 |
| 60°C/80°C                                                                                      | $\delta_{N\infty}$ -factor                                                                   | [mm/(N/mm²)]              | 0,047 | 0,049 | 0,051 | 0,055 | 0,059 | 0,064 | 0,067 | 0,070 |
| Cracked concrete unde                                                                          | Cracked concrete under static and quasi-static action for a working life of 50 and 100 years |                           |       |       |       |       |       |       |       |       |
| Temperature range I:                                                                           | $\delta_{N0}$ -factor                                                                        | [mm/(N/mm²)]              | 0,069 | 0,071 | 0,072 | 0,074 | 0,076 | 0,079 | 0,081 | 0,082 |
| 24°C/40°C                                                                                      | $\delta_{N\infty}$ -factor                                                                   | [mm/(N/mm²)]              | 0,100 | 0,115 | 0,122 | 0,128 | 0,135 | 0,142 | 0,155 | 0,171 |
| Temperature range II:                                                                          | $\delta_{\text{N0}}$ -factor                                                                 | [mm/(N/mm²)]              | 0,092 | 0,095 | 0,096 | 0,099 | 0,102 | 0,106 | 0,109 | 0,110 |
| 50°C/72°C                                                                                      | $\delta_{N\infty}$ -factor                                                                   | [mm/(N/mm²)]              | 0,134 | 0,154 | 0,163 | 0,172 | 0,181 | 0,189 | 0,207 | 0,229 |
| Temperature range III: 60°C/80°C                                                               | $\delta_{\text{N0}}$ -factor                                                                 | [mm/(N/mm²)]              | 0,092 | 0,095 | 0,096 | 0,099 | 0,102 | 0,106 | 0,109 | 0,110 |
|                                                                                                | $\delta_{N\infty}$ -factor                                                                   | [mm/(N/mm <sup>2</sup> )] | 0,134 | 0,154 | 0,163 | 0,172 | 0,181 | 0,189 | 0,207 | 0,229 |

<sup>1)</sup> Calculation of the displacement:  $\delta_{N0} = \delta_{N0}$ -factor  $\tau$ ;  $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\tau$ ;  $\tau$ : action bond stress for tension

## Table C19: Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD)

| Threaded rod                                                                                       |                              |                    |           | M10      | M12       | M16     | M20   | M24   | M27   | M30   |
|----------------------------------------------------------------------------------------------------|------------------------------|--------------------|-----------|----------|-----------|---------|-------|-------|-------|-------|
| Cracked and uncracked concrete under static and quasi-static action for a working life of 50 years |                              |                    |           |          |           |         |       |       |       |       |
| Temperature range I: 24°C/40°C                                                                     | $\delta_{N0}$ -factor        | [mm/(N/mm²)]       | 0,011     | 0,012    | 0,012     | 0,013   | 0,014 | 0,014 | 0,015 | 0,015 |
|                                                                                                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,018     | 0,019    | 0,019     | 0,020   | 0,022 | 0,023 | 0,024 | 0,025 |
| Temperature range II: 50°C/72°C                                                                    | $\delta_{N0}$ -factor        | [mm/(N/mm²)]       | 0,013     | 0,014    | 0,014     | 0,015   | 0,016 | 0,016 | 0,018 | 0,018 |
|                                                                                                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,052     | 0,053    | 0,055     | 0,058   | 0,062 | 0,065 | 0,068 | 0,070 |
| Temperature range III:<br>60°C/80°C                                                                | $\delta_{N0}$ -factor        | [mm/(N/mm²)]       | 0,013     | 0,014    | 0,014     | 0,015   | 0,016 | 0,016 | 0,018 | 0,018 |
|                                                                                                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,052     | 0,053    | 0,055     | 0,058   | 0,062 | 0,065 | 0,068 | 0,070 |
| Uncracked concrete un                                                                              | der static and               | d quasi-static act | ion for a | a workin | g life of | 100 yea | rs    |       |       |       |
| Temperature range I:<br>24°C/40°C                                                                  | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]       | 0,011     | 0,012    | 0,012     | 0,013   | 0,014 | 0,014 | 0,015 | 0,015 |
|                                                                                                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,020     | 0,021    | 0,021     | 0,023   | 0,024 | 0,025 | 0,026 | 0,027 |
| Temperature range II: 50°C/72°C                                                                    | $\delta_{N0}$ -factor        | [mm/(N/mm²)]       | 0,013     | 0,014    | 0,014     | 0,015   | 0,016 | 0,016 | 0,018 | 0,018 |
|                                                                                                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,038     | 0,039    | 0,040     | 0,043   | 0,045 | 0,047 | 0,049 | 0,051 |
| Temperature range III: 60°C/80°C                                                                   | $\delta_{\rm N0}$ -factor    | [mm/(N/mm²)]       | 0,013     | 0,014    | 0,014     | 0,015   | 0,016 | 0,016 | 0,018 | 0,018 |
|                                                                                                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,038     | 0,039    | 0,040     | 0,043   | 0,045 | 0,047 | 0,049 | 0,051 |
| A                                                                                                  |                              |                    |           |          |           |         |       |       |       |       |

<sup>1)</sup> Calculation of the displacement:  $\delta_{N0} = \delta_{N0}$ -factor  $\cdot \tau$ ;  $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;  $\tau$ : action bond stress for tension

## Table C20: Displacements under shear load<sup>1)</sup> for all drilling methods

| Threaded rod                                                                                               |                            |         | M8   | M10  | M12  | M16  | M20  | M24  | M27  | M30  |
|------------------------------------------------------------------------------------------------------------|----------------------------|---------|------|------|------|------|------|------|------|------|
| Uncracked and cracked concrete under static and quasi-static action for a working life of 50 and 100 years |                            |         |      |      |      |      |      |      |      |      |
| All temperature                                                                                            | δ <sub>V0</sub> -factor    | [mm/kN] | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges                                                                                                     | $\delta_{V\infty}$ -factor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |
| 43                                                                                                         |                            |         |      |      |      |      |      |      |      |      |

<sup>1)</sup> Calculation of the displacement  $\delta v_0 = \delta v_0$ -factor  $\cdot V$ ;  $\delta v_\infty = \delta v_\infty$ -factor  $\cdot V$ ; V: action shear load

### Injection system ULEP-585 for concrete

#### **Performances**

Displacements under static and quasi-static action for a working life of 50 and 100 years (threaded rod)

Annex C 18



| Table C21: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD), comp. air |
|------------|----------------------------------------------------------------------------------------|
|            | drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)             |

