

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-25/0854 of 25 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Concrete Screw BSZ2 for masonry

Screw anchor for use in masonry

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

GERMANY

MKT Herstellwerk 5, D

30 pages including 3 annexes which form an integral part of this assessment

EAD 330460-00-0604, edition 08/2022

European Technical Assessment ETA-25/0854

English translation prepared by DIBt

Page 2 of 30 | 25 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 30 | 25 September 2025

Specific Part

1 Technical description of the product

The Concrete Screw BSZ2 for masonry is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to steel failure of a single screw anchor under tension loading	N _{Rk,s} see Annex C1		
Characteristic resistance to steel failure of a single screw anchor under shear loading	V _{Rk,s} [kN], M ⁰ _{Rk,s} see Annex C1		
Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under	N _{Rk,p} , N _{Rk,b} , N _{Rk,p,c} , N _{Rk,b,c} see Annex B5, C3, C7, C11, C15		
tension loading	$lpha_{\text{j,N}}$ see Annex C3, C7, C11, C15		
Characteristic resistance to local brick failure and brick edge failure of a single screw anchor under	$V_{Rk,b,II}, V_{Rk,b,\perp}, V_{Rk,c,II}, V_{Rk,c,\perp}$ see Annex B5, C3, C7, C11, C15		
shear loading	see Annex C3, C7, C11, C15		
Characteristic resistance to brick breakout failure of a screw anchor group under tension loading	N_{Rk}^g see Annex B5		
	$\alpha_{g,N}$ see Annex B5, C2, C6, C10, C14		
Characteristic resistance to local brick failure and brick edge failure of a screw anchor group under	$V_{R^g_{k,II}}, V_{R^g_{k,\perp}}$ see Annex B5		
shear loading	$\alpha_{\text{g,VII}}, \alpha_{\text{g,V}\perp}$ see Annex B5, C2, C6, C10, C14		

Page 4 of 30 | 25 September 2025

Essential characteristic	Performance
Edge distances, joint distances, spacing, member thickness	c _{cr} , s _{crll} , s _{cr⊥} see Annex B5, C3, C7, C11, C15
	$c_{jll}, c_{j\perp},$ see Annex B5
	c _{min} , s _{minII} , s _{min⊥} see Annex B5, C2, C6, C10, C14
	h _{min} see Annex C2, C6, C10, C14
Resistance to combined tension and shear loading (hollow and perforated bricks)	No performance assessed
Displacements	$\delta_{N0}, \delta_{N^{\infty}}, \delta_{V0}, \delta_{V^{\infty}}$ see Annex C4, C8, C12, C16

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A 1
Resistance to fire	$\begin{array}{c} N_{Rk,s,fi} \;,\; N_{Rk,p,fi} \;,\; N_{Rk,b,fi} \;,\; V_{Rk,s,fi} \;,\; M^0{}_{Rk,s,fi} \;,\\ c_{min,fi} \;,\; c_{j,fi} \\ see\; Annex\; C5,\; C9,\; C13,\; C17 \end{array}$
	$N_{RK,fi}^{g}$, S _{min,fi} , C _{min,fi} , C _{j,fi} see Annex C5, C9, C13, C17

3.3 Aspects of durability

Essential characteristic	Performance	
Durability	see Annex B1	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330460-00-0604 the applicable European legal act is: 97/177/EC.

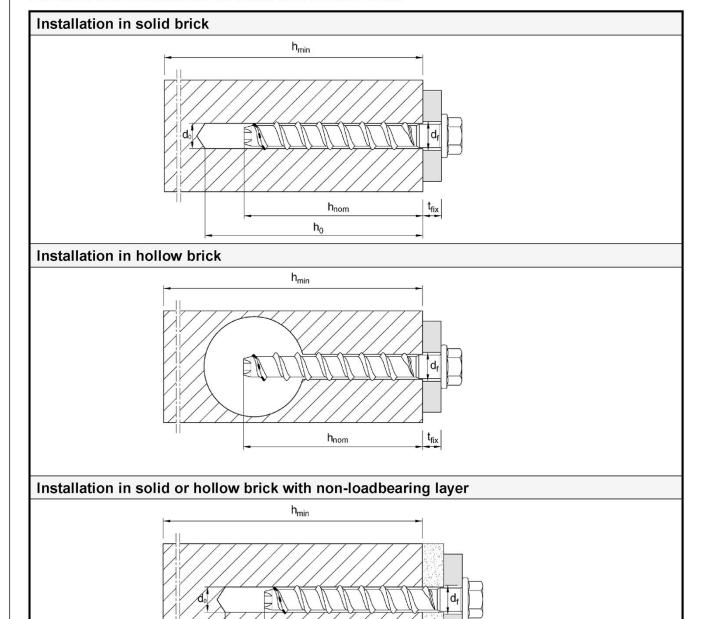
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 25 September 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock


Head of Section

beglaubigt:

Aksünger

Concrete Screw BSZ2 Product and Installation in solid and hollow brick

d₀ = nominal drill bit diameter

d_f = diameter of clearance hole in the fixture

t_{fix} = thickness of fixture

t_{nll} = thickness of non-loadbearing layer

 $\begin{array}{ll} h_{\text{min}} & = \text{minimum thickness of member} \\ h_{\text{nom}} & = \text{nominal embedment depth} \end{array}$

h₀ = depth of the drill hole

Concrete Screw BSZ2 for masonry

Product description

Product and installation condition

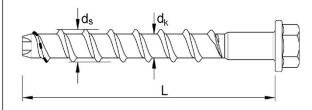
Annex A1

Z211323.25 8.06.04-428/25

h_{nom}

 h_0

Table A1: Screw types


Туре		Description
В		Screw version with metric connection thread and hexagon drive e.g.: BSZ2-B 10x140 A4
		Screw version with hexagon head, pressed-on washer and TORX drive e.g.: BSZ2-SU 10x140 A4 TX
s	3 9	Screw version with hexagon head and pressed-on washer e.g.: BSZ2-SU 10x140 A4
	(% S < %)	Screw version with hexagon head e.g.: BSZ2-S 10x140 A4
sĸ		Screw version with countersunk head and TORX drive e.g.: BSZ2-SK 10x140 A4
LK	(8) (8) (8) (8) (8) (8) (8) (8) (8) (8)	Screw version with pan head and TORX drive e.g.: BSZ2-LK 10x140 A4
LK	(\$52 (\$)	Screw version with large pan head and TORX drive e.g.: BSZ2-GLK 10x140 A4
		Screw version with countersunk head and metric connection thread e.g.: BSZ2-BSK 10x140 A4
BS		Screw version with hexagon drive and metric connection thread e.g.: BSZ2-BS 10x140 A4
М		Screw version with internal thread and hexagon drive e.g.: BSZ2-M 10x140 A4

