

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0541 of 8 August 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Bonded fasteners and bonded expansion fasteners for use in concrete

ICCONS Pty Ltd 383 Frankston-Dandenong Road Dandenong South VIC 3175 **VICTORIA AUSTRALIEN**

ICCONS

34 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

European Technical Assessment ETA-25/0541

English translation prepared by DIBt

Page 2 of 34 | 8 August 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z192831.25 8.06.01-184/25

Page 3 of 34 | 8 August 2025

Specific Part

1 Technical description of the product

The "Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete" is a bonded anchor consisting of a cartridge with injection mortar ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod CIS-M6 to CIS-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 14 to C 16

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z192831.25 8.06.01-184/25

European Technical Assessment ETA-25/0541

English translation prepared by DIBt

Page 4 of 34 | 8 August 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

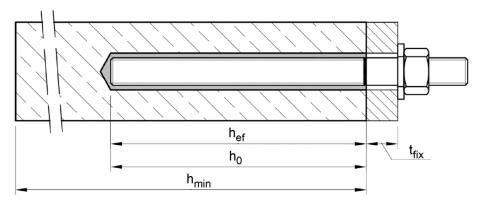
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

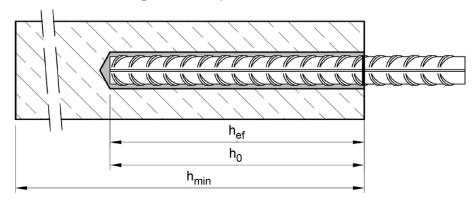
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 August 2025 by Deutsches Institut für Bautechnik

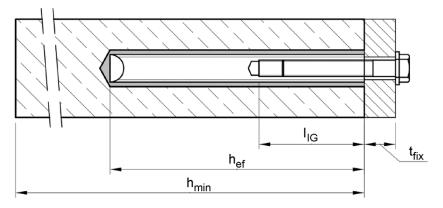
Dipl.-Ing. Beatrix Wittstock Head of Section


beglaubigt: Baderschneider

Z192831.25 8.06.01-184/25



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod CIS-M6 up to CIS-M20

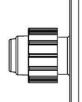
 t_{fix} = thickness of fixture h_0 = nominal drill hole diameter

 h_{ef} = effective embedment depth I_{IG} = thread engagement length

h_{min} = minum thickness of member

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

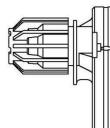
Product description
Installed condition


Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

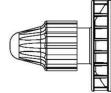

Imprint:

ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

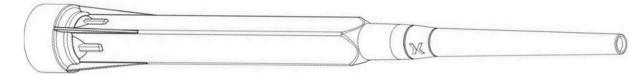
ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil tube Cartridge:

165 ml and 300 ml

Imprint:


ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Static mixer CNOZ10-V

Static mixer CNOZ10-HP

Piston plug VS and mixer extension VL

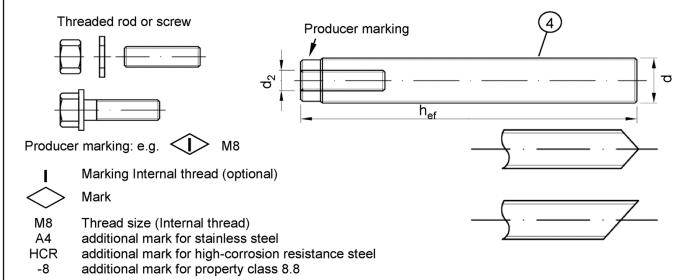
Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Product description

Injection system

Annex A 2

Threaded rod M8 up to M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

For hot dip galvanized elements, the requirements with regards to the combination of nuts and rods according to EN ISO 10684:2004+AC:2009 Annex F shall be considered.