| armod fields (65) and in figurinos armod fields with fields with bit (1155) |                                                                                                |                           |            |               |            |        |        |        |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|------------|---------------|------------|--------|--------|--------|--|--|--|
| Internal threaded ancho                                                     | r rods                                                                                         |                           | IG-M6      | IG-M8         | IG-M10     | IG-M12 | IG-M16 | IG-M20 |  |  |  |
| Uncracked concrete und                                                      | Uncracked concrete under static and quasi-static action for a working life of 50 and 100 years |                           |            |               |            |        |        |        |  |  |  |
| Temperature range I:                                                        | $\delta_{N0}$ -factor                                                                          | [mm/(N/mm <sup>2</sup> )] | 0,029      | 0,030         | 0,033      | 0,035  | 0,038  | 0,041  |  |  |  |
| 24°C/40°C                                                                   | $\delta_{N\infty}$ -factor                                                                     | [mm/(N/mm²)]              | 0,029      | 0,030         | 0,033      | 0,035  | 0,038  | 0,041  |  |  |  |
| Temperature range II:                                                       | [mm/(N/mm <sup>2</sup> )]                                                                      | 0,039                     | 0,040      | 0,044         | 0,047      | 0,051  | 0,055  |        |  |  |  |
| 50°C/72°C                                                                   | [mm/(N/mm <sup>2</sup> )]                                                                      | 0,049                     | 0,051      | 0,055         | 0,059      | 0,064  | 0,070  |        |  |  |  |
| Temperature range III:                                                      | $\delta_{N0}$ -factor                                                                          | [mm/(N/mm <sup>2</sup> )] | 0,039      | 0,040         | 0,044      | 0,047  | 0,051  | 0,055  |  |  |  |
| 60°C/80°C                                                                   | $\delta_{N\infty}$ -factor                                                                     | [mm/(N/mm²)]              | 0,049      | 0,051         | 0,055      | 0,059  | 0,064  | 0,070  |  |  |  |
| Cracked concrete under                                                      | static and qua                                                                                 | si-static action          | for a work | ing life of 8 | 50 and 100 | years  |        |        |  |  |  |
| Temperature range I:                                                        | $\delta_{N0}$ -factor                                                                          | [mm/(N/mm²)]              | 0,071      | 0,072         | 0,074      | 0,076  | 0,079  | 0,082  |  |  |  |
| 24°C/40°C                                                                   | $\delta_{N\infty}$ -factor                                                                     | [mm/(N/mm <sup>2</sup> )] | 0,115      | 0,122         | 0,128      | 0,135  | 0,142  | 0,171  |  |  |  |
| Temperature range II:                                                       | $\delta_{N0}$ -factor                                                                          | [mm/(N/mm <sup>2</sup> )] | 0,095      | 0,096         | 0,099      | 0,102  | 0,106  | 0,110  |  |  |  |
| 50°C/72°C $\delta_{N\infty}$ -factor                                        |                                                                                                | [mm/(N/mm <sup>2</sup> )] | 0,154      | 0,163         | 0,172      | 0,181  | 0,189  | 0,229  |  |  |  |
| Temperature range III:                                                      | $\delta_{N0}$ -factor                                                                          | [mm/(N/mm <sup>2</sup> )] | 0,095      | 0,096         | 0,099      | 0,102  | 0,106  | 0,110  |  |  |  |
| 60°C/80°C                                                                   | $\delta_{N\infty}$ -factor                                                                     | [mm/(N/mm <sup>2</sup> )] | 0,154      | 0,163         | 0,172      | 0,181  | 0,189  | 0,229  |  |  |  |

<sup>1)</sup> Calculation of the displacement:  $\delta_{N0} = \delta_{N0}$ -factor  $\tau$ ;  $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\tau$ ;  $\tau$ : action bond stress for tension

# Table C22: Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD)

| Internal threaded ancho                     | ternal threaded anchor rods |                   |              |              | IG-M10      | IG-M12      | IG-M16 | IG-M20 |
|---------------------------------------------|-----------------------------|-------------------|--------------|--------------|-------------|-------------|--------|--------|
| Cracked and uncracked                       | concrete unde               | r static and qua  | si-static ad | ction for a  | working li  | ie of 50 ye | ars    |        |
| Temperature range I:                        | $\delta_{N0}$ -factor       | [mm/(N/mm²)]      | 0,012        | 0,012        | 0,013       | 0,014       | 0,014  | 0,015  |
| 24°C/40°C                                   | $\delta_{N\infty}$ -factor  | [mm/(N/mm²)]      | 0,019        | 0,019        | 0,020       | 0,022       | 0,023  | 0,025  |
| Temperature range II: $\delta_{N0}$ -factor |                             | [mm/(N/mm²)]      | 0,014        | 0,014        | 0,015       | 0,016       | 0,016  | 0,018  |
|                                             |                             | [mm/(N/mm²)]      | 0,053        | 0,055        | 0,058       | 0,062       | 0,065  | 0,070  |
| Temperature range III:                      | 0,014                       | 0,014             | 0,015        | 0,016        | 0,016       | 0,018       |        |        |
| 60°C/80°C                                   | $\delta_{N\infty}$ -factor  | [mm/(N/mm²)]      | 0,053        | 0,055        | 0,058       | 0,062       | 0,065  | 0,070  |
| Uncracked concrete und                      | der static and q            | uasi-static actio | n for a wo   | rking life o | of 100 year | s           |        |        |
| Temperature range I:                        | $\delta_{N0}$ -factor       | [mm/(N/mm²)]      | 0,012        | 0,012        | 0,013       | 0,014       | 0,014  | 0,015  |
| 24°C/40°C                                   | $\delta_{N\infty}$ -factor  | [mm/(N/mm²)]      | 0,021        | 0,021        | 0,023       | 0,024       | 0,025  | 0,027  |
| Temperature range II:                       | $\delta_{N0}$ -factor       | [mm/(N/mm²)]      | 0,014        | 0,014        | 0,015       | 0,016       | 0,016  | 0,018  |
| 50°C/72°C                                   | $\delta_{N\infty}$ -factor  | [mm/(N/mm²)]      | 0,039        | 0,040        | 0,043       | 0,045       | 0,047  | 0,051  |
| Temperature range III:                      | $\delta_{\rm N0}$ -factor   | [mm/(N/mm²)]      | 0,014        | 0,014        | 0,015       | 0,016       | 0,016  | 0,018  |
| 60°C/80°C                                   | $\delta_{N\infty}$ -factor  | [mm/(N/mm²)]      | 0,039        | 0,040        | 0,043       | 0,045       | 0,047  | 0,051  |

<sup>1)</sup> Calculation of the displacement:  $\delta_{N0} = \delta_{N0}$ -factor  $\tau$ ;  $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\tau$ ;  $\tau$ : action bond stress for tension

# Table C23: Displacements under shear load<sup>1)</sup> for all drilling methods

| Internal threaded                                                                                          | anchor rods                |         | IG-M6 | IG-M8 | IG-M10 | IG-M12 | IG-M16 | IG-M20 |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------|---------|-------|-------|--------|--------|--------|--------|--|--|--|
| Uncracked and cracked concrete under static and quasi-static action for a working life of 50 and 100 years |                            |         |       |       |        |        |        |        |  |  |  |
| All temperature                                                                                            | δ <sub>V0</sub> -factor    | [mm/kN] | 0,07  | 0,06  | 0,06   | 0,05   | 0,04   | 0,04   |  |  |  |
| ranges                                                                                                     | $\delta_{V\infty}$ -factor | [mm/kN] | 0,10  | 0,09  | 0,08   | 0,08   | 0,06   | 0,06   |  |  |  |
| 43                                                                                                         |                            | •       |       |       |        |        |        |        |  |  |  |

<sup>1)</sup> Calculation of the displacement  $\delta_{V0} = \delta_{V0}$ -factor  $\cdot$  V;  $\delta_{V\infty} = \delta_{V\infty}$ -factor  $\cdot$  V; V: action shear load

### Injection system ULEP-585 for concrete

#### **Performances**

Displacements under static and quasi-static action for a working life of 50 and 100 years (Internal threaded anchor rod)