Concrete Screw BSZ2 for masonry	
Product description Screw types	Annex A2

Table A2: Dimensions

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45 55 75		
Length of the anchor	L≤	[mm]	500		
Core diameter	dk	[mm]	5,1	9,2	
Outside diameter	ds	[mm]	7,6	10,5	12,5

Marking

e.g.: SBSZ A4 10 100

or TSM A4 10 100

♦ BSZ Trade name

or (optional with manufacturer

TSM identification♦)

10 Screw size

100 Length of screw

Additional marking:

A4 Stainless steel

HCR High corrosion resistant steel

Table A3: Material

Screw version		Stainless steel BSZ2 A4	High corrosion resistant steel BSZ2 HCR	
Material		1.4401, 1.404, 1.4571, 1.4578	1.4529	
Characteristic yield strength	f _{yk}	560 N/mm²		
Characteristic ultimate strength	f _{uk}	700 N/mm²		
Fracture elongation	A 5		≤ 8%	

Concrete Screw BSZ2 for masonry	
Product description	Annex A3
Dimensions, marking and materials	

Specification of intended use

Concrete screw BSZ2	BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedment depth h _{nom} [mm]	35	45	55	
Anchorages subject to	(Tension-, Shear- or	Static and quasi-static loads (Tension-, Shear- or combined shear- and tension load or bending) Fire exposure For dry masonry only, all joints must be completely filled with mortar)		
Base material	Minimum thickness Bearing joints mu compressive strer Butt joints ma	nollow brick masonry, se of member h _{min} see Ann ist be completely filled w ngth class ≥ M5 accordin y, but do not have to be wet masonry (during ins	ex C6, C10, C14, C18 ith mortar of at least g to EN 998-2:2016. filled with mortar.	

Use conditions (Environmental conditions):

- · Concrete screws subject to dry internal conditions: all screw types
- For all other conditions corresponding to corrosion resistance CRC according to EN 1993-1-4:2006+A1:2015:
 - stainless steel A4, according to Annex A3, with marking A4: CRC III
 - high corrosion resistant steel HCR, according to Annex A3, with marking HCR: CRC V
- Temperature range of the masonry over the period of use: -40°C to +80°C

Design:

- The anchorage is designed in accordance with EOTA Technical Report TR 054:2022-07.
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Screws with nominal embedment depth smaller than 50 mm may only be used for anchoring of statically indeterminate systems, in internal exposure conditions.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor to supports, etc.)
- The screw may be placed in the wall side and in the reveal side of the masonry. The installation parameters
 for installation in the reveal side must be observed in accordance with Annex B7. In case of Silka XL solid
 calcium silicate brick KS 12DF, the installation is possible in the wall side only.
- For solid blocks, the characteristic load-bearing capacities also apply to larger block formats, greater compressive strengths and densities of the masonry blocks.
- Installation in the joint and close to the joint is not permitted; the distances to joints according to Annexes C, must be observed.

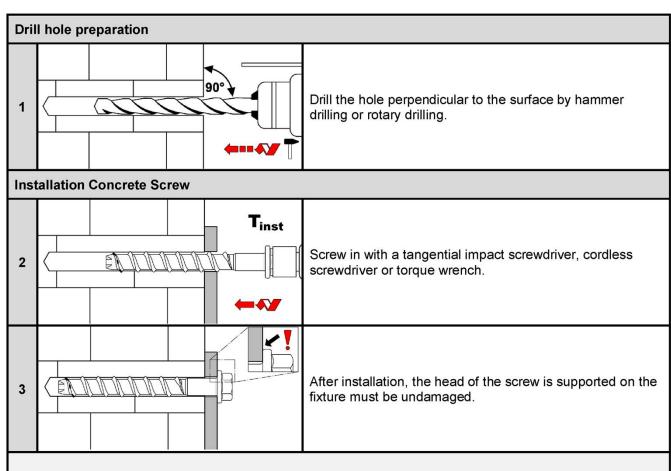
Installation:

- Bridging of non-load-bearing layers (e.g. plaster) is possible. When selecting the screw length L, the thickness of the non-load-bearing layer t_{nll} must be taken into account.
 L ≥ h_{nom} + t_{nll} + t_{fix} (see figures in Annex A1).
- During installation, the joint, axis and edge distances specified by the planner must be taken into account.
- The borehole is drilled with hammer, percussion, suction or masonry drills in hammer mode or rotary mode.
 The masonry must not be damaged during hammer drilling. If cracks occur during drilling, the rotary mode must be used. In this case, the drill hole must be discarded.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- Incorrectly drilled holes must be filled with high-strength mortar.

Concrete Screw BSZ2 for masonry	
Intended Use Specifications	Annex B1

Table B1: Overview of brick types and properties

Designation Picture Dimension Mean compressive Desity Annex						
Designation	Picture	L x B x H [mm]	Mean compressive strength	Desity [kg/dm³]	Annex	
	Solid calcium silica	ate brick KS acc. to	EN 771-2:2011+A1:2	2015		
KS 20 – 2,0 - NF		≥ 240 x 115 x 71	≥ 26,0	≥ 2,0	C2 - C5	
Silka	XL solid calcium silid	ate brick KS 12 DF	acc. to EN 771-2:20	11+A1:2015		
KS -R (P) 20 – 2,0 – 12 DF		≥ 498 x 175 x 248	≥ 14,0	≥ 1,8	C6 - C9	
Perf	forated calcium silica	te brick KSL 3 DF a	cc. to EN 771-2:2011	1+A1:2015		
SWKV KSL 12 – 1,6 – 3DF		≥ 240 x 175 x 113	≥ 17,0	≥ 1,5	C10 - C13	
Solid clay brick MZ acc. to EN 771-1:2011+A1:2015						
MZ 20 – 2,0 – NF		≥ 240 x 115 x 71	≥ 21,0	≥ 2,1	C14 - C17	


Table B2: Installation parameters

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Nominal bit hole diameter	d₀	[mm]	6	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,45	10,45
Depth of drill hole	h₀≥	[mm]	55	65	85
Diameter of clearance hole in the fixture	d _f ≤	[mm]	8	12	14