Internal threaded rod CIS-M6 to CIS-M20

Filling washer CFW

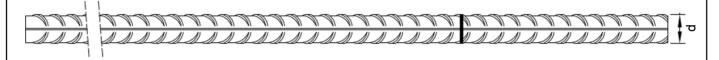
Mixer reduction nozzle MR

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Product description

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3


	ble A1: Mate	erials				
Par	Designation	Material				
Ste - z - h	el, zinc plated (Steel inc plated ≥ 5 ot-dip galvanised ≥ 4	acc. to EN ISO 683-4:	4042 146	2:2022 or 1:2022 and EN ISO 10684:	2004+AC:2009 or	
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
	1111 34434 134	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 300 N/mm ²	A ₅ > 8%
		EN 130 090-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
		ana ta	4	for anchor rod class 4.6 o	r 4.8	
2	Hexagon nut	acc. to EN ISO 898-2:2022	5	for anchor rod class 5.6 o	r 5.8	
			8	for anchor rod class 8.8		
3a	Washer	(e.g.: EN ISO 887:20	06, 6	galvanised or sherardized EN ISO 7089:2000, EN ISO	7093:2000 or EN ISO	7094:2000)
3b_	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized		
	Internal threaded	Property class		Characteristic steel	Characteristic steel	Elongation at
	Internal threaded			ultimate tensile strength	yield strength	fracture
4	Internal threaded anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	fracture A ₅ > 8%
4				f _{uk} = 500 N/mm ²		
Stai Stai	anchor rod nless steel A2 (Mate	acc. to EN ISO 898-1:2013 rrial 1.4301 / 1.4307 / 1 rrial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023)	A ₅ > 8%
Stai Stai	anchor rod nless steel A2 (Mate	acc. to EN ISO 898-1:2013 rrial 1.4301 / 1.4307 / 1 rrial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 .4565, acc. to EN 10088 Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel	A ₅ > 8%
Stai Stai Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1.4565, acc. to EN 10088	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023)	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at
Stai Stai Hig	anchor rod nless steel A2 (Mate	acc. to EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to	8.8 .431 .457 529 or	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength	A ₅ > 8% A ₅ > 8% Elongation at fracture
Stai Stai Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class	8.8 .431 .457 529 or	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020	8.8 .431 .457 529 or 50 70	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 .4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to	8.8 1.431 1.457 529 or 50 70 80 50 70	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 .4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Material nless steel A4 (Material nless steel	acc. to EN ISO 898-1:2013 Prial 1.4301 / 1.4307 / 1 Prial 1.4401 / 1.4404 / 1 Ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020	8.8 1.431 1.457 529 or 70 80 70 80	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Material nless steel A4 (Material nless steel	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452	8.8 1.431 1.457 629 or 1 50 70 80 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 .4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_1 \ge 8\%$ 1:2023
Stai Stai Hig	anchor rod nless steel A2 (Material Material Ma	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20	8.8 1.431 1.457 529 or 1 50 70 80 70 80 71.43 71.44 9 or 1 1006, E	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088-578, acc. to EN 10088-:2023 0 7093:2000 or EN ISO	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2023 1:2023
Stai	anchor rod nless steel A2 (Material National Na	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20	8.8 1.431 1.457 529 or 1 50 70 80 70 80 71.43 71.44 9 or 1 1006, E	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_1 \ge 8\%$ 1:2023 1:2023
Stai Stai Hig	anchor rod nless steel A2 (Material Material Ma	acc. to EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452: (e.g.: EN ISO 887:20 Stainless steel A4, H	8.8 1.431 1.457 529 or 1 50 70 80 70 80 71.43 71.44 9 or 1 1006, E	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088-578, acc. to EN 10088-:2023 O 7093:2000 or EN ISO	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2023$ $1:2023$ $1:2023$ $1:2023$

Property class 70 or 80 for anchor rods and hexagon nuts up to M24 and Internal threaded anchor rods up to CIS-M16
 for CIS-M20 only property class 50
 Property class 80 only for stainless steel A4 and HCR

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range $0.05d \le h_{rib} \le 0.07d$ (d: Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A2: Materials Reinforcing bar

Part	Designation	Material
Reba	ar	
	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Product description

Materials reinforcing bar

Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life	50 years	Working life 100 years			
Base material	uncracked concrete	cracked concrete	uncracked concrete	cracked concrete		
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø CIS-M6 to Ø	Ø 32 ,	No performand	ce assessed		
Temperature Range	I: - 40°C t II: - 40°C t III: - 40°C t		No performanc	e assessed		

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2
Base material	Cracked and und	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, Ø8 to Ø32	No performance assessed
Temperature Range	I: - 40°C to +40°C ¹⁾ II: - 40°C to +80°C ²⁾ III: - 40°C to +120°C ³⁾	No performance assessed

Fasteners subject to (fire exposure):

Base material	Cracked and uncracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, ∅8 to ∅32, CIS-M6 to CIS-M20
Temperature Range:	I: -40°C to +40°C ¹⁾ II: -40°C to +80°C ²⁾ III: -40°C to +120°C ³⁾

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Intended Use Specifications	Annex B 1

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

^{3) (}max. long-term temperature +72°C and max. short-term temperature +120°C)

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A2:2021.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055,
 Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:

ICCONS Vinylester BIS-V: -10°C up to +40°C for the standard variation of temperature after

installation

ICCONS Vinylester BIS-V Nordic: -20°C up to +10°C for the standard variation of temperature after

installation

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Intended Use Specifications (Continued)	Annex B 2

Table B1:	Installation pa	arameters	for thre	eaded	rod						
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	t	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	24	28	32	35
Effective embedme	nt donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedme	пі аеріп	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins		[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum installation	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness of member h _{min}		[mm]	1	ef + 30 n ≥ 100 mr			ŀ	n _{ef} + 2do)		
Minimum spacing		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ance	c _{min}	[mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for reinforcing bar

Reinforcing bar	Reinforcing bar			Ø 10¹)	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of element	d = d _{nom} [mm]		8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment death	h _{ef,min} [mm]		60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]		+ 30 mm 00 mm	ì			h _{ef} + 2	d ₀		
Minimum spacing	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod		CIS-M6	CIS-M8	CIS-M10	CIS-M12	CIS-M16	CIS-M20	
Internal diameter of anchor rod	d_2		6	8	10	12	16	20
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	24	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	member h_{min} [mm] $h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$							
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	c _{min}	[mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Intended Use

