

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0587 of 25 August 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

R-SLX

Mechanical fasteners for use in concrete

RAWLPLUG S.A. Kwidzynska 6 **51-416 WROCLAW POLEN**

Manufacturing Plant No.22

18 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-25/0587

English translation prepared by DIBt

Page 2 of 18 | 25 August 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 25 August 2025

Specific Part

1 Technical description of the product

The Concrete Screw R-SLX of sizes 8, 10 and 12 mm is an anchor made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B3 und C1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3
Displacements (static and quasi-static loading)	See Annex C2 and C4
Characteristic resistance for seismic performance categorie C1	See Annex C5
Characteristic resistance and displacements for seismic performance categorie C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C6 and C7

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-25/0587

English translation prepared by DIBt

Page 4 of 18 | 25 August 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

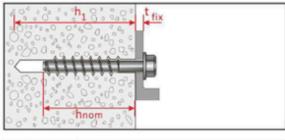
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

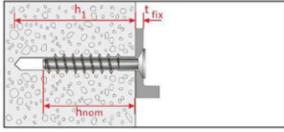
The system to be applied is: 1

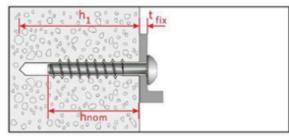
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

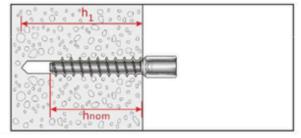
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 25 August 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Tempel


Product in the installed condition


Stainless steel


Hexagon Head: R-SLX-HF Size: 8,10,12

Countersunk Head:R-SLX-CS Size:8,10

Pan Head: R-SLX-P Size:8,10

Hanger Bolt: R-SLX-I Size: 10, M12

R-SLX

Product description

Installed condition

Annex A1

Table A1: Materials and screw types

Name				Mate	rial			
Screw anchor	Head marking	material						
	R-SLX	Stainless	steel 1.4	401, 1.44	04			
				8		1	0	12
	Anchor size / head	d types		HF	CS P	HF I	CS P	HF
	Nominal value of characteristic yield strength		k N/mm²	640	432	640	432	640
	Nominal value of characteristic tens strength		k N/mm²	800	540	800	540	800
	Elongation at rupt	ure A	s [%]			≤8		
		(S) (a)			1)		washer hea	
	****	\$ 104 104 E	ğ		2)	Counters R-SLX-CS	unk head size 8,10	
	****	(2) 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	010		3)	Pan head		
							· =67	

R-SLX	
Product description Materials and screw types	Annex A2

Hanger Bolt head

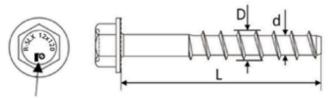

4) R-SLX-I size 10 with M12 internal thread

Table A2: Dimensions and markings

Anchor size				8		12	
Head type		HF, P	cs	HF, P, I	cs	HF	
Embedment depth	h _{nom}	[mm]	85	85	100	100	120
l anoth of anchor	min L	[mm]	90	95	105	110	125
Length of anchor	max L	[mm]	15	0	150		150
Thread diameter	D	[mm]	9,9		12,5		14,3
Core diameter	d	[mm]	7,4		9,4		11,3
Thread pitch	р	[mm]	5,8		7,	8,1	

Stainless Steel

Reverse Locking Serrations

Head marking: Identifying mark of producer: R-SLX Nominal size: e.g. 12mm

Length L: 120mm

R-SLX	_
Product description Dimensions and markings	Annex A3

Intended use

Anchorages subject to:

- · Static and quasi-static loads
- Seismic action for performance category C1
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021
- · Uncracked or cracked concrete

Use conditions (Environmental conditions)

- Anchorages subject to dry internal conditions: all screw types
- For all other conditions corresponding to corrosion resistance classes CRC III according to EN 1993-1-4:2006 + A1:2015:
 all screw types

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- · Anchorages are designed for design method A in accordance with:
 - EN 1992-4: 2018 in addition with Technical Report TR 055, Edition February 2018

Installation:

- Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- · After installation further turning of the anchor shall not be possible.
- The head of the anchor must be fully engaged on the fixture and show no signs of damage.