Concrete Screw BS	SZ2 for masonry	
Intended Use Overview of brick types	and properties / Installation parameters	Annex B2

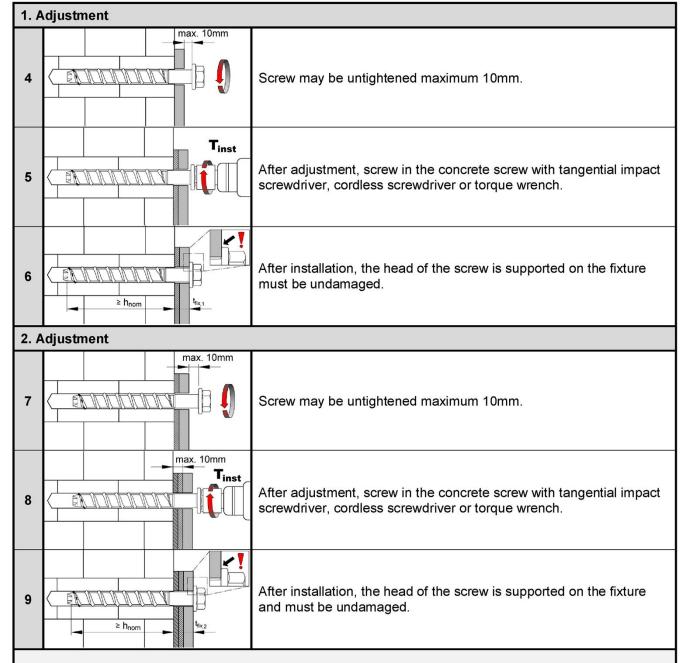
Installation instructions

Note:

Step 1: Joint distances, spacing and edge distances must be taken into account.

Step 2: For further details on screwing in, see brick type related Annex C2 – C17.

The installation torque must not exceed T_{inst,max}.

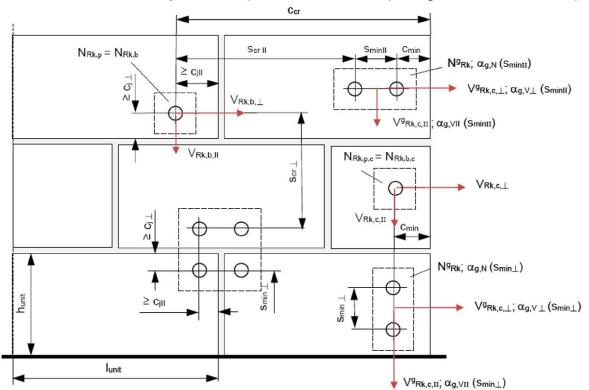

Step 3: It must not be possible to turn the screw. Tinst,max must not be exceeded during the check.

Intended Use Installation instruction

Annex B3

Installation instructions – Adjustment

Note:


The screw may be adjusted max. 2x. The fastener must not be screwed back by more than 10mm in each case. The relining carried out during adjustment must not exceed 10 mm in total. Nominal embedment depth h_{nom} must still be maintained after the adjustment.

For further details on screwing in, see brick type-related Annexes C.

Concrete Screw BSZ2 for masonry	
Intended Use Installation instruction - Adjustment	Annex B4

Possible installation positions (the distances and spacings must be observed)

c_{min} = minimum edge distance to the free edge of the wall

 $c_{j\,\parallel}$ = distance to the vertical joints without influence on resistance of the screw anchor $c_{j\,\perp}$ = distance to the horizontal joints without influence on resistance of the screw anchor

s_{min II} = minimum spacing parallel to horizontal joint

 $s_{min \perp}$ = minimum spacing perpendicular to the horizontal joint

c_{cr} = edge distance for transmission of the characteristic resistance of single screw anchor = 1,5h_{nom}

 s_{cr} = characteristic spacing parallel to the horizontal joint = 3,0 h_{nom}

 $s_{cr \perp}$ = characteristic spacing perpendicular to the horizontal joint = 3,0 h_{nom}

l_{unit} = length of the masonry unit h_{unit} = height of the masonry unit

 $\alpha_{g,N}$ ($s_{min \parallel}$) = group factor under tension load for minimum spacing parallel to horizontal joint

 $\alpha_{g,N}(s_{min \perp})$ = group factor under tension load for minimum spacing perpendicular to the horizontal joint

 $\alpha_{g,V}$ = group factor under shear load parallel to the edge $(\alpha_{g,V}$ = $\alpha_{g,V}$ || $(s_{min}$ ||) = $\alpha_{g,V}$ || $(s_{min}$ ||) || $(s_{min}$ || $(s_{min}$ ||) || $(s_{min}$ ||) || $(s_{min}$ ||) || $(s_{min}$ || $(s_{min}$ ||) || $(s_{min}$ || $(s_{$

 $\alpha_{g,V\perp} = \text{group factor under shear load perpendicular to the edge } (\alpha_{g,V\perp} = \alpha_{g,V\perp}(s_{\text{min II}}) = \alpha_{g,V\perp}(s_{\text{min II}}) = \alpha_{g,V\perp}(s_{\text{min II}})$

$$N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$$

 $V_{Rk, \perp} = V_{Rk,b \perp} = V_{Rk,c \perp}$, $V_{Rk, \perp} = V_{Rk,b \perp} = V_{Rk,c \perp}$

For $s \ge s_{cr}$: $\alpha_{g,N}(s_{min \mid I}) = \alpha_{g,N}(s_{min \mid L}) = \alpha_{g,V \mid I} = \alpha_{g,V \mid L} = 2$

 $For \ s_{min} \leq s \leq s_{cr}: \ \alpha_{g,N} \ (s_{min \ II}); \ \alpha_{g,N} \ (s_{min \ \bot}); \ \alpha_{g,V} \ _{I}; \ \alpha_{g,V} \ _{\bot} \ according \ to \ installation \ parameters \ of \ brick \ in \ Annex \ C$

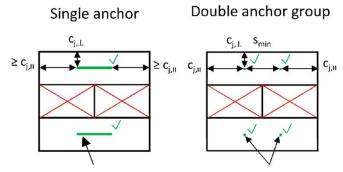
 $N^{g}_{Rk}(s_{min \parallel}) = \alpha_{g,N}(s_{min \parallel}) \times N_{Rk}$ (group of 2 anchors with minimum spacing parallel to horizontal joint)