Annex C 19



| Table C24:                                         | •                             | cements ur<br>holes (CD)         |                                                   |                                                  |                     |                          |                    |              |              |                | •            |                                                  |          |          |
|----------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------|--------------------------|--------------------|--------------|--------------|----------------|--------------|--------------------------------------------------|----------|----------|
| Reinforcing bar                                    | r                             |                                  | Ø8                                                | Ø 10                                             | Ø 12                | Ø 14                     | Ø 16               | Ø 20         | Ø 24         | Ø 25           | Ø 28         | Ø 32                                             | Ø 36     | Ø 40     |
| Uncracked con                                      | crete under                   | static and qua                   | asi-sta                                           | tic acti                                         | ion for             | a wor                    | king li            | fe of 5      | 0 and        | 100 ye         | ears         |                                                  |          |          |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     |                                                   |                                                  |                     |                          |                    | _            |              |                |              |                                                  |          |          |
| I: 24°C/40°C                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     |                                                   |                                                  |                     |                          |                    | _            | _            | _              | _            | _                                                | _        | _        |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | <del>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </del> | <del>'</del>                                     | <u> </u>            | <u> </u>                 | <del>'</del>       | <u> </u>     | <u> </u>     | <del>_</del>   | <del>_</del> | <del>_</del>                                     | <u> </u> | <u> </u> |
| II: 50°C/72°C                                      | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        | <u>'</u>                                          | <u> </u>                                         | <u> </u>            | <u> </u>                 | <u> </u>           | <u> </u>     |              | <u> </u>       | <u> </u>     | <u> </u>                                         |          | <u> </u> |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm <sup>2</sup> )]        | <del>'                                    </del>  | <del>-                                    </del> | <del>- '</del>      | <del></del>              | <del></del>        | <del>_</del> | + -          | <del>- '</del> | + -          | <del>-                                    </del> | <u> </u> | <u> </u> |
| III: 60°C/80°C                                     | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        | ' '                                               |                                                  |                     |                          |                    |              |              |                |              | 8 0,072                                          | 0,074    | 0,079    |
| Cracked concre                                     | 1                             | <del> </del>                     | _                                                 |                                                  |                     |                          | _                  |              |              | <del></del> -  |              |                                                  |          |          |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     |                                                   | _                                                | _                   | _                        |                    | _            | _            | _              | _            | _                                                | -        |          |
| I: 24°C/40°C                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm <sup>2</sup> )]        |                                                   |                                                  |                     |                          |                    |              |              |                |              |                                                  | -        |          |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     | <del>'                                    </del>  | <u> </u>                                         |                     | <del></del>              | <del></del>        | _            | <del>-</del> | + -            | + -          | _                                                | 4 2      | 2)       |
| II: 50°C/72°C                                      | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     |                                                   |                                                  |                     |                          |                    | _            | _            | _              | _            | _                                                |          | ,        |
| Temp range<br>III: 60°C/80°C                       | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     |                                                   | _                                                |                     | _                        |                    | _            | _            | _              | _            | _                                                | -        |          |
|                                                    | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | <u> </u>                                          | 1 -                                              |                     |                          | <u> </u>           |              |              |                |              |                                                  |          |          |
| 1) Calculation of<br>2) No performan<br>Table C25: | ice assessed                  | ment: δNO = δN                   |                                                   |                                                  |                     |                          | tor · τ;<br>n diar |              |              |                |              | tension  DD)                                     |          |          |
| Reinforcing ba                                     | r                             |                                  | Ø8                                                | Ø 10                                             | Ø 12                | Ø 14                     | Ø 16               | Ø 20         | Ø 24         | Ø 25           | Ø 28         | Ø 32                                             | Ø 36     | Ø 40     |
| Uncracked con                                      | crete under                   | static and qua                   | asi-sta                                           | tic acti                                         | on for              | a wor                    | king li            | fe of 5      | 0 year       | s              | '            |                                                  |          |          |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     | 0,008                                             | 0,009                                            | 0,009               | 0,01                     | 0,011              | 0,012        | 0,013        | 0,013          | 0,014        | 0,015                                            | 0,016    | 0,017    |
| I: 24°C/40°C                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | 0,018                                             | 0,018                                            | 0,019               | 0,020                    | 0,021              | 0,024        | 0,027        | 0,027          | 0,028        | 0,031                                            | 0,032    | 0,034    |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     | 0,009                                             | 0,011                                            | 0,011               | 0,012                    | 0,013              | 0,014        | 0,015        | 0,015          | 0,016        | 0,018                                            | 0,019    | 0,020    |
| II: 50°C/72°C                                      | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | 0,048                                             | 0,051                                            | 0,054               | 0,058                    | 0,061              | 0,068        | 0,076        | 0,076          | 0,081        | 0,088                                            | 0,090    | 0,097    |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     | 0,009                                             | 0,011                                            | 0,011               | 0,012                    | 0,013              | 0,014        | 0,015        | 0,015          | 0,016        | 0,018                                            | 0,019    | 0,020    |
| III: 60°C/80°C                                     | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | 0,048                                             | 0,051                                            | 0,054               | 0,058                    | 0,061              | 0,068        | 0,076        | 0,076          | 0,081        | 0,088                                            | 0,090    | 0,097    |
| Uncracked con                                      |                               |                                  |                                                   |                                                  |                     |                          |                    |              |              |                |              |                                                  |          |          |
| Temp range                                         | $\delta_{\rm N0}$ -factor     | [mm/(N/mm <sup>2</sup> )]        | 0,008                                             | 0,009                                            | 0,009               | 0,010                    | 0,011              | 0,012        | 0,013        | 0,013          | 0,014        | 0,015                                            | 0,016    | 0,017    |
| I: 24°C/40°C                                       | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | 0,018                                             | 0,020                                            | 0,021               | 0,022                    | 0,024              | 0,026        | 0,029        | 0,029          | 0,031        | 0,034                                            | 0,035    | 0,037    |
| Temp range                                         | $\delta_{\rm N0}$ -factor     | [mm/(N/mm²)]                     | 0,009                                             | 0,011                                            | 0,011               | 0,012                    | 0,013              | 0,014        | 0,015        | 0,015          | 0,016        | 0,018                                            | 0,019    | 0,020    |
| II: 50°C/72°C                                      | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | 0,035                                             | 0,037                                            | 0,040               | 0,042                    | 0,045              | 0,049        | 0,055        | 0,055          | 0,059        | 0,064                                            | 0,066    | 0,070    |
| Temp range                                         | $\delta_{N0}$ -factor         | [mm/(N/mm²)]                     |                                                   | _                                                |                     |                          | _                  |              |              |                |              |                                                  |          | _        |
| III: 60°C/80°C                                     | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)]                     | 0,035                                             | 0,037                                            |                     |                          | <u> </u>           | 1 '          | 0,055        | 0,055          | 0,059        | 0,064                                            | 0,090    | 0,097    |
| 1) Calculation of <b>Table C26:</b>                | •                             | ment: $\delta_{N0} = \delta_{N}$ |                                                   |                                                  |                     |                          | tor · τ;<br>all dı |              |              |                |              | tension                                          |          |          |
| Reinforcing bar                                    |                               |                                  |                                                   |                                                  |                     |                          |                    |              |              |                |              | Ø 32                                             | Ø 36     | Ø 40     |
| Uncracked and                                      |                               |                                  |                                                   |                                                  |                     |                          |                    |              |              |                |              |                                                  |          |          |
| All temperature                                    | $\delta_{V0}$ -factor         |                                  |                                                   | <del></del>                                      |                     |                          |                    |              |              | 0,03           | 0,03         | 0,03                                             | 0,03     | 0,03     |
| ranges                                             | $\delta_{V_{\infty}}$ -factor | <del></del>                      |                                                   |                                                  |                     |                          | <del></del>        | <del></del>  |              | 0,05           | 0,04         | 0,04                                             | 0,04     | 0,04     |
| 1) Calculation of                                  | the displace                  | ment $\delta v_0 = \delta v$     | o-factor                                          | · V;                                             | δ <sub>V∞</sub> = 8 | <br>δ <sub>∨∞</sub> -fac | tor · V;           | ; V: a       | action s     | hear lo        | ad           |                                                  |          |          |
| Injection sys                                      | tem ULEP-                     | 585 for conc                     | rete                                              |                                                  |                     |                          |                    |              |              |                |              |                                                  |          |          |
| Performances Displacements for a working life      | s under stati                 |                                  |                                                   |                                                  |                     |                          |                    |              |              |                | ,            | Anne                                             | x C 2    | 0        |