Installation parameters

Annex B 3

Table B4	: Para	meter cle	aning and	instal	latio	n tools				
			a de la companya dela companya dela companya dela companya de la companya de la companya de la companya dela companya de la companya dela compan							
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _b Brush		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu	
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1
M8	8		10	RBT10	12	10,5				
M10	8 / 10	CIS-M6	12	RBT12	14	12,5		No plug	roquirod	
M12	10 / 12	CIS-M8	14	RBT14	16	14,5		No plug	required	
	12		16	RBT16	18	16,5				
M16	14	CIS-M10	18	RBT18	20	18,5	VS18			
	16		20	RBT20	22	20,5	VS20			
M20		CIS-M12	24	RBT24	26	24,5	VS24	h .>	h .>	
	20		25	RBT25	27	25,5	VS25	h _{ef} > 250 mm	h _{ef} > 250 mm	all
M24		CIS-M16	28	RBT28	30	28,5	VS28	250 111111	250 IIIII	
M27	25		32	RBT32	34	32,5	VS32			
M30	28	CIS-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

Brush RBT

Piston Plug VS

Brush extension RBL

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Intended Use Cleaning and installation tools	Annex B 4

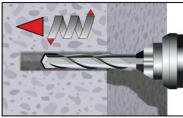
Table B5:	Worki	ng time and o	uring time ICCONS Vinyleste	r BIS-V		
Tempera	ture in bas	Minimum curing time ¹⁾				
	Т		t _{gel}	t _{cure}		
- 10°C	to	- 6°C	90 min ²⁾	24 h		
- 5°C	to	- 1°C	90 min	14 h		
0°C	to	+ 4 °C	45 min	7 h		
+ 5°C	to	+ 9 °C	25 min	2 h		
+ 10 °C	to	+ 19°C	15 min	80 min		
+ 20 °C	to	+ 29 °C	6 min	45 min		
+ 30 °C	to	+ 34 °C	4 min	25 min		
+ 35 °C	to	+ 39 °C	2 min	20 min		
	+40°C		1,5 min	15 min		
Cartr	ridge tempe	erature	+5°C to +40°C			

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

Table B6: Working time and curing time ICCONS Vinylester BIS-V Nordic

Tempera	ature in bas	e material	Maximum working time	Minimum curing time 1)		
	Т		t _{gel}	t _{cure}		
- 20 °C	to	- 16°C	75 min	24 h		
- 15°C	to	- 11°C	55 min	16 h		
- 10°C	to	- 6°C	35 min	10 h		
- 5°C	to	- 1°C	20 min	5 h		
0°C	to	+ 4 °C	10 min	2,5 h		
+ 5°C	to	+ 9 °C	6 min	80 min		
	+ 10 °C		6 min	60 min		
Car	tridge tempe	rature	-20°C to +10°C			

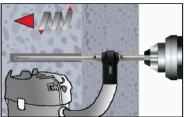
¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Intended Use Working time and curing time	Annex B 5

²⁾ Cartridge temperature must be at least +15°C

Installation instructions

Drilling of the bore hole


1a. Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.

Drill bit diameter according to Table B1, B2 or B3.

Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).

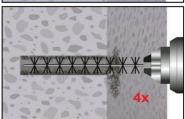
1b. Hollow drill bit system (HDB)

Drill a hole to the required embedment depth.

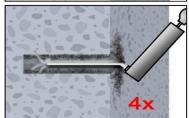
Drill bit diameter according to Table B1, B2 or B3.

Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).


Attention! Standing water in the bore hole must be removed before cleaning

Manual Air Cleaning (MAC)


for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm uncracked concrete only) with drilling method HD, HDB and CD

Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

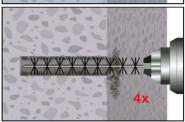
2c.

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

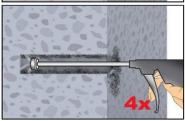
Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Intended Use

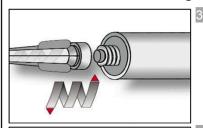
Installation instructions


Installation instructions (continuation)

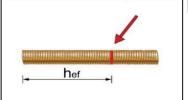
Compressed Air Cleaning (CAC):


All diameter with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

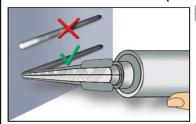
Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Screw on static-mixing nozzle CNOZ10-V / CNOZ10-HP and load the cartridge into an appropriate dispensing tool. With foil tube cartridges cut off the foil tube clip before use.

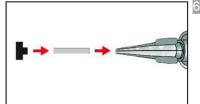
For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

Mark embedment depth on the anchor rod.

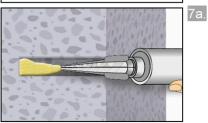
The anchor rod shall be free of dirt, grease, oil or other foreign material.


Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

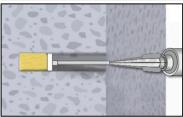
Intended Use


Installation instructions (continuation)

Installation instructions (continuation)



Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes, for foil tube cartridges at least 6 full storkes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø $d_0 \ge 18$ mm and embedment depth $h_{ef} > 250$ mm
- Vertical upwards direction: Drill bit-Ø $d_0 \ge 18$ mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Injecting mortar without piston plug VS:

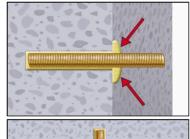
Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets. Observe the temperature related working time t_{work} (Annex B 5).

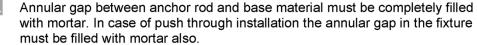
Injecting mortar with piston plug VS:

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

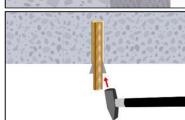
Observe the temperature related working time t_{work} (Annex B 5). .

Insert the anchor rod while turning slightly up to the embedment mark.