 $N^{g}_{Rk}(s_{min \perp}) = \alpha_{g,N}(s_{min \perp}) \times N_{Rk}$ (group of 2 anchors with minimum spacing perpendicular to horizontal joint)

$$\begin{split} V^g_{Rk\,\parallel} &= \alpha_{g,V\,\parallel}\,x\,\,V_{Rk,\,\parallel}\,;\,\,V^g_{Rk,\,\perp} = \alpha_{g,V\,\perp}\,x\,\,V_{Rk,\,\perp} &\qquad \text{(group of 2 anchors)} \\ N^g_{Rk} &= \alpha_{g,N}\,(s_{\text{min II}})\,x\,\alpha_{g,N}\,(s_{\text{min L}})\,x\,N_{Rk} &\qquad \text{(group of 4 anchors)} \end{split}$$

 $V^{g}_{Rk\parallel} = \alpha_{g,V\parallel}^{2} \times V_{Rk,\parallel}; V^{g}_{Rk,\perp} = \alpha_{g,V\perp}^{2} \times V_{Rk,\perp} \qquad \text{(group of 4 anchors)}$

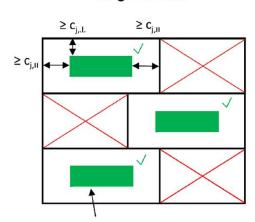
Concrete Screw BSZ2 for masonry


Intended Use
Possible installation positions

Annex B5

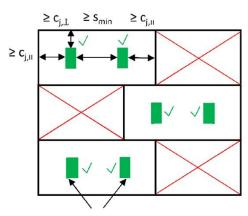
Installations parameter for installation in the reveal site

Positioning in reveal in brick types KS NF, MZ NF

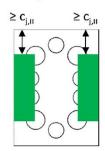


Possible installation position

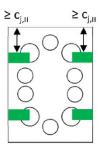
Possible installation position


Positioning in reveal in brick type KSL 3DF

Single anchor


Possible installation position

Double anchor group



Possible installation position

Top view

Top view

Concrete Screw BSZ2 for masonry

Intended Use

Possible installation in reveal

Annex B6

Table C1: Characteristic steel resistance under tension and shear load

Screw size			BSZ2 6	BSZ2 8	BSZ2 10			
Nominal embedment depth	h _{nom}	[mm]	45	55	75			
Steel failure								
Tension load								
Characteristic resistance	$N_{Rk,s}$	[kN]	14,0	27,0	45,0			
Partial factor 1)	γMs,N	[-]		1,5				
Shear load								
Characteristic resistance without lever arm	$V_{Rk,s}$	[kN]	7,0	13,5	34,0			
Characteristic bending resistance	M^0 Rk,s	[Nm]	10,9	26,0	56,0			
Ductility factor	k ₇	[-]		0,8				
Partial factor 1)	γMs,V	[-]		1,25				

¹⁾ In absence of national regulation

Concrete Screw BSZ2 for masonry	
Performance	Annex C1
Characteristic steel resistance	

Brick type: Solid calcium silicate brick KS

Table C2: Description

Brick type	Solid calcium silicate brick KS		
Density	ρ	[kg/dm ³]	≥ 2,0
Mean compressive strength	f _{mean}	[N/mm ²]	≥ 26,0
Format		[-]	KS 20 - 2,0 - NF
Brick dimensions		[mm]	≥ 240 x 115 x 71
Norm		[-]	EN 771-2:2011+A1:2015
Minimum wall thickness	h_{min}	[mm]	240

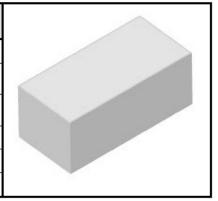


Table C3: Minimum edge distance, spacing, group factors, installation torque

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment dep	th h _{nom}	[mm]	45	55	75
Minimum edge distance	Cmin	[mm]		80	
Minimum spacing	$s_{\text{min,II}} = s_{\text{min,}\perp}$	[mm]	80		
_	$\alpha_{g,N}$ (Smin,II)	[-]	1,80	1,15	1,20
	$\alpha_{g,N}$ (S _{min,⊥})	[-]	1,50	1,15	1,65
Group factors	$\alpha_{g,V,II}$	[-]	1,55	1,55	1,05
	αg,∨,⊥	[-]	1,50	1,75	1,75
Installation torque with					
Manual installation	max. T _{inst.}	[Nm]	11	24	41
Tangential impact screwd	driver 1) T _{imp,max}	[Nm]	185	300	300

¹⁾ maximum power output T_{imp,max} according to manufacturer's specifications

Concrete Screw BSZ2 for masonry	
Performance – Solid calcium silicate brick KS Description / Minimum edge distance, spacing, group factors, installation torque	Annex C2

Table C4: Reduction factors depending on the distance to joints

Screw size		BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Distance to joints 1)		[mm]	≥ 35		
		[mm]	≥ 80		
Reduction factor		[mm]	1		
Neduction factor	$\alpha_{j,VII} = \alpha_{j,V\perp}$	[mm]		(full resistance)	

¹⁾ If the specified distances are not observed, the screw must not be used

Table C5: Characteristic resistances 1)

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Compressive strength	\mathbf{f}_{mean}	[N/mm²]		≥ 26,0	
Characteristic resistance to tension load	N _{Rk}	[kN]	2,5	4,1	4,5
Characteristic resistance to	$V_{Rk,II}$	[kN]	5,3	5,3	7,7
shear load	$V_{Rk,\!\perp}$	[kN]	2,8	2,1	2,1
Compressive strength	\mathbf{f}_{mean}	[N/mm²]		≥ 30,0	
Characteristic resistance to tension load	N_{Rk}	[kN]	2,7	4,4	4,8
Characteristic resistance to	$V_{Rk,II}$	[kN]	5,7	5,7	8,3
shear load	$V_{Rk,\perp}$	[kN]	3,0	2,3	2,3
Compressive strength	\mathbf{f}_{mean}	[N/mm²]		≥ 35,0	
Characteristic resistance to tension load	N _{Rk}	[kN]	3,0	4,8	5,2
Characteristic resistance to	$V_{Rk,II}$	[kN]	6,1	6,1	8,9
shear load	$V_{Rk,\!\perp}$	[kN]	3,2	2,5	2,5
Compressive strength	\mathbf{f}_{mean}	[N/mm²]	≥ 38,0		
Characteristic resistance to tension load	N_{Rk}	[kN]	3,1	5,0	5,4
Characteristic resistance to	$V_{Rk,II}$	[kN]	6,4	6,4	9,3
shear load	V _{Rk,}	[kN]	3,4	2,6	2,6

