

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0621 of 30 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Wedge Anchor BZ1

Mechanical fastener for use in concrete

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach **GERMANY**

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

16 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-25/0621

English translation prepared by DIBt

Page 2 of 16 | 30 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z190915.25 8.06.01-236/25

Page 3 of 16 | 30 September 2025

Specific Part

1 Technical description of the product

The Wedge Anchor BZ1 is a fastener made of galvanized steel, which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Characteristic resistance for seismic performance category C1 and C2	See Annex C 3
Displacements	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	See Annex C 5			

3.3 Aspects of durability

Essential characteristic	Performance			
Durability	See Annex B 1			

Z190915.25 8.06.01-236/25

European Technical Assessment ETA-25/0621

English translation prepared by DIBt

Page 4 of 16 | 30 September 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

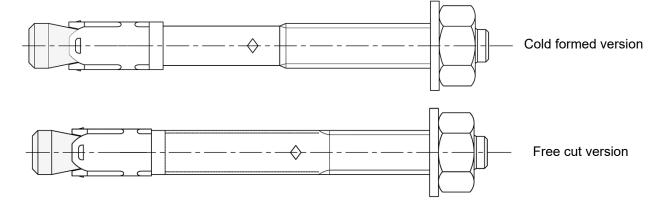
In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

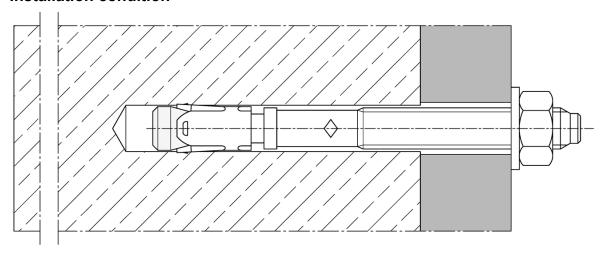
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 September 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Ziegler

Z190915.25 8.06.01-236/25



Wedge Anchor BZ1

M8 to M20

Installation condition

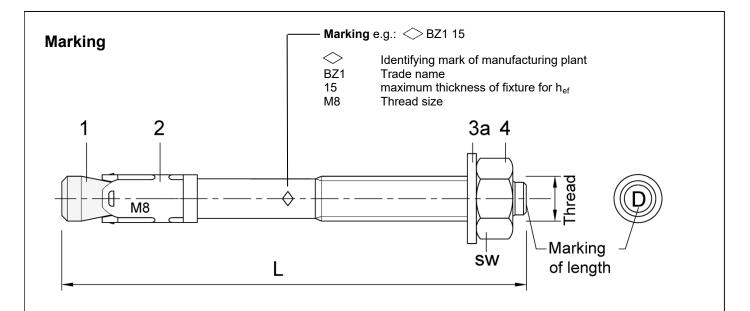


Table A1: Material

No.	Part	BZ1
NO.	rait	Steel, zinc plated
1	Conical bolt	Cold formed or machined steel, galvanized ≥ 5 µm, Cone plastic coated
2	Expansion sleeve	Stainless steel (e.g. material number 1.4301 or 1.4401 according to EN 10088-1:2023)
3a	Washer	Stool zine plated, galvenized > 5 um
3b	Filling Washer	Steel, zinc plated, galvanized ≥ 5 µm
4	Hexagon nut	Steel, galvanized ≥ 5 µm, coated

Wedge Anchor BZ1	
Product description Fastener, installation condition, material	Annex A 1

Table A2: Length identification

Marking of length	C (c)	D (d)	E (e)	F (f)	G (g)	H (h)	l (i)	J (j)	K (k)	L (I)	M (m)	N (n)
Length of anchor min ≥	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Length of anchor max <	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2	215,9

Marking of length	O (o)	P (p)	Q (q)	R (r)	S (s)	T (t)	U (u)	V (v)	W (w)	X (x)	Y (y)	Z (z)
Length of anchor min ≥	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2
Length of anchor max <	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	483,0

Table A3: Fastener dimensions

Fastener size		M8	M10	M12	M16	M20
Conical bolt	Thread	M8	M10	M12	M16	M20
Length of anchor	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}
Thickness of filling washer	t [mm]	5	5	5	5	5
Hexagon nut	SW	13	17	19	24	30

Dimensions in mm

Filling washer VS with reducing adapter

Alternate filling washer

Wedge Anchor BZ1	
Product description Marking and dimensions	Annex A 2

Specifications of intended use

Wedge Anchor BZ1		M8	M10	M12	M16	M20		
Steel, galvanized			✓					
Static or quasi-stat	ic action	✓						
Coincia action 1)	Category C1	√						
Seismic action 1)	Category C2	_ 2)	✓	✓	✓	✓		
Fire exposure		✓						