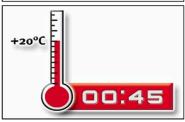

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete


Intended Use

Installation instructions (continuation)



Installation instructions (continuation)



Otherwise, the installation must be repeated starting from step 7 before the maximum working time \mathbf{t}_{work} has expired.

 For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed.
 Do not move or load the fastener during curing time.

2. Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer CFW and use the mixer reduction nozzle MR.

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete

Intended Use

Installation instructions (continuation)

Т	able C1: Characteristic values resistance of threade			ension	resist	ance	and s	teel s	hear		
Th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Ch	naracteristic tension resistance, Steel failu										
Ste	eel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ste	eel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2, A4 and HCR, class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2, A4 and HCR, class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	_3)	_3)
Sta	ainless steel A4 and HCR, class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	_3)	_3)
Ch	naracteristic tension resistance, Partial fac	tor ²⁾									
Ste	eel, Property class 4.6 and 5.6	$\gamma_{Ms,N}$	[-]				2,0)			
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5			
Sta	ainless steel A2, A4 and HCR, class 50	ess steel A2, A4 and HCR, class 50 $\gamma_{Ms,N}$ [-] 2,86									
Sta	ainless steel A2, A4 and HCR, class 70	[-]	1,87								
Sta	ainless steel A4 and HCR, class 80	γMs,N	[-]				1,6	3			
Ch	naracteristic shear resistance, Steel failure	1)									
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
evel	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
) it	Stainless steel A2, A4 and HCR, class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
th lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
\X	Stainless steel A2, A4 and HCR, class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Ch	naracteristic shear resistance, Partial facto										
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]	1,67							
Ste	eel, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,V}$	[-]				1,2	:5			
Sta	ainless steel A2, A4 and HCR, class 50	$\gamma_{Ms,V}$	[-]				2,3	8			
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic v	alues of te	nsion load	ls under static and quasi-static action
Fastener				All Anchor types and sizes
Concrete cone fa	ailure			
Uncracked concrete		k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Thread	ded	rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f								<u> </u>	<u> </u>	<u> </u>			
Charac	cteris	stic tension res	istance	N _{Rk,s}	[kN]					ee Tab			
Partial			a a ma mata faila	γ _{Ms,N}	[-]	see Table C1							
			concrete failure ance in uncracke	d concrete C20)/25								
	l:	40°C/24°C				10	12	12	12	12	11	10	9,0
ange	II:	80°C/50°C	Dry, wet concrete			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5
Temperature range	III:	120°C/72°C		_	[N]/ma ma 21	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
berati	l:	40°C/24°C		^τ Rk,ucr	^T Rk,ucr [N/mm²]	7,5	8,5	8,5	8,5				
Temp	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5		lo Perfo Asse	ormand essed	е
'	III:	120°C/72°C				4,0	5,0	5,0	5,0				
Charac	cteris	stic bond resist	ance in cracked o	concrete C20/2	5		1	1		1	I		
a)	l:	40°C/24°C	D			4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
range	<u>II:</u>	80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range	III:	120°C/72°C		τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
ıpera	<u>l:</u>	40°C/24°C	flandad basa	TXX,OI	[]	4,0	4,0	5,5	5,5	No Dorform			_
Tem	<u>II:</u>	80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0	No Performance Assessed			
		120°C/72°C				2,0	2,5	3,0	3,0				
Reduk	tion 1	factor ψ ⁰ sus ir	cracked and und	racked concre	te C20/25								
ture	l:	40°C/24°C	Dry, wet	• 1				0,73					
Temperature range	II:	80°C/50°C	concrete and flooded bore	Ψ^0 sus [-]		0,65							
Ten	III:	120°C/72°C	hole			0,57							
Increas	sing	factors for con	crete	Ψ _c	[-]				(f _{ck} / 2	20) ^{0,11}			
			ance depending		τ _{Rk,ucr} =			Ψς	• τ _{Rk,u}	cr(C20/	(25)		
		crete strength	class		τ _{Rk,cr} =			Ψο	• ^τ Rk,c	cr(C20/	25)		
		cone failure arameter							see Ta	able C2			
Splitti	ng												
		arameter n factor							see Ta	able C2			
		wet concrete				1,0				1,2			
for floo	oded	bore hole		γ _{inst}	[-]		1	,4		N	lo Perfo Asse	ormand essed	е
Injec			ONS Vinyleste	r BIS-V or IC	CONS Vin	yleste	er BIS-	-V Nor	dic				
Perfo	orma	nces	f tension loads ui	nder static and	d quasi-stat	ic actio	on (Thi	readed	rod)		Anne	ex C 3	3

Table C4: Characteristic values of shear loads under static and quasi-static action												
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm												
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)									
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s ∙f _{uk}	(or see	Table C	1)			
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm	•	'										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]			1,2 • \	W _{el} • f _{uk}	(or see	Table (21)			
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874		
Partial factor	γ _{Ms,V}	[-]				see	Table C	1				
Concrete pry-out failure												
Factor	k ₈	[-]					2,0					
Installation factor	γinst	[-]					1,0					
Concrete edge failure												
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300)$						300mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	γinst	[-]	1,0									