¹⁾ Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Concrete Screw BSZ2 for masonry	
Performance – Solid calcium silicate brick KS Reduction factors depending on the distance to joints / Characteristic resistances	Annex C3

Table C6: Displacements under static or quasi-static loads

Screw size			BSZ2 6	BSZ2 8	BSZ2 10		
Nominal embedment depth	h _{nom}	[mm]	45	55	75		
Tension load							
Tension load	F _N	[kN]	0,60	1,10	1,10		
Dienlessment	δηο	[mm]		0,01			
Displacement -	δn∞	[mm]		0,02			
Shear load	Shear load						
Shear load <u>parallel</u> to the edge	F _{V,II}	[kN]	1,50	1,50	2,20		
Dienlessment	δv0,II	[mm]	0,76	0,76	0,37		
Displacement -	δv∞,II	[mm]	1,14	1,14	0,57		
Shear load <u>perpendicular</u> to the edge	F _{V,⊥}	[kN]	0,80	0,60	0,60		
Displacement	δνο,1	[mm]	0,57	0,31	0,01		
Displacement -	$\delta_{V_{\infty,\perp}}$	[mm]	0,85	0,47	0,02		

Concrete Screw BSZ2 for masonry	
Performance – Solid calcium silicate brick KS Displacement	Annex C4

Table C7: Characteristic resistance under fire exposure

Screw size				BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth h _{nom} [mm]				45	55	75
Steel failure (tension	on and s	hear load)				
	R30		[kN]	1,30	1,30	3,40
Characteristic	R60	N _{Rk,s,fi}	[kN]	1,00	1,00	2,70
resistance	R90	V _{Rk,s,fi}	[kN]	0,60	0,60	2,00
	R120		[kN]	0,50	0,50	1,70
Steel failure <u>with</u> le	ever arm	ı				
	R30	- M ⁰ Rk,s,fi	[Nm]	1,10	1,50	4,90
Characteristic	R60		[Nm]	0,80	1,10	4,00
bending resistance	R90		[Nm]	0,50	0,80	3,00
	R120		[Nm]	0,40	0,60	2,50
Pull-out failure and	breako	ut failure				J.
	R30		[kN]	1,30	1,30	3,40
Characteristic	R60	N _{Rk,p,fi}	[kN]	1,00	1,00	2,70
resistance	R90	N _{Rk,b,fi}	[kN]	0,60	0,60	2,00
1	R120		[kN]	0,50	0,50	1,70
	R30	$c_{min,fi} = c_{j,fi,II}$	[mm]		120	
Spacing-, edge- and joint distance	-	C j,fi,⊥	[mm]		35	
,	R120	S _{cr,fi}	[mm]		4 x h _{nom}	

Table C8: Characteristic resistance under fire exposure for anchor groups

Screw size				BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedmer	Nominal embedment depth h _{nom} [mm]		45	55	75		
Characteristic resi	stance ı	under fire expo	sure				
R30 Characteristic R60 Resistance R90	N ^g Rk,fi	[kN]	0,12 · N ^g _{Rk}	0,14 · N ^g _{Rk}	0,24 · N ^g _{Rk}		
(anchor groups)	R120		[kN]	0,10 · N ^g _{Rk}	0,11 · N ^g _{Rk}	0,19 · N ^g _{Rk}	
Spacing-, edge-	R30	$c_{\text{min,fi}} = c_{j,\text{fi}}$	[mm]	2 x h _{nom} 1)			
and joint distance	R120	S min,fi	[mm]		4 x h _{nom}		

¹⁾ At least the distances set out in Table C7 shall be observed.

Concrete Screw BSZ2 for masonry	
Performance – Solid calcium silicate brick KS Characteristic resistance under fire exposure	Annex C5

Brick type: Silka XL solid calcium silicate brick KS 12DF

Table C9: Description

Brick type			Silka XL solid calcium silicate brick KS 12DF
Density	ρ	[kg/dm ³]	≥ 1,8
Mean compressive strength	f _{mean}	[N/mm ²]	≥ 14,0
Format		[-]	KS -R (P) 20 – 2,0 – 12 DF
Brick dimensions		[mm]	≥ 498 x 175 x 248
Norm		[-]	EN 771-2:2011+A1:2015
Minimum wall thickness	h _{min}	[mm]	175

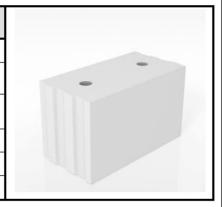


Table C10: Minimum edge distance, spacing, group factors, installation torque

Screw size			BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedment depth h _{nom} [mm]		[mm]	45	55	75	
Minimum edge distance	C _{min}	[mm]		80		
Minimum spacing	$s_{\text{min,II}} = s_{\text{min,}\perp}$	[mm]		80		
	$\alpha_{g,N}$ (Smin,II)	[-]	1,30	1,80	1,40	
Group factors —	$\alpha_{g,N}$ ($s_{min,\perp}$)	[-]	1,65	1,55	1,60	
Gloup lactors	$\alpha_{g,V,II}$	[-]	2,00	2,00	1,90	
	$\alpha_{\text{g,V,L}}$	[-]	2,00	2,00	1,40	
Installation torque with						
Manual installation	max. T _{inst}	[Nm]	11	25	41	
Rotary screwdriver	max. T _{inst}	[Nm]	10	No performance assessed		
Tangential impact screwdrive	er ¹⁾ T _{imp,max}	[Nm]	185	300	300	

¹⁾ maximum power output T_{imp,max} according to manufacturer's specifications

Concrete Screw BSZ2 for masonry	
Performance – Silka XL solid calcium silicate brick KS 12DF Description / Minimum edge distance, spacing, group factors, installation torque	Annex C6

Table C11: Reduction factors depending on the distance to joints

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Distance to joints $^{1)}$ c_{jl}		[mm]	≥ 40		
		[mm]	≥ 80		
Reduction factor		[mm]	1		
Reduction factor	$\alpha_{j,VII} = \alpha_{j,V\perp}$	[mm]	(full resistance)		

¹⁾ If the specified distances are not observed, the screw must not be used

Table C12: Characteristic resistances 1)