| Tabl                                   | Table C27: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years                                                                 |                           |                         |                      |     |     |     |                      |            |       |     |     |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|----------------------|-----|-----|-----|----------------------|------------|-------|-----|-----|--|
| Thread                                 | ded rod                                                                                                                                                                                         |                           |                         |                      | M8  | M10 | M12 | M16                  | M20        | M24   | M27 | M30 |  |
| Steel fa                               | ailure                                                                                                                                                                                          |                           |                         |                      |     |     |     |                      |            |       |     |     |  |
| Charac                                 | teristic tension resis                                                                                                                                                                          | tance                     | N <sub>Rk,s,eq,C1</sub> | [kN]                 |     |     |     | 1,0 •                | $N_{Rk,s}$ |       |     |     |  |
| Partial                                | factor                                                                                                                                                                                          |                           | γ <sub>Ms,N</sub>       | [-]                  |     |     |     | see Ta               | able C1    |       |     |     |  |
| Combined pull-out and concrete failure |                                                                                                                                                                                                 |                           |                         |                      |     |     |     |                      |            |       |     |     |  |
|                                        | Characteristic bond resistance in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB) |                           |                         |                      |     |     |     |                      |            |       |     |     |  |
| ture                                   | I: 24°C/40°C                                                                                                                                                                                    | Dry, wet                  | <sup>τ</sup> Rk,eq,C1   | [N/mm <sup>2</sup> ] | 7,0 | 7,0 | 8,5 | 8,5                  | 8,5        | 8,5   | 8,5 | 8,5 |  |
| Temperature<br>range                   | II: 50°C/72°C                                                                                                                                                                                   | concrete and flooded bore | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 6,0 | 6,0 | 7,0 | 7,0                  | 7,0        | 7,0   | 7,0 | 7,0 |  |
| Tem                                    | III:60°C/80°C                                                                                                                                                                                   | hole                      | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 5,0 | 5,0 | 5,0 | 4,5                  | 4,5        | 4,5   | 4,5 | 4,5 |  |
| Increas                                | sing factors for conci                                                                                                                                                                          | ete                       | Ψc                      | [-]                  |     |     |     | 1                    | ,0         |       |     |     |  |
|                                        | cteristic bond resista<br>concrete strength cla                                                                                                                                                 | , ,                       | τ                       | Rk,eq,C1 =           |     |     | Ψс  | ¹ <sup>τ</sup> Rk,eq | ı,C1,(C2   | 0/25) |     |     |  |
| Installa                               | ation factor                                                                                                                                                                                    |                           |                         |                      |     |     |     |                      |            |       |     |     |  |
| for dry                                | and wet concrete (H                                                                                                                                                                             | D; HDB, CD)               | 2/4                     | F 1                  |     |     |     | 1                    | ,0         |       |     |     |  |
| for floo                               | ded bore hole (HD; I                                                                                                                                                                            | HDB, CD)                  | γinst                   | [-]                  |     |     |     | 1                    | ,2         |       |     |     |  |

| Injection system ULEP-585 for concrete                                                                                                           |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years (threaded rod) | Annex C 21 |



| Tabl                 | Table C28: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years                                                                |                              |                         |                      |     |     |     |                    |            |       |     |     |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|----------------------|-----|-----|-----|--------------------|------------|-------|-----|-----|--|
| Thread               | led rod                                                                                                                                                                                         |                              |                         |                      | M8  | M10 | M12 | M16                | M20        | M24   | M27 | M30 |  |
| Steel fa             | ailure                                                                                                                                                                                          |                              |                         |                      |     |     |     |                    |            |       |     |     |  |
| Charac               | teristic tension r                                                                                                                                                                              | esistance                    | N <sub>Rk,s,eq,C1</sub> | [kN]                 |     |     |     | 1,0 •              | $N_{Rk,s}$ |       |     |     |  |
| Partial              | factor                                                                                                                                                                                          |                              | $\gamma_{Ms,N}$         | [-]                  |     |     |     | see Ta             | able C1    |       |     |     |  |
| Combi                | ned pull-out an                                                                                                                                                                                 | d concrete failure           |                         |                      |     |     |     |                    |            |       |     |     |  |
| 1                    | Characteristic bond resistance in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB) |                              |                         |                      |     |     |     |                    |            |       |     |     |  |
| ture                 | I: 24°C/40°C                                                                                                                                                                                    | Dry, wet                     | <sup>τ</sup> Rk,eq,C1   | [N/mm <sup>2</sup> ] | 6,5 | 6,5 | 7,5 | 7,5                | 7,5        | 7,5   | 7,5 | 7,5 |  |
| Temperature<br>range | II: 50°C/72°C                                                                                                                                                                                   | concrete and flooded bore    | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 5,5 | 5,5 | 6,5 | 6,5                | 6,5        | 6,5   | 6,5 | 6,5 |  |
| Tem                  | III:60°C/80°C                                                                                                                                                                                   | hole                         | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 5,0 | 5,0 | 5,0 | 4,5                | 4,5        | 4,5   | 4,5 | 4,5 |  |
| Increas              | sing factors for c                                                                                                                                                                              | oncrete                      | Ψς                      | [-]                  |     |     |     | 1                  | ,0         |       |     |     |  |
|                      | teristic bond res<br>concrete strengt                                                                                                                                                           | istance depending<br>h class | τ                       | Rk,eq,C1 =           |     |     | Ψс  | <sup>τ</sup> Rk,eq | ,C1,(C2    | 0/25) |     |     |  |
| Installa             | ation factor                                                                                                                                                                                    |                              |                         |                      |     |     |     |                    |            |       |     |     |  |
| for dry              | and wet concret                                                                                                                                                                                 | e (HD; HDB, CD)              | γ:                      | [-]                  |     |     |     |                    | ,0         |       |     |     |  |
| for floo             | ded bore hole (H                                                                                                                                                                                | HD; HDB, CD)                 | <sup>γ</sup> inst       | [-]                  | 1,2 |     |     |                    |            |       |     |     |  |

| Injection system ULEP-585 for concrete                                                                                                            |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years (threaded rod) | Annex C 22 |



|                                   | characteristic<br>performance                           |                    |     |    |     |     |     |                       | -   | 'S  |     |  |  |
|-----------------------------------|---------------------------------------------------------|--------------------|-----|----|-----|-----|-----|-----------------------|-----|-----|-----|--|--|
| Threaded rod                      |                                                         |                    |     | M8 | M10 | M12 | M16 | M20                   | M24 | M27 | M30 |  |  |
| Steel failure                     |                                                         |                    |     |    |     |     |     |                       |     |     |     |  |  |
| Characteristic shear (Seismic C1) | Characteristic shear resistance VDL and KNI 0.70 · VOD. |                    |     |    |     |     |     |                       |     |     |     |  |  |
| Partial factor                    |                                                         | γ <sub>Ms,V</sub>  | [-] |    |     |     | see | Table C               | 21  |     |     |  |  |
| Factor for annular g              | ар                                                      | $\alpha_{\sf gap}$ | [-] |    |     |     | 0,  | 5 (1,0) <sup>1)</sup> |     |     |     |  |  |

<sup>1)</sup> Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

| Injection system ULEP-585 for concrete                                                                                                                 |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod) | Annex C 23 |