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Internal threaded anchor rod Steel failure ¹⁾	S			CIS-M6	CIS-M8	CIS-M10	CIS-M12	CIS-M16	CIS-M20			
Characteristic tension resistand	e. 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123			
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196			
Partial factor, strength class 5.8	3 and 8.8	γ _{Ms,N}	[-]		l	1	,5					
Characteristic tension resistand Steel A4 and HCR, Strength cla	ce, Stainless	N _{Rk,s}	[kN]	14	26	41	59	110	124			
Partial factor		γ _{Ms,N}	[-]			1,87			2,86			
Combined pull-out and conc	rete cone failu											
Characteristic bond resistance	in uncracked c	oncrete	C20/25									
υ I: 40°C/24°C	Dry, wet			12	12	12	12	11	9,0			
emberation	concrete			9,0	9,0	9,0	9,0	8,5	6,5			
E	COTTOTCTC	τ	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0			
<u>ਵ</u> ੱ ਫ਼ <u>I: 40°C/24°C</u>	flooded bore	^τ Rk,ucr	[[14/11111]	8,5	8,5	8,5						
ច៍ Ⅱ: 80°C/50°C	hole			6,5	6,5	6,5	No Performance Assessed					
III: 120°C/72°C				5,0	5,0	5,0						
Characteristic bond resistance	in cracked con	crete C2	20/25									
_Φ <u>I: 40°C/24°C</u>	Dry, wet			5,0	5,5	5,5	5,5	5,5	6,5			
<u>н</u> II: 80°С/50°С	concrete			3,5	4,0	4,0	4,0	4,0	4,5			
हिं हैं ।: 120°C/72°C		oncrete	τ	[N/mm²]	2,5	3,0	3,0	3,0	3,0	3,5		
<u>ਵ</u> ੱ ਫ਼ <u>I: 40°C/24°C</u>		^τ Rk,cr	[[[]]	4,0	5,5	5,5						
an be a li: 40°C/50°C li: 80°C/50°C li: 80	hole			3,0	4,0	4,0	No Performance Assesse					
III: 120°C/72°C				2,5	3,0	3,0						
Reduktion factor $\psi^0{}_{ extsf{sus}}$ in crac	ked and uncra	cked con	crete C2	0/25								
et 1: 40°C/24°C	Dry, wet					0,	73					
III: 40°C/24°C	concrete and flooded bore	Ψ^0 sus	[-]	0,65								
Ш: 120°C/72°C	hole					0,	57					
Increasing factors for concrete		Ψс	[-]			(f _{ck} / 2	20) ^{0,11}					
Characteristic bond resistance	depending on	τ	Rk,ucr =			Ψc • τ _{Rk,u}	cr(C20/25))				
the concrete strength class			τ _{Rk,cr} =			ψ c • τ _{Rk,0}	_{cr} (C20/25)					
Concrete cone failure												
Relevant parameter						see Ta	able C2					
Splitting failure				Г								
Relevant parameter						see Ta	able C2					
Installation factor							_					
for dry and wet concrete		γ _{inst}	[-]			1	,2	-				
for flooded bore hole		'11131	[]		1,4		∣ No Perf	ormance A	ssessed			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 5

²⁾ For CIS-M20 strength class 50 is valid

Internal threaded anchor rods				CIS-M6	CIS-M8	CIS-M10	CIS-M12	CIS-M16	CIS-M20				
Steel failure without lever arm ¹)												
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61				
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98				
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25						
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40					
Partial factor	$\gamma_{Ms,V}$	[-]			1,56			2,38					
Ductility factor		k ₇	[-]				1,0						
Steel failure with lever arm ¹⁾													
Characteristic bending moment, Steel, strength class	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325				
	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519				
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456				
Partial factor		γ _{Ms,V}	[-]		1,56								
Concrete pry-out failure													
Factor		k ₈	[-]	2,0									
Installation factor		γ _{inst}	[-]				1,0						
Concrete edge failure			'	•									
Effective length of fastener I _f [mm]					min	(h _{ef} ; 12 • d	nom)	min (h _{ef} ; 300mm					
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30					
Installation factor						1,0							

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 6

²⁾ For CIS-M20 strength class 50 is valid

		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
$N_{Rk,s}$	[kN]					۹ _s • f _{uk} 1)				
A _s	[mm²]	50	79	113	154	201	314	491	616	804	
γ _{Ms,N}	[-]					1, 4 ²⁾					
ure											
acked concre	ete C20/25										
		10	12	12	12	12	12	11	10	8,5	
										6,0	
TDI	[N/mm²]						6,5	6,0	5,0	4,5	
*RK,ucr	[14/11111]						No Performance				
							'				
<u> </u>		4,0	5,0	5,0	5,0	5,0					
ed concrete	: C20/25	1.0	.						0.5	0.5	
										6,5	
										4,5	
τ _{Rk cr}	[N/mm²]						3,0	3,0	3,5	3,5	
,							N	lo Perfo	ormano	e	
							Assessed				
⊔ I uncracked	concrete C		2,0	0,0	0,0	0,0					
Ψ ⁰ sus	[-]	0,65									
						0,57					
Ψc	[-]				$(f_C$	_k / 20) ⁽	0,11				
	τ _{Rk,ucr} =				ψ _c • τ _F	Rk,ucr(C	20/25)				
	τ _{Rk,cr} =				ψ _c • τ	Rk,cr(C	20/25)				
·											
					see	Table	C2				
					see	Table	C2				
		1,0				1.	2				
- γ _{inst}	[-]	,		1,4			N	lo Perfo	ormano	e	
	γMs,N lure acked concrete τRk,ucr τRk,cr tuncracked ψ ⁰ sus	$\begin{array}{c cccc} A_s & [mm^2] \\ \hline \gamma_{Ms,N} & [-] \\ \hline \end{tabular}$ $\begin{array}{c ccccc} \tau_{Rk,ucr} & [N/mm^2] \\ \hline \end{array}$ $\begin{array}{c ccccc} \tau_{Rk,cr} & [N/mm^2] \\ \hline \end{array}$ $\begin{array}{c ccccc} \tau_{Rk,cr} & [N/mm^2] \\ \hline \end{array}$ $\begin{array}{c ccccc} \tau_{Rk,cr} & [-] \\ \hline \end{array}$ $\begin{array}{c ccccc} \psi^0_{sus} & [-] \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