- 1) only cold formed anchors
- 2) no performance assessed

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021
- Cracked or uncracked concrete

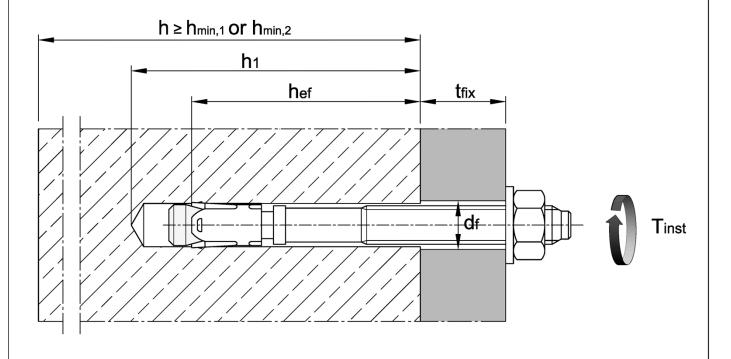
Use conditions (Environmental conditions):

• Structures subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Design method EN 1992-4:2018

Installation:


- · Hole drilling by hammer drill bit or vacuum drill bit
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site
- Optionally, the annular gap between fixture and stud of the BZ1 can be filled to reduce the hole clearance. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 40 N/mm² (e.g. Injection System VMZ, VMU plus or VMH)

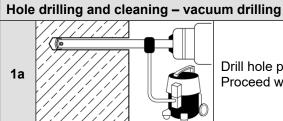
Wedge Anchor BZ1	. 5.
Intended Use	Annex B 1
Specifications	

Table B1: Installation parameters

Fastener size			M8	M10	M12	M16	M20
Nominal drill hole diameter	d_0	[mm]	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55
Installation torque	T _{inst}	[Nm]	20	25	45	90	160
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	9	12	14	18	22
Depth of drill hole	h₁ ≥	[mm]	60	75	90	110	125
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100

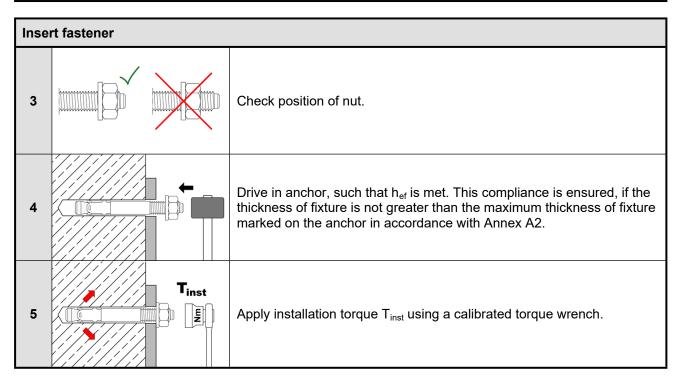
Wedge Anchor BZ1	
Intended Use Installation parameters	Annex B 2

Table B2: Minimum spacing and edge distance


Fastener size			M8	M10	M12	M16	M20
Standard thickness of co	ncrete mer	nber					
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200
Cracked concrete							•
Minimum angoing	S _{min}	[mm]	40	45	60	60	95
Minimum spacing	for c ≥	[mm]	70	70	100	100	150
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95
willillindin edge distance	for $s \ge$	[mm]	80	90	140	180	200
Uncracked concrete							
Minimum spacing	S _{min}	[mm]	40	45	60	65	90
willimani spacing	for c ≥	[mm]	80	70	120	120	180
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130
wiiriimam eage alotanee	for s ≥	[mm]	100	100	150	150	240
Minimum thickness of co	ncrete mer	mber					
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	_1)
Cracked concrete							
Minimum angoing	S _{min}	[mm]	40	45	60	70	_1)
Minimum spacing	for c ≥	[mm]	70	90	100	160	_1)
Minimum edge distance	C _{min}	[mm]	40	50	60	80	_1)
willillitiditi edge distance	for $s \ge$	[mm]	80	115	140	180	_1)
Uncracked concrete							
Minimum spacing	S _{min}	[mm]	40	60	60	80	_1)
	for c≥	[mm]	80	140	120	180	_1)
Minimum edge distance	C _{min}	[mm]	50	90	75	90	_1)
	for s ≥	[mm]	100	140	150	200	_1)
Fire exposure from one si	ide						
Minimum spacing	Sm	_{in,fi} [mm]		see normal ambient temperature			
Minimum edge distance	C _m			see norn	nal ambient te	mperature	
Fire exposure from more	than one s	ide					
Minimum spacing	S _m	in,fi [mm]		see norn	nal ambient te	mperature	
Minimum edge distance	Cmi				≥ 300 mm		

¹⁾No performance assessed Intermediate values by linear interpolation

Wedge Anchor BZ1	
Intended Use Minimum spacing and edge distance	Annex B 3



Installation instructions

Drill hole perpendicular to concrete surface. Proceed with **step 3**.