1,2

|                                                          | (performance category C1) for a working life of 50 years                                                                                                                                        |                         |                      |     |      |                  |                    |          |                        |      |      |      |      |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-----|------|------------------|--------------------|----------|------------------------|------|------|------|------|
| Reinforcing bar                                          |                                                                                                                                                                                                 |                         |                      | Ø8  | Ø 10 | Ø 12             | Ø 14               | Ø 16     | Ø 20                   | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
| Steel failure                                            |                                                                                                                                                                                                 |                         |                      |     |      |                  |                    |          |                        |      |      |      |      |
| Characteristic tension                                   | resistance                                                                                                                                                                                      | N <sub>Rk,s,eq,C1</sub> | [kN]                 |     |      |                  |                    | 1,0 • A  | s • f <sub>uk</sub>    | 1)   |      |      |      |
| Cross section area                                       |                                                                                                                                                                                                 | A <sub>s</sub>          | [mm²]                | 50  | 79   | 113              | 154                | 201      | 314                    | 452  | 491  | 616  | 804  |
| Partial factor                                           |                                                                                                                                                                                                 | γ <sub>Ms,N</sub>       | [-]                  |     |      |                  |                    | 1,       | <b>4</b> <sup>2)</sup> |      |      |      |      |
| Combined pull-out a                                      | nd concrete failu                                                                                                                                                                               | ire                     |                      |     |      |                  |                    |          |                        |      |      |      |      |
|                                                          | Characteristic bond resistance in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB) |                         |                      |     |      |                  |                    |          |                        |      |      |      |      |
| <u>e</u> I: 24°C/40°C                                    | Dry, wet                                                                                                                                                                                        | <sup>τ</sup> Rk,eq,C1   | [N/mm <sup>2</sup> ] | 7,0 | 7,0  | 8,5              | 8,5                | 8,5      | 8,5                    | 8,5  | 8,5  | 8,5  | 8,5  |
| III: 60°C/80°C                                           | concrete and flooded bore                                                                                                                                                                       | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 6,0 | 6,0  | 7,0              | 7,0                | 7,0      | 7,0                    | 7,0  | 7,0  | 7,0  | 7,0  |
| ы III:60°С/80°С                                          | hole                                                                                                                                                                                            | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 4,5 | 4,5  | 4,5              | 4,5                | 4,5      | 4,5                    | 4,5  | 4,5  | 4,5  | 4,5  |
| Increasing factors for                                   | concrete                                                                                                                                                                                        | Ψс                      | [-]                  |     |      |                  |                    | 1        | ,0                     |      |      |      |      |
| Characteristic bond red<br>depending on the con<br>class | τ <sub>F</sub>                                                                                                                                                                                  | kk,eq,C1 =              |                      |     |      | ψ <sub>c</sub> • | <sup>τ</sup> Rk,ec | j,C1,(C2 | 20/25)                 |      |      |      |      |
| Installation factor                                      |                                                                                                                                                                                                 |                         |                      |     |      |                  |                    |          |                        |      |      |      |      |
| for dry and wet concre                                   | γ <sub>inst</sub>                                                                                                                                                                               | [-]                     |                      |     |      |                  |                    | ,0       |                        |      |      |      |      |

 $<sup>^{1)}</sup>$   $f_{uk}$  shall be taken from the specifications of reinforcing bars

for flooded bore hole (HD; HDB, CD)

| Injection system ULEP-585 for concrete                                                                                                              |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years (reinforcing bar) | Annex C 24 |

<sup>2)</sup> in absence of national regulation



| Table C31: | Characteristic values of tension loads under seismic action |
|------------|-------------------------------------------------------------|
|            | (performance category C1) for a working life of 100 years   |

|                                                                         |                                           |                           |                         |                                     |     |      |        |        | -       |                     |         |        |       |      |
|-------------------------------------------------------------------------|-------------------------------------------|---------------------------|-------------------------|-------------------------------------|-----|------|--------|--------|---------|---------------------|---------|--------|-------|------|
| Reinforcing bar                                                         |                                           |                           |                         |                                     | Ø8  | Ø 10 | Ø 12   | Ø 14   | Ø 16    | Ø 20                | Ø 24    | Ø 25   | Ø 28  | Ø 32 |
| Steel f                                                                 | ailure                                    |                           |                         |                                     |     |      |        |        |         |                     |         |        |       |      |
| Charac                                                                  | cteristic tension re                      | sistance                  | N <sub>Rk,s,eq,C1</sub> | [kN]                                |     |      |        | •      | 1,0 • A | s • f <sub>uk</sub> | 1)      |        |       |      |
| Cross                                                                   | section area                              |                           | $A_s$                   | [mm <sup>2</sup> ]                  | 50  | 79   | 113    | 154    | 201     | 314                 | 452     | 491    | 616   | 804  |
| Partial                                                                 | factor                                    |                           | γ <sub>Ms,N</sub>       | [-]                                 |     |      |        |        | 1,      | 42)                 |         |        |       |      |
| Combi                                                                   | ined pull-out and                         | l concrete failu          | ire                     |                                     |     |      |        |        |         |                     |         |        |       |      |
|                                                                         | cteristic bond resis<br>holes (CD) and in |                           |                         |                                     |     |      | in har | nmer d | drilled | holes (             | (HD), d | compre | essed | air  |
| ture                                                                    | I: 24°C/40°C                              | Dry, wet                  | <sup>τ</sup> Rk,eq,C1   | [N/mm²]                             | 6,5 | 6,5  | 7,5    | 7,5    | 7,5     | 7,5                 | 7,5     | 7,5    | 7,5   | 7,5  |
| Temperature<br>range                                                    | II: 50°C/72°C                             | concrete and flooded bore | <sup>τ</sup> Rk,eq,C1   | [N/mm²]                             | 5,5 | 5,5  | 6,5    | 6,5    | 6,5     | 6,5                 | 6,5     | 6,5    | 6,5   | 6,5  |
| Теп                                                                     | III:60°C/80°C                             | hole                      | <sup>τ</sup> Rk,eq,C1   | [N/mm²]                             | 4,5 | 4,5  | 4,5    | 4,5    | 4,5     | 4,5                 | 4,5     | 4,5    | 4,5   | 4,5  |
| Increas                                                                 | sing factors for co                       | ncrete                    | Ψc                      | [-]                                 | 1,0 |      |        |        |         |                     |         |        |       |      |
| Characteristic bond resistance depending on the concrete strength class |                                           | <sup>τ</sup> R            | k,eq,C1 =               | Ψc • <sup>τ</sup> Rk,eq,C1,(C20/25) |     |      |        |        |         |                     |         |        |       |      |
| Install                                                                 | ation factor                              |                           |                         |                                     |     |      |        |        |         |                     |         |        |       |      |
| for dry and wet concrete (HD; HDB, CD)                                  |                                           | $\gamma_{inst}$           | [-]                     | [-]                                 |     |      |        |        |         |                     |         |        |       |      |
| for floo                                                                | ded bore hole (HI                         | D; HDB, CD)               |                         |                                     | 1,2 |      |        |        |         |                     |         |        |       |      |

 $<sup>^{1)}</sup>$   $f_{uk}$  shall be taken from the specifications of reinforcing bars

| Injection system ULEP-585 for concrete                                                                                                               |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years (reinforcing bar) | Annex C 25 |