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Compressive strength	f _{mean}	[N/mm²]		≥ 14,0	w
Characteristic resistance to tension load	N _{Rk}	[kN]	2,3	7,1	6,4
Characteristic resistance to	V _{Rk,II}	[kN]	3,2	3,2	12,8
shear load	V _{Rk,⊥}	[kN]	3,6	3,6	5,9
Compressive strength	\mathbf{f}_{mean}	[N/mm²]	≥ 15,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	2,4	7,4	6,9
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,3	3,3	13,3
shear load	$V_{Rk,\perp}$	[kN]	3,7	3,7	6,1
Compressive strength	\mathbf{f}_{mean}	[N/mm²]		≥ 20,0	
Characteristic resistance to tension load	N _{Rk}	[kN]	2,8	8,5	8,0
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,8	3,8	15,3
shear load	$V_{Rk,\perp}$	[kN]	4,3	4,3	7,0

¹⁾ Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Concrete Screw BSZ2 for masonry	
Performance – Silka XL solid calcium silicate brick KS 12DF Reduction factors depending on the distance to joints / Characteristic resistances	Annex C7

Table C13: Displacements under static or quasi-static loads

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Tension load					
Tension load	F_N	[kN]	0,70	2,20	1,80
Dianlacement	δηο	[mm]	0,01	0,02	0,01
Displacement -	$\delta_{N\infty}$	[mm]	0,02	0,04	0,02
Shear load					
Shear load <u>parallel</u> to the edge	F _{V,II}	[kN]	0,90	0,90	3,70
Dianlessment	800,11	[mm]	0,37	0,37	1,70
Displacement -	δv∞,II	[mm]	0,55	0,55	2,55
Shear load <u>perpendicular</u> to the edge	F _{V,⊥}	[kN]	1,00	1,00	1,70
	δνο,μ	[mm]	0,40	0,40	1,50
Displacement -	δν∞,⊥	[mm]	0,60	0,60	2,25

Concrete Screw BSZ2 for masonry	
Performance – Silka XL solid calcium silicate brick KS 12DF Displacement	Annex C8

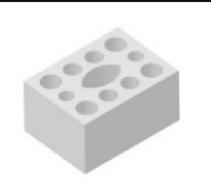
Table C14: Characteristic resistance under fire exposure

Screw size				BSZ2 6
Nominal embedment depth h _{nom} [mm]			[mm]	45
Steel failure (tension	n and sh	ear load)	5	
	R30		[kN]	1,50
Characteristic	R60	N _{Rk,s,fi}	[kN]	1,10
resistance	R90	V _{Rk,s,fi}	[kN]	0,60
	R120	- ,, . ,	[kN]	0,40
Steel failure with lev	er arm		7	
	R30		[Nm]	1,20
Steel failure with	R60	M ⁰ Rk,s,fi	[Nm]	0,90
lever arm	R90	IVI [™] Rk,s,fi	[Nm]	0,50
	R120		[Nm]	0,30
Pull-out failure				
	R30		[kN]	0,40
Characteristic	R60	$N_{Rk,p,fi}$	[kN]	0,40
resistance	R90 [kN]	0,40		
	R120		[kN]	0,32
Breakout failure				
	R30		[kN]	0,28
Characteristic	R60		[kN]	0,28
resistance	R90	NRk,b,fi	[kN]	0,28
	R120		[kN]	0,23
Consiner adapt	R30	$C_{\min,fi} = C_{j,fi,II}$	[mm]	120
Spacing-, edge- and joint distance	-	Cj,fi,⊥	[mm]	35
Joint distance	R120	S _{min,fi}	[mm]	4 x h _{nom}

Table C15: Characteristic resistance under fire exposure for anchor groups

Screw size				BSZ2 6
Nominal embedment	Nominal embedment depth h _{nom}			45
Characteristic resist	ance ur	nder fire expo	sure	
Characteristic Resistance	R30 R60 R90	N ^g _{Rk,fi}	[kN]	0,12 · N ^g _{Rk}
(anchor groups)	R120		[kN]	0,10 · N ^g Rk
Spacing-, edge- and	R30	$\mathbf{c}_{min,fi} = \mathbf{c}_{j,fi}$	[mm]	2 x h _{nom} 1)
joint distance	R120	S min,fi	[mm]	4 x h _{nom}

¹⁾ At least the distances set out in Table 14 shall be observed


Concrete Screw BSZ2 for masonry	
Performance – Silka XL solid calcium silicate brick KS 12DF Characteristic resistance under fire exposure	Annex C9

Brick type: Perforated calcium silicate brick KSL 3DF

Table C16: Description

Brick type	Perforated calcium silicate brick KSL 3DF		
Density	ρ	[kg/dm ³]	≥ 1,5
Mean compressive strength	f _{mean}	[N/mm ²]	≥ 17,0
Format		[-]	SWKV KSL 12 – 1,6 – 3 DF
Brick dimensions		[mm]	≥ 240 x 175 x 113
Norm		[-]	EN 771-2:2011+A1:2015
Minimum wall thickness	h_{min}	[mm]	175

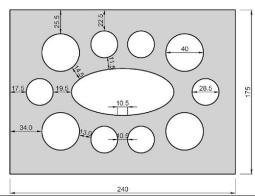


Table C17: Minimum edge distance, spacing, group factors, installation torque

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth h _{nom} [mm			45	55	75
Minimum edge distance	C _{min}	[mm]	80		
Minimum spacing	$s_{min,II} = s_{min,\perp}$	[mm]		80	
	αg,N (Smin,II)	[-]	2,00	1,55	1,45
Croup factors	$\alpha_{g,N}$ (S _{min,⊥})	[-]	2,00	1,55	1,95
Group factors	$\alpha_{g,V,II}$ (Smin, \perp) / (Smin,II)	[-]	2,00	2,00	2,00
	$\alpha_{\text{g,V,}\perp}(\mathbf{S}_{\text{min,}\perp})$ / $(\mathbf{S}_{\text{min,}\text{II}})$	[-]	1,80	1,80	1,30
Installation torque with					
Manual installation	max. T _{inst}	[Nm]	2	5	7
Rotary screwdriver	max. T _{inst}	[Nm]	8	9	9
Tangential impact screw	driver 1) T _{imp,max}	[Nm]	no performance assessed	200	200

¹⁾ maximum power output T_{imp,max} according to manufacturer's specifications

Concrete Screw BSZ2 for masonry	
Performance – Perforated calcium silicate brick KSL 3DF Description / Minimum edge distance, spacing, group factors, installation torque	Annex C10