 $^{^{1)}\,\}mathrm{f}_{\mathrm{uk}}$ shall be taken from the specifications of reinforcing bars

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Reinforcing bar)	Annex C 7

²⁾ in absence of national regulation

Table C8: Characteristic values of shear loads under static and quasi-static action											
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]	0,50 • A _s • f _{uk} ¹⁾								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,52)								
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm	•										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor γ_{inst} [-] 1,0											

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

	I
Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic	
for concrete	
Performances	Annex C 8
Characteristic values of shear loads under static and quasi-static action	
(Reinforcing bar)	

²⁾ in absence of national regulation

Table C9: Displacements under tension load ¹⁾											
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete C20/25 under static and quasi-static action											
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II: 80°C/50°C	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-station	c action								
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
II. 00°C/F0°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219		0,170						
III. 420°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	. 4 5			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ Table C10:

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete	Cracked concrete C20/25 under static and quasi-static action										
All temperature ranges	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic
for concrete
Performances

Annex C 9

Displacements under static and quasi-static action (threaded rods)

Table C11: D	isplacemer	nts under tens	sion load	1)							
Internal threaded a	nchor rod		CIS-M6	CIS-M8	CIS-M10	CIS-M12	CIS-M16	CIS-M20			
Uncracked concrete	e C20/25 under	static and quasi	-static acti	on							
Temperature range δ _{N0} -factor [mm/(N/mm²)] 0,023 0,026 0,031 0,036 0,041 0,049											
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071			
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119			
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172			
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119			
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172			
Cracked concrete C	20/25 under st	atic and quasi-st	atic action								
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,090			0,070					
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170					
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245					
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170					
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245					

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacements under shear load¹ Table C12:

Internal threaded	d anchor rod	CIS-M6	CIS-M8	CIS-M10	CIS-M12	CIS-M16	CIS-M20			
Uncracked and cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04		
ranges	δ _{ν∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic	
for concrete	
Performances	

Annex C 10

Displacements under static and quasi-static action (Internal threaded anchor rod)

Table C13: Di	splaceme	ents under te	nsion	load ¹⁾	(rebar))								
Anchor size reinf	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Uncracked concre	Uncracked concrete C20/25 under static and quasi-static action													
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052			
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126			
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126			
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181			
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1									
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070						
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05				0,105						
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170						
range II: 80°C/50°C δ _{N∞} -factor [mm/(N/mm²)]		0,2	255				0,245							
Temperature	Temperature δ_{N0} -factor [mm/(N/mm ²)]		0,2	219				0,170						
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C14: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concre	quasi-s	tatic act	ion								
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	ler static and qu	asi-stat	ic action	ı						
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances	Annex C 11
Displacements under static and quasi-static action	
(Reinforcing bar)	

Tabl		racteristic formance o			sion lo	ad	s und	der se	eismi	c acti	ion							
	ded rod						M8	M10	M12	M16	M20	M24	M27	M30				
Steel fa			N.							1.0	N I							
	teristic tension resi	stance	N _{Rk,s,ed}	q,C1	[kN]	\vdash					N _{Rk,s}							
Partial	ਾactor ined pull-out and o	concrete failu	γMs,N	Y _{Ms,N} [-] see Tal							ble C1							
	cteristic bond resist			acked	concrete	e C2	20/25											
0	I: 40°C/24°C	D					2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5				
rang	II: 80°C/50°C	Dry, wet concrete								-	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
Temperature range	III: 120°C/72°C I: 40°C/24°C		TRk,eq,C	21	[N/mn	ո²]	1,3	1,6	2,0	2,0	2,0	2,0 2,1 2,4		2,4				
l adu		flooded bore				-	2,5 1,6	2,5	3,7	3,7		lo Perfo	ormano	e				
Ter	II: 80°C/50°C	hole						1,9	2,7	2,7		Asse						
Increase	sing factors for cond	crete	Ψς		[-]	_	1,3	1,0	2,0	2,0	 ,0							
Charac	cteristic bond resistation concrete strength of	ance dependir		τ	Rk,eq,C1	=			Ψc •	τ _{Rk,eq,}		0/25)						
Install	ation factor																	
for dry	and wet concrete					-	1,0				1,2							
for floo	ded bore hole		γinst		[-]			1	,4		^	lo Perfo Asse		e				
		acteristic formance o			1							Ma	,	Maa				
	aed rod failure without leve	or arm			M8	IVI	10 ľ	M12	M16	M20	M24	M2	<u> </u>	M30				
	cteristic shear resist	tanco	Rk,s,eq,C1	[kN]					0,70	· V ⁰ Rk	.s							
Partial	,		Ms,V	[-]						Γable C	·							
Factor	r for annular gap		^{//} gap	[-]					0,5	(1,0) ¹⁾								
	ue in brackets valid f nex A 3 is recommen	for filled annula	<u> </u>		ener and	i clea	arance	hole in	the fixt	ture. Us	e of spo	ecial fill	ing was	sher				
				10	CONC	Vin	docto	- DIC	\ <u>/ NI - </u>									
	tion system ICC oncrete ormances	ONS Vinyles	ster BIS-V	or IC	CONS	V 1113	yieste	er BIS-	·V Nor	dic	_	Anne	v C 4	2				