<sup>2)</sup> in absence of national regulation



| Table C32: Characteristic values of shear loads under seismic action (performance category C1) for a working life of 50 and 100 years |         |                         |       |                                       |      |      |      |      |      |               |      |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-------|---------------------------------------|------|------|------|------|------|---------------|------|------|------|
| Reinforcing bar                                                                                                                       |         |                         |       | Ø8                                    | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 24          | Ø 25 | Ø 28 | Ø 32 |
| Steel failure                                                                                                                         |         |                         |       |                                       |      |      |      |      |      |               |      |      |      |
| Characteristic shear res                                                                                                              | istance | V <sub>Rk,s,eq,C1</sub> | [kN]  |                                       |      |      |      | 0,35 | ·As· | $f_{uk}^{-1}$ |      |      |      |
| Cross section area                                                                                                                    |         | A <sub>s</sub>          | [mm²] | 50 79 113 154 201 314 452 491 616 804 |      |      |      |      | 804  |               |      |      |      |
| Partial factor                                                                                                                        |         | γ <sub>Ms,V</sub>       | [-]   | 1,5 <sup>2)</sup>                     |      |      |      |      |      |               |      |      |      |
| Factor for annular gap                                                                                                                | )       | $\alpha_{\sf gap}$      | [-]   | 0,5 (1,0) <sup>3)</sup>               |      |      |      |      |      |               |      |      |      |

 $<sup>^{1)}</sup>$   $f_{uk}$  shall be taken from the specifications of reinforcing bars

| Injection system ULEP-585 for concrete                                                                                                       |            |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances (1)                                                                                                                             | Annex C 26 |
| Characteristic values of shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (reinforcing bar) |            |

<sup>2)</sup> in absence of national regulation

<sup>3)</sup> Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

for flooded bore hole (HD; HDB, CD)



1,2

| Tabl                                                                                                                 |                                              | racteristic va<br>formance ca |                       |                         |     |                         |               |           |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|-----------------------|-------------------------|-----|-------------------------|---------------|-----------|--|--|
| Thread                                                                                                               | ded rod                                      |                               |                       |                         | M12 | M16                     | M20           | M24       |  |  |
| Steel f                                                                                                              | ailure                                       |                               |                       |                         |     |                         |               |           |  |  |
| Characteristic tension resistance,<br>Steel, strength class 8.8<br>Stainless Steel A4 and HCR,<br>Strength class ≥70 |                                              | N <sub>Rk,s,eq,C2</sub>       | [kN]                  | 1,0 • N <sub>Rk,s</sub> |     |                         |               |           |  |  |
| Partial                                                                                                              | factor                                       |                               | γ <sub>Ms,N</sub>     | [-]                     |     | see Ta                  | able C1       |           |  |  |
| Combi                                                                                                                | ined pull-out and                            | concrete failure              | •                     |                         |     |                         |               |           |  |  |
|                                                                                                                      | cteristic bond resist<br>holes (CD) and in I |                               |                       |                         |     | nmer drilled hol        | es (HD), comp | ressed ai |  |  |
| ture                                                                                                                 | I: 24°C/40°C                                 | Dry, wet                      | <sup>τ</sup> Rk,eq,C2 | [N/mm²]                 | 5,8 | 4,8                     | 5,0           | 5,1       |  |  |
| Temperature<br>range                                                                                                 | II: 50°C/72°C                                | concrete and flooded bore     | <sup>τ</sup> Rk,eq,C2 | [N/mm²]                 | 5,0 | 4,1                     | 4,3           | 4,4       |  |  |
| Теп                                                                                                                  | III:60°C/80°C                                | hole                          | <sup>τ</sup> Rk,eq,C2 | [N/mm²]                 | 1,9 | 1,6                     | 1,6           | 1,7       |  |  |
| Increas                                                                                                              | sing factors for con                         | crete                         | Ψc                    | [-]                     |     | 1                       | ,0            |           |  |  |
|                                                                                                                      | cteristic bond resist                        |                               | τ                     | Rk,eq,C2 =              |     | Ψc • <sup>τ</sup> Rk,eq | ,C2,(C20/25)  |           |  |  |
| Install                                                                                                              | ation factor                                 |                               |                       |                         |     |                         |               |           |  |  |
|                                                                                                                      | and wet concrete                             | , , ,                         | γ <sub>inst</sub>     | [-]                     | 1,0 |                         |               |           |  |  |
| for floo                                                                                                             | or flooded bore hole (HD: HDB, CD)           |                               | 111151                | 1,                      | 1.2 |                         |               |           |  |  |

#### Table C34: Characteristic values of shear loads under seismic action (performance category C2) for a working life of 50 and 100 years

| Threaded rod                                                                                                      | M12                     | M16  | M20                                   | M24   |                    |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------------------------------|-------|--------------------|--|
| Steel failure                                                                                                     |                         |      |                                       |       |                    |  |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A4 and HCR,<br>Strength class ≥70 | V <sub>Rk,s,eq,C2</sub> | [kN] | 0,70 • V <sup>0</sup> <sub>Rk,s</sub> |       |                    |  |
| Partial factor                                                                                                    | γ <sub>Ms,V</sub>       | [-]  | see Table C1                          |       |                    |  |
| Factor for annular gap                                                                                            | $\alpha_{\sf gap}$      | [-]  |                                       | 0,5 ( | 1,0) <sup>1)</sup> |  |

<sup>1)</sup> Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

| Injection system ULEP-585 for concrete                                                                                                                |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances                                                                                                                                          | Annex C 27 |
| Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod) |            |

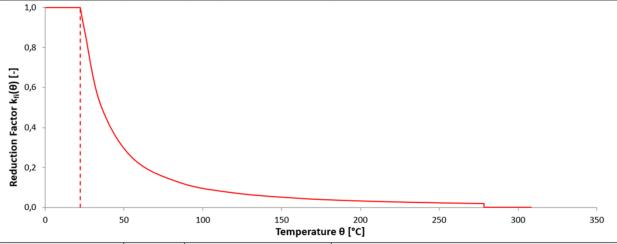


| Table C35: Displacements under tension load (threaded rod)                                                           |                                                   |      |      |      |      |      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|------|------|------|------|--|--|--|--|
| Threaded rod                                                                                                         |                                                   |      | M12  | M16  | M20  | M24  |  |  |  |  |
| Uncracked and cracked concrete under seismic action (performance category C2) for a working life of 50 and 100 years |                                                   |      |      |      |      |      |  |  |  |  |
| All temperature ranges                                                                                               | $\delta_{N,eq,C2(50\%)} = \delta_{N,eq,C2(DLS)}$  | [mm] | 0,21 | 0,24 | 0,27 | 0,36 |  |  |  |  |
| All temperature ranges                                                                                               | $\delta_{N,eq,C2(100\%)} = \delta_{N,eq,C2(ULS)}$ | [mm] | 0,54 | 0,51 | 0,54 | 0,63 |  |  |  |  |