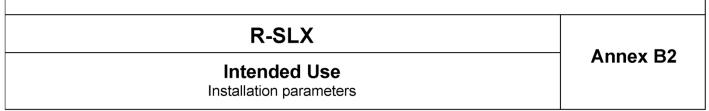

R-SLX
Intended Use
Specifications
Annex B1

Table B1: Installation parameters

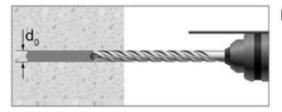
Anchor size	Anchor size				8				10				
Head type	HF	cs	Р	HF	1	cs	Р	HF					
Diameter of drill bit		8				12							
Embedment depth	h _{nom}	[mm]		85			10	00		120			
Min. hole depth in concrete	h₁≥	[mm]		95			11	10		130			
Effective anchorage depth	hef	[mm]		51,9		58,7				75,6			
Clearance hole	d _f	[mm]	1	11			1	3		15			
Thickness of fixture	trix	[mm]	5-65	10-65	5-65	5-50	5-50	10-50	5-50	5-30			
Installation torque	Tinst	[Nm]	_1)	_1)	_1)	_1)	_1)	_1)	_1)	_1)			
Wrench size (types: HF, I)	ws	[mm]	13	-	-	17 19				19			
Torx size (types: CS, P)	TX	-:	- 45 50				0	- 21					
Max. torque moment, machine setting	T _{max} ≤	[Nm]	120	120	120	185	185	185	185	185			

¹⁾ For the installation of the CS and P head types only impact screw driver can be used.

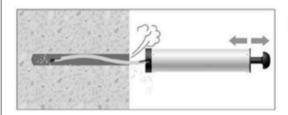
Table B2: Minimum thickness of member, Minimum spacing and edge distance

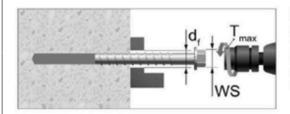
Anchor size			8	10	12
Head type			HF, CS, P	HF, CS, P, I	HF
Minimum member thickness	h _{min}	[mm]	125	140	170
Minimum edge distance	Cmin	[mm]	50	60	70
Minimum spacing	Smin	[mm]	50	60	70

R-SLX

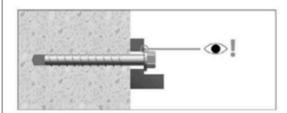

Intended Use

Minimum member thickness, minimum edge distance and anchor spacing


Annex B3


Installation instruction

Drill the hole to the bore hole depth h₁.



Clean the hole.

Screw in the anchor by using a torque wrench or an impact screw driver.

In case of using torque wrench: T_{inst} acc. to Table B1. In case of using impact screw driver: T_{max} acc. to Table B1 WS= Wrench Size

Control of complete setting, full contact of screw head with fixture part.

R-SLX	
Intended Use Installation Instruction	Annex B4

Table C1: Characteristic resistance under tension loading, Design method A

Anchor size				8			1	0		12
Head type			HF	cs	Р	HF	1	cs	Р	HF
Embedment depth h _{nom} [mm]				85			10	00		120
		Steel f	ailure							
Characteristic resistance	N _{Rk,s}	[kN]	33,0	22,3	22,3	53,7	53,7	36,2	36,2	78,1
Partial safety factor	γ _{Ms} 1)	[-]		1,5			1	,5		1,5
		Pull-out	failur	9						
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	7,0	4,5	4,0	7,0	7,0	7,0	7,0	16,0
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	9,0	5,5	4,0	16,0	16,0	10,0	7,0	25,0
Increasing factors for		C30/37				1	,22			
$N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_c$	Ψο	C40/50	1,41							
in cracked or uncracked concrete	-	C50/60				1	,58			
Installation factor	Yinst	[-]		1,4			1	,0		1,2
		Concrete c	one fa	ilure						
Effective anchorage depth	hef	[mm]		51,9			58	3,7		75,6
Characteristic edge distance	C _{cr,N}	[mm]	1,5hef							
Characteristic spacing	S _{cr,N}	[mm]	3hef							
Factor for cracked concrete	k cr	[-]	7,7							
Factor for uncracked concrete	kucr	[-]	11,0							
		Splitting	failur	е						
Characteristic edge distance for splitting	C _{cr,sp}	[mm]				1	,5h _{ef}			
Characteristic anchor spacing for splitting	S _{cr,sp}	[mm]				;	3h _{ef}			

¹⁾ In absence of other national regulations.