Table C18: Reduction factors depending on the distance to joints

Screw size		BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Distance to injute 1)	Cj⊥	[mm]	≥ 35		
Distance to joints 1)	Сјп	[mm]	≥ 58		
Reduction factor	$\alpha_{j,N}$	[mm]	1		
Neduction factor	$\alpha_{j,VII} = \alpha_{j,V\perp}$	[mm]		(full resistance)	

¹⁾ If the specified distances are not observed, the screw must not be used

Table C19: Characteristic resistances 1)

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	h _{nom}	[mm]	45	55	75
Compressive strength	f _{mean}	[N/mm²]		≥ 17,0	
Characteristic resistance to tension load	N _{Rk}	[kN]	0,9	1,6	2,2
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,4	3,4	3,4
shear load	$V_{Rk,\perp}$	[kN]	1,6	1,6	2,2
Compressive strength	f _{mean}	[N/mm²]		≥ 20,0	
Characteristic resistance to tension load	N_{Rk}	[kN]	0,9	1,8	2,5
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,8	3,8	3,8
shear load	$V_{Rk,\perp}$	[kN]	1,8	1,8	2,5
Compressive strength	f _{mean}	[N/mm²]	≥ 25,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	1,1	2,2	2,9
Characteristic resistance to	$V_{Rk,II}$	[kN]	4,5	4,5	4,6
shear load	$V_{Rk,\perp}$	[kN]	2,1	2,1	2,9
Interaction	Х	[-]		1,0	

¹⁾ Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Concrete Screw BSZ2 for masonry	
Performance – Perforated calcium silicate brick KSL 3DF Reduction factors depending on the distance to joints / Characteristic resistances	Annex C11

Table C20: Displacements under static or quasi-static loads

Screw size			BSZ2 6	BSZ2 8	BSZ2 10		
Nominal embedment depth	h _{nom}	[mm]	45	55	75		
Tension load							
Tension load	F_N	[kN]	0,30	0,50	0,60		
Displacement	δηο	[mm]	0,01	0,01	0,01		
Displacement -	δ_{N_∞}	[mm]	0,02	0,02	0,02		
Shear load	Shear load						
Shear load <u>parallel</u> to the edge	F _{V,II}	[kN]	1,0	1,0	1,0		
Dienlessment	δνο,∥	[mm]	0,68	0,68	0,29		
Displacement -	$\delta_{V_\infty,II}$	[mm]	1,02	1,02	0,43		
Shear load <u>perpendicular</u> to the edge	F _{V,⊥}	[kN]	0,50	0,50	0,60		
Displacement	δνο,μ	[mm]	0,01	0,01	0,01		
Displacement -	$\delta_{V_{\infty,\perp}}$	[mm]	0,01	0,01	0,01		

Concrete Screw BSZ2 for masonry	
Performance – Perforated calcium silicate brick KSL 3DF Displacement	Annex C12

Table C21: Characteristic resistance under fire exposure

Screw size				BSZ2 6
Nominal embedment	lominal embedment depth h _{nom}		[mm]	45
Steel failure (tension	n and sh	ear load)	8	
	R30		[kN]	1,00
Characteristic	R60	N _{Rk,s,fi}	[kN]	0,80
resistance	R90	V _{Rk,s,fi}	[kN]	0,50
	R120	1 1 11,0,11	[kN]	0,40
Steel failure <u>with</u> lev	er arm			
	R30	M ⁰ Rk,s,fi	[Nm]	0,80
Characteristic	R60		[Nm]	0,60
bending resistance	R90		[Nm]	0,40
	R120		[Nm]	0,30
Pull-out failure and I	oreakou	t failure		
	R30		[kN]	0,60
Characteristic	R60	N _{Rk,p,fi}	[kN]	0,40
resistance	R90	N _{Rk,b,fi}	[kN]	0,30
	R120		[kN]	0,20
Consider adam and	R30	$C_{\min,fi} = C_{j,fi,II}$	[mm]	101
Spacing-, edge- and joint distance	1=	Cj,fi,⊥	[mm]	56
John Giotarios	R120	S _{min,fi}	[mm]	4 x h _{nom}

Table C22: Characteristic resistance under fire exposure for anchor groups

Screw size				BSZ2 6
Nominal embedment depth h _{nom} [mm]			[mm]	45
Characteristic resist	ance ur	nder fire expos	sure	
Characteristic Resistance	R30 R60 R90	N ^g _{Rk,fi}	[kN]	0,12 · N ^g Rk
(anchor groups)	R120		[kN]	$0,10 \cdot N^g_{Rk}$
Spacing-, edge- and	R30	$c_{\text{min,fi}} = c_{j,\text{fi}}$	[mm]	2 x h _{nom} 1)
joint distance	R120	S min,fi	[mm]	4 x h _{nom}

¹⁾ At least the distances set out in Table C21 shall be observed

Concrete Screw BSZ2 for masonry	
Performance – Perforated calcium silicate brick KSL 3DF Characteristic resistance under fire exposure	Annex C13

Brick type: Solid clay brick MZ

Table C23: Description

Brick type	Solid clay brick MZ		
Density	ρ	[kg/dm ³]	≥ 2,1
Mean compressive strength	f mean	[N/mm ²]	≥ 21,0
Format		[-]	MZ 20 – 2,0 - NF
Norm		[-]	EN 771-1:2011+A1:2015
Brick dimensions		[mm]	≥ 240 x 115 x 71
Minimum wall thickness	h _{min}	[mm]	240

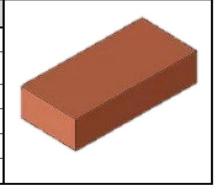


Table C24: Minimum edge distance, spacing, group factors, installation torque

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth h _{nom} [mm]			45	55	75
Minimum edge distance	Cmin	[mm]		80	
Minimum spacing	$s_{\text{min},\text{II}} = s_{\text{min},\perp}$	[mm]		80	
	$\alpha_{g,N}$ (Smin,II)	[-]	1,75	1,15	1,45
Group factors	$\alpha_{g,N}$ ($\mathbf{S}_{min,\perp}$)	[-]	1,60	1,00	1,70
Group ractors	$\alpha_{g,V,II}\left(\mathbf{S}_{min,\perp}\right)/\left(\mathbf{S}_{min,II}\right)$	[-]	1,45	1,45	2,00
	$\alpha_{\text{g,V,L}}(\textbf{S}_{\text{min,L}}) / \big(\textbf{S}_{\text{min,II}}\big)$	[-]	1,70	1,70	1,50
Installation torque with					
Manual installation	max. T _{inst}	[Nm]	0,3	12	26
Rotary screwdriver	max. T _{inst}	[Nm]	6	10	no performance assessed
Tangential impact screw driver ¹⁾ T _{imp,max} [N		[Nm]	no performar	nce assessed	155