# Table C36: Displacements under shear load (threaded rod)

| Threaded rod                                                                                                         |                                                   |      | M12 | M16 | M20 | M24  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|-----|-----|-----|------|--|
| Uncracked and cracked concrete under seismic action (performance category C2) for a working life of 50 and 100 years |                                                   |      |     |     |     |      |  |
| All temperature ranges                                                                                               | $\delta_{V,eq,C2(50\%)} = \delta_{V,eq,C2(DLS)}$  | [mm] | 3,1 | 3,4 | 3,5 | 4,2  |  |
| All temperature ranges                                                                                               | $\delta_{V,eq,C2(100\%)} = \delta_{V,eq,C2(ULS)}$ | [mm] | 6,0 | 7,6 | 7,3 | 10,9 |  |

| Injection system ULEP-585 for concrete                                                                                          |            |
|---------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Displacements under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod) | Annex C 28 |




| Table C37: | Characteristic values of tension and shear loads under fire exposure in    |
|------------|----------------------------------------------------------------------------|
|            | hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer |
|            | drilled holes with hollow drill bit (HDB)                                  |

| Threaded rod                                                                                                                 |                      |      |                           |     | М8  | M10 | M12 | M16 | M20 | M24  | M27  | M30  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------|------|---------------------------|-----|-----|-----|-----|-----|-----|------|------|------|
| Steel failure                                                                                                                |                      |      |                           |     |     |     |     |     |     |      |      |      |
| Characteristic tension<br>resistance; Steel, Stainless<br>Steel A2, A4 and HCR,<br>strength class 5.8 resp. 50<br>and higher |                      |      | Fire                      | 30  | 1,1 | 1,7 | 3,0 | 5,7 | 8,8 | 12,7 | 16,5 | 20,2 |
|                                                                                                                              | N <sub>Rk,s,fi</sub> | [kN] | exposure<br>time<br>[min] | 60  | 0,9 | 1,4 | 2,3 | 4,2 | 6,6 | 9,5  | 12,4 | 15,1 |
|                                                                                                                              |                      |      |                           | 90  | 0,7 | 1,0 | 1,6 | 3,0 | 4,7 | 6,7  | 8,7  | 10,7 |
|                                                                                                                              |                      |      |                           | 120 | 0,5 | 0,8 | 1,2 | 2,2 | 3,4 | 4,9  | 6,4  | 7,9  |

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature  $\theta$ 

|                              |                    |     | θ < 23°C         | 1,0                                       |
|------------------------------|--------------------|-----|------------------|-------------------------------------------|
| Temperature reduction factor | $k_{fi,p}(\theta)$ | [-] | 23°C ≤ θ ≤ 278°C | 150,28 • $\theta$ <sup>-1,598</sup> ≤ 1,0 |
|                              |                    |     | θ > 278°C        | 0,0                                       |



|                                                                                      |                                   |         |                           | Temperatur | e θ [°C]                                           |     |     |      |      |      |      |      |
|--------------------------------------------------------------------------------------|-----------------------------------|---------|---------------------------|------------|----------------------------------------------------|-----|-----|------|------|------|------|------|
| Characteristic bond resistance for a given temperature $(\theta)$                    | $\tau_{Rk,fi}(\theta)$            | [N/mm²] |                           |            | $k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1}$ |     |     |      |      |      |      |      |
| Steel failure without lever a                                                        | ırm                               |         |                           |            |                                                    |     |     |      |      |      |      |      |
| Characteristic shear                                                                 |                                   |         | Fire                      | 30         | 1,1                                                | 1,7 | 3,0 | 5,7  | 8,8  | 12,7 | 16,5 | 20,2 |
| resistance; Steel, Stainless<br>Steel A2, A4 and HCR,<br>strength class 5.8 resp. 50 | V <sub>Rk,s,fi</sub>              | [kN]    | exposure<br>time<br>[min] | 60         | 0,9                                                | 1,4 | 2,3 | 4,2  | 6,6  | 9,5  | 12,4 | 15,1 |
|                                                                                      |                                   |         |                           | 90         | 0,7                                                | 1,0 | 1,6 | 3,0  | 4,7  | 6,7  | 8,7  | 10,7 |
| and higher                                                                           |                                   |         |                           | 120        | 0,5                                                | 0,8 | 1,2 | 2,2  | 3,4  | 4,9  | 6,4  | 7,9  |
| Steel failure with lever arm                                                         |                                   |         |                           |            |                                                    |     |     |      |      |      |      |      |
| Characteristic bending                                                               |                                   |         | Fire                      | 30         | 1,1                                                | 2,2 | 4,7 | 12,0 | 23,4 | 40,4 | 59,9 | 81,0 |
| moment; Steel, Stainless                                                             | N40                               | [MIM]   | ovnocuro                  | 60         | 0,9                                                | 1,8 | 3,5 | 9,0  | 17,5 | 30,3 | 44,9 | 60,7 |
| Steel A2, A4 and HCR, strength class 5.8 resp. 50                                    | M <sup>0</sup> <sub>Rk,s,fi</sub> | [Nm]    | time                      | 90         | 0,7                                                | 1,3 | 2,5 | 6,3  | 12,3 | 21,3 | 31,6 | 42,7 |
| and higher                                                                           |                                   |         | [min]                     | 120        | 0,5                                                | 1,0 | 1,8 | 4,7  | 9,1  | 15,7 | 23,3 | 31,5 |

<sup>1)</sup>  $au_{Rk,cr,(C20/25)}$  characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

| Injection system ULEP-585 for concrete                                                           |            |
|--------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension and shear loads under fire exposure (threaded rod) | Annex C 29 |

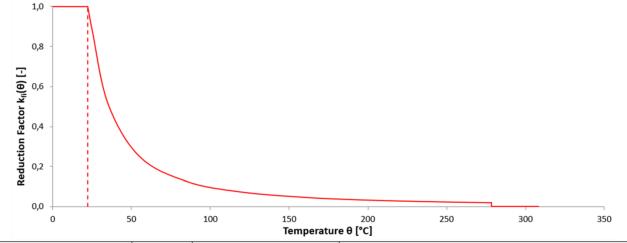



Table C38: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

| Internal threaded anchor rods                                                                                      |                      |       |                           |     | IG-M6 | IG-M8 | IG-M10 | IG-M12 | IG-M16 | IG-M20 |
|--------------------------------------------------------------------------------------------------------------------|----------------------|-------|---------------------------|-----|-------|-------|--------|--------|--------|--------|
| Steel failure                                                                                                      |                      |       |                           |     |       |       |        |        |        |        |
| Characteristic tension<br>resistance; Steel, Stainless<br>Steel A4 and HCR, strength<br>class 5.8 and 8.8 resp. 70 |                      |       | Fire                      | 30  | 0,3   | 1,1   | 1,7    | 3,0    | 5,7    | 8,8    |
|                                                                                                                    | N <sub>Rk,s,fi</sub> | [LAND | exposure<br>time<br>[min] | 60  | 0,2   | 0,9   | 1,4    | 2,3    | 4,2    | 6,6    |
|                                                                                                                    |                      | [kN]  |                           | 90  | 0,2   | 0,7   | 1,0    | 1,6    | 3,0    | 4,7    |
|                                                                                                                    |                      |       |                           | 120 | 0,1   | 0,5   | 0,8    | 1,2    | 2,2    | 3,4    |
|                                                                                                                    |                      |       |                           |     |       |       |        |        |        |        |

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature  $\theta$ 

| <u> </u>                     |                    |     | θ < 23°C         | 1,0                                       |
|------------------------------|--------------------|-----|------------------|-------------------------------------------|
| Temperature reduction factor | $k_{fi,p}(\theta)$ | [-] | 23°C ≤ θ ≤ 278°C | 150,28 • $\theta$ <sup>-1,598</sup> ≤ 1,0 |
| lastor                       |                    |     | θ > 278°C        | 0,0                                       |