R-SLX	_
Performance Characteristic values under tension loading	Annex C1

Table C2: Displacements under tension loads for uncracked and cracked concrete

Anchor	Embedment	Material	Head type	Concrete	Tension load	Displacement		
size	depth	Material	ricua type	Concrete	N	δηο	δ _N	
[-]	[mm]	[-]	[-]	[-]	[kN]	[mm]	[mm]	
			HF		1,5			
8	85	1	CS		1,5	0,1	0,8	
			P		1,4			
10		Stainless	HF/I	cracked				
	100	Steel	CS	C20/25	3,3	0,2	1,0	
			Р] [
12	120		HF		4,8	0,3	1,2	
			HF		3,1	0,1		
8	85		CS	1 1	1,8		0,8	
		Stainless P uncracked	1,4					
			HF/I		7,6	0,1	1,0	
10	100	Steel	CS	C20/25	4,8			
			Р] [3,3			
12	120		HF		9,9	0,3	1,2	

R-SLX	
Performance Displacements under tension loading	Annex C2

Table C3: Characteristic resistance under shear loading, Design method A

Anchor size			8		1	12		
Head type	HF	CS P	HF I	CS P	HF			
Embedment depth	h _{nom}	[mm]	8	35	10	00	120	
Effective embedment depth	hef	[mm]	51	1,9	58	3,7	75,6	
		Steel f	ailure witho	out lever am	n			
Characteristic resistance	V _{Rk,s}	[kN]	16,5	11,2	26,8	18,1	39,0	
Factor for groups	k ₇	[-]			0,8			
Partial safety factor	γMs 1)	[-]	1,25 1,25				1,25	
	-	Stee	l failure with	h lever arm				
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	35,9	24,2	74,4	50,2	130.6	
Partial safety factor	γMs 1)	[-]	1,	25	1,3	25	1,25	
		Co	ncrete pryo	ut failure				
k-factor	k ₈	[-]		1	,0		2,0	
Installation factor	Yinst	[-]	1,0					
		Co	oncrete edg	e failure				
Effective length of anchor	$I_f = h_{ef}$	[mm]	50,6	51,9	58,1	58,7	75,6	
Effective diameter of anchor	d _{nom}	[mm]	7,25 9,24			,24	11,15	
Installation factor	Yinst	[-]			1,0			

¹⁾ In absence of other national regulations.

R-SLX	_
Performance Characteristic values under shear loading	Annex C3

Table C4: Displacements under shear loads for uncracked and cracked concrete

Anchor	Embedment				Shear load	Displacement		
size	depth Material Head type Concre	Concrete	٧	δνο	δν∞			
[-]	[mm]	[-]	[-]	[-]	[kN]	[mm]	[mm]	
			HF		9,4	1,8	2,7	
8	85		CS		6,4			
		Stainless	Р	Cracked and				
		steel	HF/I		15,3			
10	100	31001	CS	uncracked				
		1	Р	C20/25	10,3			
12	120		HF		22,3			

R-SLX	
Performance Displacements under shear loading	Annex C4

Table C5: Characteristic values for seismic actions C1

Anchor size	Anchor size						10		12	
Head type			HF	cs	Р	HF	cs	P	HF	
Embedment depth h _{nom} [mm]				85			100		120	
	Steel fail	ure for ten	sion ar	nd she	ar load					
Characteristic resistance	NRk,s,C1	[kN]	33,0	22,3	22,3	53,7	36,2	36,2	78,1	
Partial safety factor	γMs,N	[-]				1	,4			
Characteristic resistance	V _{Rk,s,C1}	[kN]	11,5	11,5	11,2	18,5	18,5	18,1	26,5	
Partial safety factor	γMs,∨	[-]				1	,5			
		Pull-ou	t failur	е						
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	6,0	6,0 4,5 4,0 7,0			16,0			
		Concrete o	cone fa	ilure						
Effective embedment depth	h _{ef}	[mm]		51,9			58,7		75,6	
Edge distance	C _{cr,N}	[mm]				1,5	5h _{ef}			
Spacing	Scr,N	[mm]				3	h _{ef}			
Robustness	γinst	[-]		1.4			1.0		1.2	
	(Concrete p	ryout fa	ailure						
Pry-out factor	k ₈	[-]				1.0			2.0	
		Concrete e	edge fa	ilure						
Effective length of fastener	$I_f = h_{ef}$	[mm]		51,9 58,7			75,6			
Outside diameter of fastener	d _{nom}	[mm]		8			10		12	