Table C17: Characteristic (performance of			n Ioa	ds un	der s	eismi	ic act	ion				
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure												
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]	$1.0 \cdot A_s \cdot f_{uk}^{1}$									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,42)					
Combined pull-out and concrete failu												
Characteristic bond resistance in uncra	cked and cra	cked con	crete C	20/25								
ይ <u>I: 40°C/24°C</u> Dry, wet	τ _{Rk, eq,C1}		2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
II: 80°C/50°C concrete			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
III: 120°C/72°C Concrete		[NI/mm2]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
1: 40°C/50°C 1: 80°C/50°C 1: 40°C/24°C 1: 80°C/50°C 1: 80°C/50°C 1: 40°C/50°C 1: 40°C/50°C 5: 4		Rk, eq,C1 ا	[N/mm²]	2,5	2,5	3,7	3,7	3,7		la Darf	ormono	
II: 80°C/50°C bore hole			1,6	1,9	2,7	2,7	2,7] "		ormanc	е	
III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0	Assessed				
Increasing factors for concrete	Ψc	[-]					1,0					
Characteristic bond resistance depending on the concrete strength class	τ _{RI}	_{k,eq,C1} =			Ų	^γ c • ^τ Rk	x,eq,C1(C20/25	5)			
Installation factor	•											
for dry and wet concrete			1,2				1	,2				
for flooded bore hole	γinst	[-]		•	1,4			١		ormanc essed	e	

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Reinforcing bar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm											
Characteristic shear resistance	$0.35 \cdot A_s \cdot f_{uk}^{2}$										
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor γ _{Ms,V} [-]				1,52)							
Factor for annular gap	0,5 (1,0) ³⁾										

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances	Annex C 13
Characteristic values of tension loads and shear loads under seismic action	
(performance category C1) (Reinforcing bar)	

²⁾ in absence of national regulation

²⁾ in absence of national regulation

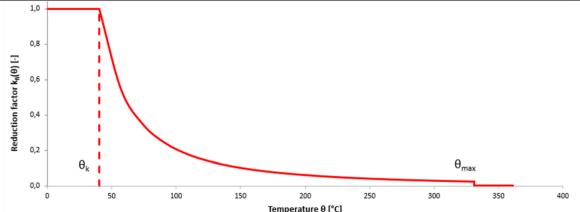

³⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C19: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

Threaded rod					М8	M10	M12	M16	M20	M24	M27	M30
Steel failure												
Characteristic tension			Fire	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
resistance; Steel, Stainless	N	[LLNI]	AVNOSUL	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
Steel A2, A4 and HCR, strength class 5.8 resp. 50	$N_{Rk,s,fi}$	[kN]	e ume	90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
and higher					0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

	Temperature θ [°C]												
Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]			$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$								
Steel failure without lever arm													
Characteristic shear resistance; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50			Fire	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2	
	V	[kN]	exposur	60	0,9	1,4	2,3	4,2	6,6	9,5 1	12,4	15,1	
	$V_{Rk,s,fi}$	נאואן	e time	90	0,7	1,0	1,6	3,0	4,7	6,7	8,7 10	10,7	
and higher			[min]	120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9	
Steel failure with lever arm	n												
Characteristic bending			Fire	30	1,1	2,2	4,7	12,0	23,4	40,4	59,9	81,0	
moment; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50 and higher	M0	[Nm		60	0,9	1,8	3,5	9,0	17,5	30,3	44,9	60,7	
	M ⁰ Rk,s,fi]	e time	90	0,7	1,3	2,5	6,3	12,3	21,3	31,6	42,7	
			[min]	120	0,5	1,0	1,8	4,7	9,1	15,7	23,3	31,5	

τ_{Rk,cr,(C20/25)} characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod)	Annex C 14

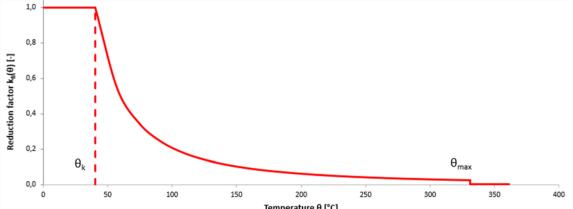


Table C20: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

Internal threaded anchor ro	CIS-M6	CIS-M8	CIS- M10	CIS- M12	CIS- M16	CIS- M20				
Steel failure										
Characteristic tension			Fire	30	0,3	1,1	1,7	3,0	5,7	8,8
resistance; Steel, Stainless Steel A4 and HCR, strength	N ₋ .	[LAI]	exposure	60	0,2	0,9	1,4	2,3	4,2	6,6
	$N_{Rk,s,fi}$	[kN]	time	90	0,2	0,7	1,0	1,6	3,0	4,7
class 5.8 and 8.8 resp. 70			[min]	120	0,1	0,5	0,8	1,2	2,2	3,4