The drilling and cleaning – hammer drilling Drill hole perpendicular to concrete surface. Blow out dust. Alternatively vacuum clean down to the bottom of the hole.

Wedge Anchor BZ1	
Intended Use Installation instructions	Annex B 4

Installation instructions - continuation

Inse	rt fastener with filling of ann	ular gap
3a		Check position of nut.
3b		Fit the filling washer to the fastener. The thickness of the filling washer must be taken into account with t_{fix} .
4		Drive in fastener with filling washer, such that $h_{\rm ef}$ is met. This compliance is ensured, if the thickness of fixture is 5mm smaller than the maximum thickness of fixture marked on the fastener in accordance with Annex A2.
5	T _{inst}	Apply installation torque T _{inst} using a calibrated torque wrench.
6		Fill the annular gap between stud and fixture with high strength mortar with compressive strength ≥ 40 N/mm² (e.g. VMH, VMZ or VMU plus). Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

Wedge Anchor BZ1	
Intended Use Installation with filling of annular gap	Annex B 5

Table C1: Characteristic resistance to tension load

						M20
γ _{inst}	[-]			1,0		
$N_{Rk,s}$	[kN]	16	27	40	60	86
•	[-]	1,	53	1	.5	1,6
71110		<u> </u>			<u> </u>	,
$N_{Rk,p,ucr}$	[kN]	12	16	25	35	50
$N_{Rk,p,cr}$	[kN]	5	9	16	25	36
plitting fail	ure Nº	_{Rk,c} has to be	replaced by	$N^0_{Rk,sp}$ with c	onsideratio	n of the
h _{min,1} ≥	[mm]	100	120	140	170	200
					T	
$N^0_{Rk,sp}$	[kN]	9	12	20	30	40
C _{cr,sp}	[mm]	1,5 h _{ef}				
S _{cr,sp}	[mm]	3 h _{ef}				
			I	T	T	
$N^0_{Rk,sp}$	[kN]	12	16	25	35	50
C _{cr,sp}	[mm]					2,2 h _{ef}
S _{cr,sp}	[mm]		4	h _{ef}		4,4 h _{ef}
of conci	rete me	ember				
h _{min,2} ≥	[mm]	80	100	120	140	no
$N^0_{Rk,sp}$	[kN]	12	16	25	35	performanc assessed
C _{cr,sp}	[mm]		•	2,5 h _{ef}		<u>'</u>
S _{cr,sp}	[mm]			5 h _{ef}		
Ψc	[-]			$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$		
h _{ef}	[mm]	46	60	70	85	100
C _{cr,N}	[mm]			1,5 h _{ef}		
O1,1 V				,		
	$N_{Rk,s}$ γ_{Ms} $N_{Rk,p,ucr}$ $N_{Rk,p,cr}$ splitting fail of concrete nearly inte $h_{min,1} \ge$ $N^0_{Rk,sp}$ $C_{cr,sp}$ $S_{cr,sp}$	$\begin{array}{c c} N_{Rk,s} & [kN] \\ \gamma_{Ms} & [-] \\ \hline \\ N_{Rk,p,ucr} & [kN] \\ \hline \\ N_{Rk,p,cr} & [kN] \\ \hline \\ N_{Rk,sp} &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ In absence of other national regulations.

Wedge Anchor BZ1	
Performance Characteristic resistance to tension load	Annex C 1

Table C2: Characteristic resistance to shear load

Fastener size			M8	M10	M12	M16	M20
Installation factor	γinst	[-]			1,0		
Steel failure without lever arm							
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]	8,5	14,1	21,0	38,5	48,3
Partial factor 1)	γ̃Ms	[-]		1,3	25		1,33
Ductility factor	k ₇	[-]			1,0		
Steel failure with lever arm							
Characteristic bending resistance	${\sf M^0}_{\sf Rk,s}$	[Nm]	16,1	32,9	57,4	151,2	254,1
Partial factor 1)	γMs	[-]		1,25			
Concrete pry-out failure							
Pry-out factor	k ₈	[-]	1,0 2,0				
Concrete edge failure							
Effective length of fastener in shear loading	l _f	[mm]	46	60	70	85	100
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20

¹⁾ In absence of other national regulations.