R-SLX	
Performance Characteristic values for seismic actions C1	Annex C5

Table C6: Characteristic tension resistance values for resistance to fire

Anchor size				8	3	10	12
Head type		HF CS	Р	HF CS P	HF		
Embedment depth [mm]				8	35	100	120
	_		Ste	el failure			
	R30	N _{Rk,s,fi}	[kN]	0),8	1,7	2,9
Ob are staristic registeres	R60	N _{Rk,s,fi}	[kN]	C	,7	1,3	2,4
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0	,5	1,0	2,0
	R120	N _{Rk,s,fi}	[kN]	0	,4	0,9	1,6
			Pull-	out failure			
	R30		[kN]			1,8	
Characteristic resistance in	R60	N _{Rk,p,fi}		1,1	1,0		3,0
concrete ≥ C20/25	R90						
	R120	N _{Rk,p,fi}	[kN]	0,9	0,8	1,4	2,4
			Concrete	cone fail	ure		
	R30		[kN]	3,3		4,5	
Characteristic resistance in	R60	N ⁰ Rk,c,fi					8,6
concrete ≥ C20/25	R90	1					
	R120	N ⁰ Rk,c,fi	[kN]	2,7		3,6	6,8
Effective embedment depth		h _{ef}	[mm]	51,9		58,7	75,6
Minimum member thickness		h _{min}	[mm]	1:	25	140	170
Cassina		Scr,N,fi	[mm]			4h _{ef}	
Spacing		Smin	[mm]	50		60	70
Edge distance		C _{cr} ,N,fi	[mm]			2h _{ef}	
Fire exposure from one side	only	Cmin	[mm]	5	60	60	70
Fire exposure from more that side	n one					≥ 300 mm	

R-SLX	4
Performance Characteristic values for resistance to fire (tension)	Annex C6

Table C7: Characteristic shear resistance values for resistance to fire

Anchor size				8	10	12	
Head type				all	all	all	
Embedment depth [mm]				85	100	120	
		Steel	failure with	hout level arm			
	R30	V _{Rk,s,fi}	[kN]	8,0	1,7	2,9	
Ob a restantation resistance	R60	V _{Rk,s,fi}	[kN]	0,7	1,3	2,4	
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	0,5	1,0	2,0	
	R120	V _{Rk,s,fi}	[kN]	0,4	0,9	1,6	
		Ste	el failure w	ith level arm			
Characteristic resistance	R30	M ⁰ _{Rk,p,fi}	[Nm]	0,9	2,3	4,9	
	R60	M ⁰ Rk,p,fi	[Nm]	0,7	1,9	4,0	
	R90	M ⁰ Rk,p,fi	[Nm]	0,5	1,5	3,3	
	R120	M ⁰ Rk,p,fi	[Nm]	0,45	1,3	2,6	
			Pry-out	failure			
k ₈			[-]		1	2	
	R30						
	R60	V _{Rk,cp,fi}	[kN]	3,3	4,5	17,1	
Characteristic resistance	R90						
	R120	V _{Rk,cp,fi}	[kN]	2,7	3,6	13,7	
		C	concrete ed	lge failure			
Characteristic resistance	≤ R90	V _{Rk,c,fi}	[kN]	V	O _{Rk,c,fi} = 0.25 * VO _{Rk,c}	, 1)	
Characteristic resistance	R120	V _{Rk,c,fi}	[kN]	٧	O _{Rk,c,fi} = 0.20 * VO _{Rk,c}	, 1)	

V⁰_{Rk,c} = characteristic resistance for concrete edge failure in cracked concrete C20/C25 under normal temperature calculated according to EN 1992-4.

R-SLX	
Performance Characteristic values for resistance to fire (shear)	Annex C7