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

Temperature reduction factor $k_{fi,p}(\theta)$ [-] $\frac{\theta < 21^{\circ}C}{21^{\circ}C \le \theta \le 331^{\circ}C}$ $\frac{589,7 \cdot \theta^{-1,726} \le 1,0}{\theta > 331^{\circ}C}$ 0,0

	Temperature θ [°C]													
Characteristic bond resistance for a given temperature (<i>θ</i>)	$\tau_{Rk,fi}(\theta)$	[N/mm²]				k _f	$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$							
Steel failure without lever a	Steel failure without lever arm													
Total Tital Tital Constitution (Fire	30	0,3	1,1	1,7	3,0	5,7	8,8				
	$V_{Rk,s,fi}$	[LAI]	exposure time [min]	60	0,2	0,9	1,4	2,3	4,2	6,6				
		[kN]		90	0,2	0,7	1,0	1,6	3,0	4,7				
class 5.8 and 8.8 resp. 70				120	0,1	0,5	0,8	1,2	2,2	3,4				
Steel failure with lever arm														
Characteristic handing			Fire	30	0,2	1,1	2,2	4,7	12,0	23,4				
Characteristic bending moment; Steel, Stainless	N40	[NIm]	ovnosuro	60	0,2	0,9	1,8	3,5	9,0	17,5				
Steel A4 and HCR, strength class 5.8 and 8.8 resp. 70	M ⁰ Rk,s,fi	[Nm]	time	90	0,1	0,7	1,3	2,5	6,3	12,3				
			[min]	120	0.1	0.5	1.0	1.8	4.7	9.1				

¹⁾ $\tau_{Rk,cr,(C20/25)}$ characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod)	Annex C 15

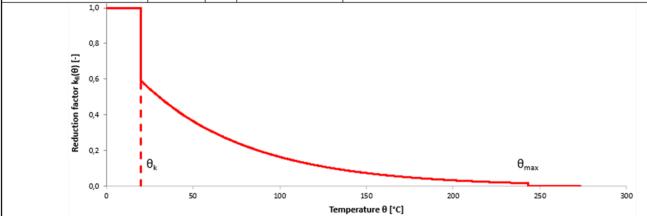


Table C21: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

Reinforcing bar						Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure														
Characteristic tension resistance; BSt 500			Fire	30	0,5	1,2	2,3	3,1	4,0	6,3	9,0	9,8	12,3	16,1
	N	[LAI]	avnosura	60	0,5	1,0	1,7	2,3	3,0	4,7	6,8	7,4	9,2	12,1
	$N_{Rk,s,fi}$	[kN]	une	90	0,4	0,8	1,5	2,0	2,6	4,1	5,9	6,4	8,0	10,5
			[min]	120	0,3	0,6	1,1	1,5	2,0	3,1	4,5	4,9	6,2	8,0

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

Temperature reduction factor $\begin{vmatrix} k_{fi,p}(\theta) & | [-] \end{vmatrix} = \begin{vmatrix} \theta < 21^{\circ}C & 1,0 \\ 21^{\circ}C \leq \theta \leq 243^{\circ}C & 0,81 \cdot e^{-0,016 \cdot \theta} \leq 1,0 \\ \theta > 243^{\circ}C & 0,0 \end{vmatrix}$

Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]				$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$								
Steel failure without lever arm														
Characteristic shear			Fire	30	0,5	1,2	2,3	3,1	4,0	6,3	9,0	9,8	12,3	16,1
	\/	[LAI]	exposure	60	0,5	1,0	1,7	2,3	3,0	4,7	6,8	7,4	9,2	12,1
resistance; BSt 500	$V_{Rk,s,fi}$	[kN]	lille	90	0,4	0,8	1,5	2,0	2,6	4,1	5,9	6,4	8,0	10,5
			[min]	120	0,3	0,6	1,1	1,5	2,0	3,1	4,5	4,9	8,0 1	8,0
Steel failure with lever arm														
			F:	30	0,6	1,8	4,1	6,5	9,7	18,8	32,6	36,8	51,7	77,2
			Fire		0.5	4.5	2.4	4.0	7.0	444	04.4	07.0	20.0	E7.0

	I	I	Fire		,	_ ′		,	,	,	_ ′	,	,	
Characteristic bending	N40	[Nm]	exposure	60	0,5	1,5	3,1	4,8	7,2	14,1	24,4	27,6	38,8	57,9
moment; BSt 500	M ⁰ Rk,s,fi		time [min]	90	0,4	1,2	2,6	4,2	6,3	12,3	21,2	23,9	33,6	50,2
				120	0,3	0,9	2,0	3,2	4,8	9,4	16,3	18,4	25,9	38,6
1) - shared exists band registered for expelled concrete for experts of transitions C20/25 for the relevant														

 $^{^{1)}}$ $\tau_{Rk,cr,(C20/25)}$ characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

Injection system ICCONS Vinylester BIS-V or ICCONS Vinylester BIS-V Nordic for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (reinforcing bar)	Annex C 16