Wedge Anchor BZ1	
Performance Characteristic resistance to shear load	Annex C 2

Table C3: Characteristic resistance for seismic performance category C1 and C2

Fastener s	size			M8	M10	M12	M16	M20
Tension lo	pads		'		'	•	•	'
Installation	factor	γinst	[-]			1,0		
Steel failur	re							
Characteris	stic resistance C1	N _{Rk,s,C1}	[kN]	16	27	40	60	86
Characteris	stic resistance C2	N _{Rk,s,C2}	[kN]	_ 2)	27	40	60	86
Partial factor	or ¹⁾	γ̃Ms	[-]	1,	53	1	,5	1,6
Pull-out								
Characteris	stic resistance C1	$N_{Rk,p,C1}$	[kN]	5	9	16	25	36
Characteris	stic resistance C2	$N_{Rk,p,C2}$	[kN]	_ 2)	3,6	10,2	13,8	24,4
Shear load	is							
Steel failur	re without lever arm							
Characteris	stic resistance C1	V _{Rk,s,C1}	[kN]	4,7	10,0	13,5	22,0	34,5
Characteris	stic resistance C2	$V_{Rk,s,C2}$	[kN]	_ 2)	7,0	8,1	17,9	27,6
Partial factor ¹⁾ γ _{Ms} [-]		[-]	1,25				1,33	
Factor for annular gap	without filling of annular gap	$lpha_{\sf gap}$	[-]			0,5		
	with filling of annular gap	$lpha_{\sf gap}$	[-]			1,0		

¹⁾ In absence of other national regulations.

Wedge Anchor BZ1	
Performance Characteristic resistance to seismic performance category C1 and C2	Annex C 3

²⁾ No performance assessed

Table C4: Displacements

Fastener size	М8	M10	M12	M16	M20		
Displacement under ten	sion load				•	'	1
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9
	$\delta_{N^{\infty}}$	[mm]	1,4	1,2	1,4	1,3	1,0
Tension load in uncracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4
	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,4	0,8	0,8
Displacements under seis	mic tension	load C2					
Displacements for DLS	$\delta_{\text{N,C2,(DLS)}}$	[mm]	_ 1)	4,1	4,9	3,6	5,1
Displacements for ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	_ 1)	13,8	15,7	9,5	15,2
Displacement under she	ar load			·			
Shear load in cracked and uncracked concrete	V	[kN]	4,8	8,0	12,2	22,0	25,8
Displacement	δ_{V0}	[mm]	1,4	2,2	2,5	2,5	1,3
	$\delta_{V^{\infty}}$	[mm]	2,1	3,3	3,9	3,7	1,9
Displacement under seisn	nic shear loa	nd C2					
Displacements for DLS	$\delta_{V,C2(DLS)}$	[mm]	_ 1)	1,4	1,8	2,2	2,4
Displacements for ULS	$\delta_{V,C2(ULS)}$	[mm]	_ 1)	2,7	4,8	4,8	5,1

¹⁾ No performance assessed

Wedge Anchor BZ1	
Performance	Annex C 4
Displacements	

Table C5: Characteristic resistance to fire

Fastener size				M8	M10	M12	M16	M20
Tension load								ı
Steel failure								
Characteristic resistance	R30	- - N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1	4,9
	R60			0,3	0,8	1,3	2,4	3,7
	R90			0,3	0,6	1,1	2,0	3,2
	R120			0,2	0,5	0,8	1,6	2,5
Shear load								
Steel failure wit	thout lever ar	m						
Characteristic resistance	R30	-	[kN]	0,4	0,9	1,7	3,1	4,9
	R60			0,3	0,8	1,3	2,4	3,7
	R90	$V_{Rk,s,fi}$		0,3	0,6	1,1	2,0	3,2
	R120			0,2	0,5	0,8	1,6	2,5
Steel failure wit	th lever arm							
Characteristic resistance	R30	- N A O	[Nima]	0,4	1,1	2,6	6,6	13,0
	R60			0,3	1,0	2,0	5,0	9,7
	R90	$M^0_{Rk,s,fi}$	[Nm]	0,3	0,7	1,7	4,3	8,4
	R120			0,2	0,6	1,3	3,3	6,5

Wedge Anchor BZ1	
Performance Characteristic resistance to fire	Annex C 5