¹⁾ maximum power output T_{imp,max} according to manufacturer's specifications

Concrete Screw BSZ2 for masonry	
Performance – Solid clay brick MZ Description / Minimum edge distance, spacing, group factors, installation torque	Annex C14

Table C25: Reduction factors depending on the distance to joints

Screw size			BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedment depth h _{nom} [mn		[mm]	45	55	75	
Distance to injute 1)	Cj⊥	[mm]	≥ 35			
Distance to joints 1)	Сјп	[mm]	≥ 80			
Reduction factor	αj,N	[mm]	1			
Reduction factor	$\alpha_{j,VII} = \alpha_{j,VI}$	[mm]	(full resistance)			

¹⁾ If the specified distances are not observed, the screw must not be used

Table C26: Characteristic resistances 1)

Screw size			BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth	Nominal embedment depth h _{nom}		45	55	75
Compressive strength	f _{mean}	[N/mm²]		≥ 21,0	
Characteristic resistance to tension load	N_{Rk}	[kN]	1,4	2,2	2,8
Characteristic resistance to	$V_{Rk,II}$	[kN]	2,5	2,5	2,6
shear load	$V_{Rk,\perp}$	[kN]	1,9	1,9	2,1
Compressive strength	f _{mean}	[N/mm²]] ≥ 25,0		
Characteristic resistance to tension load	N_{Rk}	[kN]	1,6	2,4	3,1
Characteristic resistance to	$V_{Rk,II}$	[kN]	2,7	2,7	2,8
shear load	$V_{Rk,\perp}$	[kN]	2,0	2,0	2,3
Compressive strength	f_{mean}	[N/mm²]		≥ 30,0	
Characteristic resistance to tension load	N_{Rk}	[kN]	1,7	2,7	3,4
Characteristic resistance to	$V_{Rk,II}$	[kN]	2,9	2,9	3,1
shear load	$V_{Rk,\perp}$	[kN]	2,2	2,2	2,5
Compressive strength	f _{mean}	[N/mm²]	≥ 31,0		
Characteristic resistance to tension load	N _{Rk}	[kN]	1,8	2,7	3,4
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,0	3,0	3,2
shear load	$V_{Rk,\perp}$	[kN]	2,3	2,3	2,6

¹⁾ Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under tension loading and to local brick failure and brick edge failure of a single screw anchor under shear loading

Concrete Screw BSZ2 for masonry	
Performance – Solid clay brick MZ Reduction factors depending on the distance to joints / Characteristic resistances	Annex C15

Table C27: Displacements under static or quasi-static loads

Screw size			BSZ2 6	BSZ2 8	BSZ2 10	
Nominal embedment depth	Nominal embedment depth h _{nom} [mn		45	55	75	
Tension load						
Tension load	F _N	[kN]	0,40	0,60	0,80	
Displacement -	δνο	[mm]	0,01	0,01	0,01	
Displacement	$\delta_{N\infty}$	[mm]	0,02	0,02	0,02	
Shear load						
Shear load <u>parallel</u> to the edge	F _{V,II}	[kN]	0,70	0,70	0,70	
Displacement	δ√0,11	[mm]	0,14	0,14	0,13	
Displacement -	$\delta_{V_\infty,II}$	[mm]	0,22	0,22	0,20	
Shear load <u>perpendicular</u> to the edge	F _{V,⊥}	[kN]	0,50	0,50	0,60	
Displacement -	δνο,μ	[mm]	0,34	0,34	0,33	
Displacement	$\delta_{V_{\infty,\perp}}$	[mm]	0,50	0,50	0,50	

Concrete Screw BSZ2 for masonry	
Performance – Solid clay brick MZ	Annex C16
Displacement	

Table C28: Characteristic resistance under fire exposure

Screw size				BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment depth h _{nom} [mm]			45	55	75	
Steel failure (tension	n and sh	ear load)				
	R30		[kN]	1,30	1,30	1,70
Characteristic	R60	N _{Rk,s,fi}	[kN]	1,00	1,00	1,60
resistance	R90	V _{Rk,s,fi}	[kN]	0,60	0,60	1,60
	R120		[kN]	0,50	0,50	1,50
Steel failure <u>with</u> lev	er arm					
	R30	M ⁰ Rk,s,fi	[Nm]	1,10	1,50	2,50
Characteristic	R60		[Nm]	0,80	1,10	2,40
bending resistance	R90		[Nm]	0,50	0,80	2,30
	R120		[Nm]	0,40	0,60	2,20
Pull-out failure and	breakou	t failure				
	R30		[kN]	1,30	1,30	1,70
Characteristic	R60	N _{Rk,p,fi}	[kN]	1,00	1,00	1,60
resistance	R90	N _{Rk,b,fi}	[kN]	0,60	0,60	1,60
	R120		[kN]	0,50	0,50	1,50
	R30	$c_{\min,fi} = c_{j,fi,II}$	[mm]		120	
Spacing-, edge- and joint distance	e-	Cj,fi,⊥	[mm]		35	
,	R120	S _{cr,fi}	[mm]		4 x h _{nom}	

Table C29: Characteristic resistance under fire exposure for anchor groups

Screw size				BSZ2 6	BSZ2 8	BSZ2 10
Nominal embedment	Nominal embedment depth h _{nom} [mm]			45	55	75
Characteristic resist	ance ur	nder fire expos	sure			=
Characteristic F Resistance F (anchor groups)	R30 R60 R90	N ^g _{Rk,fi}	[kN]	0,12 · N ^g _{Rk}	0,14 · N ^g _{Rk}	0,24 · N ^g _{Rk}
	R120		[kN]	0,10 · N ^g _{Rk}	0,11 · N ^g _{Rk}	0,19 · N ^g _{Rk}
Spacing-, edge- and	R30	$c_{\text{min,fi}} = c_{j,\text{fi}}$	[mm]	2 x h _{nom} 1)		
joint distance	R120	S min,fi	[mm]		4 x h _{nom}	

¹⁾ At least the distances set out in Table C28 shall be observed

Concrete Screw BSZ2 for masonry	
Performance – Solid clay brick MZ Characteristic resistance under fire exposure	Annex C17