|                                                                                                                |                                   |         |          | Temperatur | e θ [°C]                                            |     |     |     |      |      |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|----------|------------|-----------------------------------------------------|-----|-----|-----|------|------|--|--|
| Characteristic bond resistance for a given temperature (θ)                                                     | $\tau_{Rk,fi}(\theta)$            | [N/mm²] |          |            | $k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$ |     |     |     |      |      |  |  |
| Steel failure without lever arm                                                                                |                                   |         |          |            |                                                     |     |     |     |      |      |  |  |
| Characteristic shear<br>resistance; Steel, Stainless<br>Steel A4 and HCR, strength                             |                                   |         | Fire     | 30         | 0,3                                                 | 1,1 | 1,7 | 3,0 | 5,7  | 8,8  |  |  |
|                                                                                                                | V <sub>Rk,s,fi</sub>              | [kN]    | ovposuro | 60         | 0,2                                                 | 0,9 | 1,4 | 2,3 | 4,2  | 6,6  |  |  |
|                                                                                                                |                                   |         |          | 90         | 0,2                                                 | 0,7 | 1,0 | 1,6 | 3,0  | 4,7  |  |  |
| class 5.8 and 8.8 resp. 70                                                                                     |                                   |         |          | 120        | 0,1                                                 | 0,5 | 0,8 | 1,2 | 2,2  | 3,4  |  |  |
| Steel failure with lever arm                                                                                   |                                   |         |          |            |                                                     |     |     |     |      |      |  |  |
| Characteristic handing                                                                                         |                                   | [Nm]    | Fire     | 30         | 0,2                                                 | 1,1 | 2,2 | 4,7 | 12,0 | 23,4 |  |  |
| Characteristic bending<br>moment; Steel, Stainless<br>Steel A4 and HCR, strength<br>class 5.8 and 8.8 resp. 70 | NAO                               |         | ovpoduro | 60         | 0,2                                                 | 0,9 | 1,8 | 3,5 | 9,0  | 17,5 |  |  |
|                                                                                                                | M <sup>0</sup> <sub>Rk,s,fi</sub> |         |          | 90         | 0,1                                                 | 0,7 | 1,3 | 2,5 | 6,3  | 12,3 |  |  |
|                                                                                                                |                                   |         |          | 120        | 0.1                                                 | 0.5 | 1.0 | 1.8 | 47   | 9.1  |  |  |

<sup>&</sup>lt;sup>1)</sup>  $\tau_{Rk,cr,(C20/25)}$  characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

| Injection system ULEP-585 for concrete                                                                            |            |
|-------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod ) | Annex C 30 |



|                                                              | acteristic<br>ner drille<br>d holes v | d ho         | les (HD)            | , comp    | ress                                   | ed a       |            |         |               |            | •                      |            |         | mer          |
|--------------------------------------------------------------|---------------------------------------|--------------|---------------------|-----------|----------------------------------------|------------|------------|---------|---------------|------------|------------------------|------------|---------|--------------|
| Reinforcing bar                                              |                                       |              |                     |           | Ø 8                                    | Ø 10       | Ø 12       | Ø 14    | Ø 16          | Ø 20       | Ø 24                   | Ø 25       | Ø 28    | Ø 32         |
| Steel failure                                                |                                       |              |                     |           |                                        | l          |            |         |               |            | l                      |            |         |              |
|                                                              |                                       |              |                     | 30        | 0,5                                    | 1,2        | 2,3        | 3,1     | 4,0           | 6,3        | 9,0                    | 9,8        | 12,3    | 16,1         |
| Characteristic tension                                       | N <sub>Rk,s,fi</sub>                  | <br>  [kN]   | Fire exposure       | 60        | 0,5                                    | 1,0        | 1,7        | 2,3     | 3,0           | 4,7        | 6,8                    | 7,4        | 9,2     | 12,1         |
| resistance; BSt 500                                          | HK,S,II                               | [[[,         | time [min]          | 90        | 0,4                                    | 0,8        | 1,5        | 2,0     | 2,6           | 4,1        | 5,9                    | 6,4        | 8,0     | 10,5         |
|                                                              |                                       | <u> </u>     |                     | 120       | 0,3                                    | 0,6        | 1,1        | 1,5     | 2,0           | 3,1        | 4,5                    | 4,9        | 6,2     | 8,0          |
| Characteristic bond resigned temperature θ                   | istance in o                          | cracke       | ed and unc          | racked o  | oncre                                  | ete C2     | 0/25 u     | p to C  | C50/60        | unde       | r fire                 | condi      | tions 1 | for a        |
|                                                              |                                       |              | θ < 2               | 5°C       |                                        |            |            |         | 1             | ,0         |                        |            |         |              |
| Temperature reduction factor                                 | $k_{fi,p}(\theta)$                    | [-]          | 25°C ≤ θ            | ≤ 278°C   |                                        |            |            | 176,    | <b>37</b> • θ | -1,598     | ≤ 1,0                  |            |         |              |
| lactor                                                       |                                       |              | θ > 27              | ′8°C      |                                        |            |            |         | 0             | ,0         |                        |            |         |              |
| Reduction Factor k <sub>ii</sub> (θ) [-]                     | 50                                    | 10           | 000                 | 150       |                                        | 200        |            | 250     |               | <u>1</u>   | 00                     |            | 350     |              |
| Characteristic bond                                          | T                                     |              |                     | Tempera   | ature θ                                |            |            |         |               |            |                        |            |         |              |
| resistance for a given temperature $(\theta)$                | $\tau_{Rk,fi}(\theta)$                |              | [N/mm²]             |           | $k_{fi,p}(\theta) \cdot \tau_{Rk,cr,}$ |            |            |         |               |            | (C20/25) <sup>1)</sup> |            |         |              |
| Steel failure without leve                                   | er arm                                |              |                     | 00        | 0.5                                    | 10         | 0.0        | 0.4     | 4.0           | 0.0        | 0.0                    | 0.0        | 100     | 101          |
|                                                              |                                       |              | Fire                | 30<br>60  | 0,5                                    | 1,2        | 2,3        | 3,1     | 3,0           | 6,3        | 9,0                    | 9,8        | 12,3    | 16,1         |
| Characteristic shear resistance; BSt 500                     | $V_{Rk,s,fi}$                         | [kN]         | exposure            | 90        | 0,5                                    | 1,0<br>0,8 | 1,7<br>1,5 | 2,3     | 2,6           | 4,7<br>4,1 | 6,8<br>5,9             | 7,4<br>6,4 | 9,2     | 12,1<br>10,5 |
|                                                              |                                       |              | time [min]          | 120       | 0,4                                    | 0,6        | 1,1        | 1,5     | 2,0           | 3,1        | 4,5                    | 4,9        | 6,2     | 8,0          |
| Steel failure with lever a                                   | ırm                                   |              |                     | 120       | 0,0                                    | 0,0        | .,.        | 1,0     | 2,0           | 0,1        | 1,0                    | 1,0        | 0,2     | 0,0          |
|                                                              |                                       |              |                     | 30        | 0,6                                    | 1,8        | 4,1        | 6,5     | 9,7           | 18,8       | 32,6                   | 36,8       | 51,7    | 77,2         |
| Characteristic bending                                       | N40                                   | [MIM]        | Fire                | 60        | 0,5                                    | 1,5        | 3,1        | 4,8     | 7,2           | 14,1       | 24,4                   | 27,6       | 38,8    | 57,9         |
| moment; BSt 500                                              | M <sup>0</sup> Rk,s,fi                | ן נואוון<br> | exposure time [min] | 90        | 0,4                                    | 1,2        | 2,6        | 4,2     | 6,3           | 12,3       | 21,2                   | 23,9       | 33,6    | 50,2         |
|                                                              |                                       |              |                     | 120       | 0,3                                    | 0,9        | 2,0        | 3,2     | 4,8           | 9,4        | 16,3                   | 18,4       | 25,9    | 38,6         |
| 1) τ <sub>Rk,cr,(C20/25)</sub> characte<br>temperature range | ristic bond r                         | esistan      | ce for crack        | ed concre | ete for                                | concre     | ete stre   | ength o | lass C        | 20/25      | for the                | releva     | ınt     |              |
| Injection system ULE Performances Characteristic values of   |                                       |              |                     | nder fire | expos                                  | sure (ı    | einfor     | cing b  | oar)          |            | A                      | nnex       | C 31    | Í            |